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1. Introduction 

The circuits used for power conversion applied in drives with induction motor (IM) are 

classified into two groups: voltage source inverters (VSI) and current source inverters (CSI). 

The VSI were used more often than the CSI because of their better properties. Nowadays, 

the development of power electronics devices has enormous influence on applications of 

systems based on the CSI and creates new possibilities.  

In the 1980s the current source inverters were the main commonly used electric machine 

feeding devices. Characteristic features of those drives were the motor electromagnetic 

torque pulsations, the voltage and current with large content of higher harmonics. The 

current source inverter was constructed of a thyristor bridge and large inductance and large 

commutation capacitors. Serious problems in such drive systems were unavoidable 

overvoltage cases during the thyristor commutation, as the current source inverter current is 

supplied in a cycle from a dc-link circuit to the machine phase winding. The thyristor CSI 

has been replaced by the transistor reverse blocking IGBT devices (RBIGBT), where the 

diode is series-connected and placed in one casing with transistor. The power transistors 

like RBIGBT or Silicon Carbide (SiC) used in the modern CSIs guarantee superior static and 

dynamic drive characteristics.  

The electric drive development trends are focused on the high quality system. The use of 

current sources for  the electric machine control ensures better drive properties than in case 

of voltage sources, where it may be necessary to use an additional passive filter at the 

inverter output. The Pulse width modulation (PWM) with properly chosen dc-link inductor 

and input-output capacitors result in sinusoidal inverter output currents and voltages. 

Methods of calculating proper inductance in dc-link were proposed in [Glab (Morawiec) M. 

et. al., 2005, Klonne A. & Fuchs W.F., 2003, 2004].  Properties of dc-link circuit of the Current 

Source Converter (CSC) force the utilization of two fully-controlled inverters to supply 
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system with electric motor. The first of them – CSI - generates the current output vector to 

supply the induction motor. The second one – Current Source Rectifier (CSR) - generates a 

DC voltage to supply a dc-link circuit. The strategy for controlling  the output current vector 

of CSI can be realized in two ways [Glab (Morawiec) M. et. al., 2005, Klonne A. & Fuchs 

W.F., 2003, Kwak S. & Toliyat H.A., 2006]. First of them is based on changes of modulation 

index while the value of current in dc-link circuit remains constant [Klonne A. & Fuchs 

W.F., 2003]. The second method is based on changes of dc-link current. In this case the CSI is 

working with constant, maximum value of PWM modulation index. Control of modulation 

index in CSI is used in drive systems, where high dynamic of electromagnetic torque should 

be maintained [Klonne A. & Fuchs W.F., 2003]. High current in dc-link circuit is a reason for 

high power losses in CSI. The simplified control method is the scalar control: current to slip 

(I/s). This method is very simple to implement, but the drive system has average 

performance (only one controller is necessary, the current in dc-link is kept at constant value 

by PI controller).  

The drive system quality is closely connected with the machine control algorithm. The space 

vector concept, introduced in 1959 by Kovacs and Racz, opened a new path in the electric 

machine mathematical modelling field. The international literature on the subject presents 

drive systems with the CSI feeding an induction motor with the control system based on the 

coordinate system orientation in relation to the rotor flux vector (FOC – Field Oriented 

Control). Such control consisted of the dc-link circuit current stabilization [Klonne A. & 

Fuchs W.F., 2003]. In such control systems the control variables are the inverter output 

current components. This control method is presented in [Nikolic Aleksandar B. & Jeftenic 

Borislav I.], where the authors analyze control system based on direct torque control. The 

control process where the control variable is the inverter output current may be called 

current control of an induction motor supplied by the CSI.  

Another control method of a current source inverter fed induction motor is using the link 

circuit voltage and the motor slip as control variables. That type of control may be called 

voltage control of a CSI fed induction motor, as the dc-link circuit voltage and angular 

frequency of current vector are the control variables. Proposed control strategy bases on 

nonlinear multi-scalar control [Glab (Morawiec) M. et. al., 2005, ].  The nonlinear control 

may result in better properties in case if the IM is fed by CSI. To achieve independent 

control of flux and rotor speed, new nonlinear control scheme is proposed. In this control 

method the inverter output currents are not controlled variables. The voltage in dc-link and 

pulsation of output current vector are the controlled variables which can be obtained by 

nonlinear transformations and are proposed by authors in [Krzeminski Z., 1987, Glab 

(Morawiec) M. et. al., 2005, 2007]. The multi-scalar model is named the extended one 

because the mathematical model contained dc-link current and output capacitors equations. 

This full mathematical model of induction machine with the CSI is used to derive new 

multi-scalar model. In proposed method the output current vector coefficients are not 

controlled variables. The output current vector and the flux vector are used to achieve new 

multi-scalar variables and new multi-scalar model. The control system structure may be 

supported on PI controllers and nonlinear decouplings or different controllers e.g. sliding 

mode controllers, the backstepping control method or fuzzy neural controller. 
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2. Structure of the drive system supplied by CSI or CSC 

The simplified configuration of the drive system with the CSI is presented in the Fig. 1. The 

integral parts of the system are the inductor in dc-link and the output capacitors. In the Fig. 

1 the structure with the chopper as an adjustable voltage source is presented.  

 

Figure 1. The CSI with the chopper 

 

Figure 2. The Current source converter 

The chopper with the small inductor Ld (a few mH) forms the large dynamic impedance of the 

current source. In the proposed system the transistors forms commutator which transforms 

DC current into AC current with constant modulation index. The current is controlled by 

voltage source ed in dc-link. In this way the system with CSI remains voltage controlled and 

the differential equation for dc-link may be integrated with differential equation for the stator. 

The inductor limits current ripples during commutations of transistors. The transistors used in 

this structure are named the reverse blocking IGBT transistors (RBIGBT).  

In order to avoid resonance problem the CSI or CSC structure parameters (input-output 

capacitors and inductor) ought to be properly chosen. The transistor CSI or CSC structures 

should guarantee sinusoidal stator current and voltage of IM if the parameters are selected 

by iteration algorithm. 
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2.1. The iteration algorithm selection of the inductor and input-output capacitors 

The inductance in dc-link Ld may be calculated as a function of the integral versus time of 

the difference of input voltage ed and output voltage ud in dc-link [Glab (Morawiec) M. et. 

al., 2005, Klonne A. & Fuchs W.F., 2003, 2004]. Calculating an inductance from [Glab 

(Morawiec) M. et. al., 2005, Klonne A. & Fuchs W.F., 2003] may be not enough because of the 

resonance problem. The parameters could be determined by simple algorithm. 

Two criteria are taken into account: 

 Minimization of currents ripples in the system 

 Minimization of size and weight. 

The first criteria can be defined as: 

 max ,d
i

d

i
w

i


  (1) 

where 

Δidmax is max(idmax(t1) – idmin(t2)), 

id is average value of dc-link current in one period. 

The current ripples in dc-link has influence on output currents and commutation process. 

According to this, the wi factor, THDi stator and THDu stator must be taken into account. 

Optimal value of inductance Ld and output CM ensure performance of the drive system with 

sinusoidal output current and small THD. In Fig. 3 the iteration algorithm for choosing the 

inductor and capacitor is shown. In every step of iteration new values wi, THDi, THDu are 

received. In every of these steps new values are compared with predetermined value wip, 

THDip, THDup and: 

N is number of iteration, 

THDi – stator current total harmonic distortion, 

THDu – stator voltage total harmonic distortion. Number of iteration is set for user. 

In START the initial parameters are loaded. In block Set Ld inductance of the inductor is set. 

In Numerical process block the simulation is started. In next steps THDi, THDu and wi 

coefficient are calculated. THDi, THDu and wi coefficient are compared  with predetermined 

value. If YES then CM is setting, if NO the new value of Ld must be set. Comparison with 

predetermined value is specified as below: 

 

max min

max min

max min

( )

( )

( )

ip i ip

up u up

dp d dp

THD THD i THD

THD THD i THD

i i i i

  
    
       

 (2) 

where 
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Δidpmax – maximum value for wi coefficient,  

Δidpmin – minimum value for wi coefficient, 

THDipmax, THDupmax – maximum predetermined value of THD for range (ΔLd, ΔCM), 

THDipmin, THDupmin – minimum predetermined value of THD (ΔLd, ΔCM), 

ΔLd – interval of optimal value Ld, 

ΔCM – interval of optimal value CM. 

For optimal quality of stator current and voltage in a drive system THDi ought to be about 

1%, THDu<2% and wi<15% in numerical process. Estimated CSC parameters by the iteration 

algorithm are shown in Fig. 4 and 5 or Table 1. 

 

 

 
 

Figure 3. The iteration algorithm for selection of the inductor Ld an capacitors CM 
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Figure 4. Inductor inductance from iteration algorithm, where Pn [kW] is nominal machine power for 

different transistors switching frequency [kHz] 

 

Figure 5. Capacitor capacitance from iteration algorithm where Pn [kW] is nominal machine power for 

different transistors switching frequency [kHz] 
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The value of AC side capacitors CL ought to be about 25% higher than for CM because of 

higher harmonics in supply network voltage: 

 1,25L MC C  . (3) 

 

Pn [kW] Ld [mH] CM [μF] CL [μF] Pn [kW] Ld [mH] CM [μF] CL [μF] 

1,5 13,2 10 10 15 7,6 30 35 

2,2 12,5 12 12 22 6,2 50 60 

4 11,6 20 20 30 5,5 60 70 

5,5 10,5 20 20 45 4,5 80 90 

7,5 9,4 22 22 55 3 120 150 

11 8,3 22 25 75 2 150 200 

Table 1. Estimated a CSC parameters 

3. The mathematical model of IM supplied by CSC 

3.1. Introduction to mathematical model  

Differential equation for the dc-link is as follows 

 d
d d d d d

di
e i R L u

d
   , (4) 

where: ud is the inverter input voltage, Rd is the inductor resistance, Ld is the inductance, ed 

is the control voltage in dc-link, id is the current in dc-link.  

Equation (4) is used together with differential equation for the induction motor to derive the 

models of induction motor fed by the CSI. 

The model of a squirrel-cage induction motor expressed as a set of differential equations for 

the stator-current and rotor-flux vector components presented in αβ stationary coordinate 

system is as follows [Krzeminski Z., 1987]: 

 
2 2

,s s r r m r m m r
s r r r s

r r

di R L R L R L L L
i u

d L w L w w w


   
   

  



      (5) 

 
2 2
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s s r r m r m m r

s r r r s
r r

di R L R L R L L L
i u

d L w L w w w


   

   
  




      (6) 
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 0

1
( ) ,r m

r s r s
r

d L
i i m

d JL J   


 


    (9) 

where 

Rr, Rs are the motor windings resistance, Ls, Lr, Lm are stator, rotor and mutual inductance, 

usα, usβ, isα, isβ, ψrα, ψrβ are components of stator voltage, currents and rotor flux vectors, ωr is 

the angular rotor velocity, J is the torque of inertia, m0 is the load torque. All variables and 

parameters are in p. u. 

3.2. The mathematical model of IM contains full drive system equations 

The vector components of the rotor flux together with inverter output current are used to 

derive model of IM fed by the CSI. The model is developed using rotating reference frame 

xy with x axis orientated with output current vector. The y component of the output current 

vector is equal to zero.  

The variables in the rotating reference frame  are presented in Fig. 6. 

The output current under assumption an ideal commutator can be expressed 

 ,f di K i   (10) 

where  

K is the unitary commutation function (K=1).  

 

Figure 6. Variables in the rotating frame of references 

If the commutation function is K=1 than 

 .f di i  (11) 

The equation (12) results from (11) taking into account ideal commutator of the CSI, 

according to equation 

α

β

x

y


fi


rψ

ryψ

rxψ

sαi

sβi
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  DClink AC motor side

d d sx fx

p p

u i u i




, (12) 

where: ud is the input six transistors bridge voltage, usx is the stator voltage component. 

The full model of the drive system in rotating reference frame xy with x axis oriented with 

inverter output current vector is as follows 

 
2 2

,sx s r r m r m m r
sx rx i sy r ry sx

r r

di R L R L R L L L
i i u

d L w L w w w   
   




       (13)  

 
2 2
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       (14) 
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      (16) 

 0

1
( ) ,r m

rx sy ry sx
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d L
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    (17) 

 ,d d d sx
d

d d d

di e R u
i

d L L L
    (18) 

 
1

( )sx
fx sx i sy

M

du
i i u

d C



   , (19) 

 
1sy

sy i sx
M

du
i u

d C



   . (20) 

where: ωi is angular frequency of vector fi


, isx, isy are the capacitors currents. 

4. The nonlinear multi-scalar voltage control of IM with PI controllers 

4.1. The simplified Multi-scalar control 

The Nonlinear multi-scalar control was presented by authors [Krzeminski Z., 1987, Glab 

(Morawiec) M. et. al., 2005, 2007]. This control in classical form based on PI controllers. The 

simplify multi-scalar control of IM supplied by CSC for different vector components ( ,r si


), 

( ,s si


), ( ,m si


) was presented in [Glab (Morawiec) M. et. al., 2005, 2007]. These multi-scalar 
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control structures give different dynamical and statical properties of IM supplied by CSI. In 

this chapter the simplified control is presented. The simplification is based on (11) and (12) 

equations. If the capacity CM has small values (a few μF) the mathematical equations (19) -

(20) can be ommitted and the output current vector in stationary state  is f si i . Under 

this simplification, to achieve the decoupling between two control paths the multi-scalar 

model based control system was proposed [Krzeminski Z., 1987, Glab (Morawiec) M. et. al., 

2005, 2007]. The variables for the multi-scalar model of IM are defined  

 11 ,rx   (21) 

 12 ,d ryx i    (22) 

 2 2
21 ,rx ryx     (23) 

 22 ,d rxx i   (24) 

where  

x11 is the rotor speed, x12 is the variable proportional to electromagnetic torque, x21 is the 

square of rotor flux and x22 is the variable named magnetized variable [Krzeminski, 1987]. 

Assumption of such machine state variables may lead to improvement of the control system 

quality due to the fact that e.g. the x12 variable is directly the electromagnetic torque of the 

machine. In FOC control methods [Klonne A. & Fuchs W.F., 2003, 2004, Salo M. & Tuusa H. 

2004] the electromagnetic torque is not directly but indirectly controlled (the isq stator 

current component). With the assumption of a constant rotor flux modulus, such a control 

conception is correct. The inaccuracy of the machine parameters, asymmetry or 

inadequately aligned control system may lead to couplings between control circuits. 

The mathematical model for new state of variables (21) - (24) used (15) - (18) is expressed by 

differential equations: 

 
11

12 0

1
( ) ,m

r

Ldx
x m

d JL J
   (25) 

 
12

12 1

1 1
,r m

sx ry sy d
i d r

R Ldx
x u i i v

d T L L



      (26) 

 21
21 222 2 ,r m

r
r r

R Ldx
x R x

d L L
    (27) 

 22
22 2

1 r m
sx d

i r

R Ldx
x i i v

d T L
    . (28) 
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The compensation of nonlinearities in differential equation leads to the following 

expressions for control variables v1 and v2 appearing in differential equations (27) - (28): 

 1 1

1
,r m sx

sy d ry
r d i

R L u
v i i m

L L T
     (29) 

 2 2

1r m sx
sx d rx

r d i

R L u
v i i m

L L T
     , (30) 

where m1, 2 are the PI controllers output and 

 
1 s d

i r d

R R

T L L
  . (31) 

The control variables are specified 

 
1 2

21

ry rx
d d

v v
e L

x

 
   , (32) 

 
1 2

11
21

rx ry

i
d

v v
x

i x

 



 


, (33) 

when 21 d,i 0x  . 

The inverter control variables are: voltage ed and the output current vector pulsation. The 

multi-scalar control of IM supplied by CSI was named voltage control because the control 

variable is voltage ed in dc-link. 

The decoupled two subsystems are obtained:  

 electromagnetic subsystem 

 21
21 222 2 ,r r m

r r

R R Ldx
x x

d L L
    (34) 

 22
22 2

1
( )

i

dx
x m

d T
   , (35)  

 electromechanical subsystem 

 11
12 0

1
,m

r

Ldx
x m

d JL J
   (36) 

 12
12 1

1
( ).

i

dx
x m

d T
    (37) 
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4.2. The multi-scalar control with inverter mathematical model 

The author in [Morawiec M., 2007] revealed stability proof of simplified multi-scalar control 

while the parameters of the CSI are optimal selected.  

When the capacitance CM is neglected the stator current vector si


 is about ~5% out of phase 

to fi


 while nominal torque is set. Then the control variables and decoupling are not 

obtained precisely. The error is small than 2% because PI controllers improved it.  

In order to compensate these errors the capacity CM to mathematical model is applied. 

From (19) - (20) in stationary state lead to dependences: 

 sx fx if M syi i C u  , (38) 

 sy if M sxi C u  . (39) 

The new mathematical model of the drive system is obtained from (38) - (39) through 

differentiation it and used (15) - (16) in xy coordinate system: 

 2 21 1sx d
d d x if M sy if M sx

d d d

di R
i e u C i C u

d L L L
 


      , (40) 

 2 2sy

if M d if M sx if M sy

di
C i C i C u

d
  


    , (41) 

 ( )rx r r m
rx if r ry sx

r r

d R R L
i

d L L


   


     , (42) 

 ( )
ry r r m

ry if r rx sy
r r

d R R L
i

d L L


   


     , (43) 

 
1 1d d

d d sx
d d d

di R
i e u

d L L L
    , (44) 

 
1

( )sx
fx sx if sy

M

du
i i u

d C



   , (45) 

 
1sy

sy if sx
M

du
i u

d C



   . (46) 

Substituting (38) - (39) to multi-scalar variables [Krzeminski Z., 1987] one obtains: 

 11 rx  , (47) 
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 12 32fx ry if Mx i C x    , (48) 

 2 2
21 rx ryx    , (49) 

 22 31fx rx if Mx i C x   , (50) 

and 

 31 rx sy ry sxx u u   , (51) 

 32 rx sx ry syx u u   . (52) 

The multi-scalar model for new multi-scalar variables has the form:  

 11
12 0

1
,m

r

Ldx
x m

d JL J
   (53) 

 12
12 11 22 1

1 1
sx ry

i d

dx
x u x x v

d T L



     , (54) 

 21
21 222 2 ,r m

r
r r

R Ldx
x R x

d L L
    (55) 

 222
22 11 12 2

1 1 r m
sx rx d

i d r

R Ldx
x u i x x v

d T L L



      , (56) 

where 

 1 22 32

1
( )d r m

d ry if M M s
d r

R R L
v e x C x C p

L L L
      , (57) 

 
2 12 31

1
( )d r m

d rx if M M s
d r

R R L
v e x C x C q

L L L
      , (58) 

 s sx sy sy sxq i u i u  , (59) 

 s sx sx sy syp u i u i  . (60) 

The compensation of nonlinearities in differentials equation leads to the following 

expressions for control variables v1 and v2 appearing in differential equations (54), (56): 

 1 1 11 22

1 1
sx ry

i d

v m u x x
T L

   , (61) 



 
Induction Motors – Modelling and Control 

 

440 

 2
2 2 11 12

1 1 r m
sx rx d

i d r

R L
v m u x x i

T L L
    , (62) 

and the control variables 

 2 41 1 42

41 42
d d

rx ry

V x V x
e L

x x 





, (63) 

 
1 2

41 42

rx ry

i
rx ry

V V

x x

 


 





, (64) 

where 

 
41 22 32

d r m
M M s

r

R R L
x x C x C p

L L
   , (65) 

 
42 12 31

d r m
M M s

r

R R L
x x C x C q

L L
    , (66) 

1

iT
 is determined in (31). 

The decoupled two subsystems are obtained as in (34) - (37). 

4.3. The multi-scalar adaptive-backstepping control of an IM supplied by the 

CSI 

The backstepping control can be appropriately written for an induction squirrel-cage 

machine supplied from a VSI. In literature the backstepping control is known for adaptation 

of selected machine parameters, written for an induction motor [Tan H. & Chang J., 1999, 

Young Ho Hwang, 2008]. In [Tan H. & Chang J., 1999, Young Ho Hwang, 2008] the authors 

defined the machine state variables in the dq coordinate system, oriented in accordance with 

the rotor flux vector (FOC). The control method presented in [Tan H. & Chang J., 1999, 

Young Ho Hwang, 2008] is based on control of the motor state variables: ωr – rotor angular 

speed, rotor flux modulus and the stator current vector components: isd and isq. Selection of 

the new motor state variables, as in the case of multi-scalar control with linear PI regulators, 

leads to a different form of expressions describing the machine control and decoupling. The 

following state variables have been selected for the multi-scalar backstepping control  

 *
1 11 11e x x  , (67) 

 *
2 12 12e x x  , (68) 

 *
3 21 21e x x  , (69) 
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*

4 22 222 2m m
r r

r r

L L
e R x R x

L L

 
   
 

, (70) 

where: x11, x12, x21 and x22 are defined in (47) - (50). 

The e4 tracking error is defined in (70), it does not influence on the control system properties 

and is only an accepted simplification in the format of decoupling variables.   

Derivatives of the (67) - (70) errors take the form 

 0
1 2 1 1

m

r

L m
e e k e

JL J
  


 , (71) 

 2
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 3 3 3 4e k e e   , (73) 
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The Lyapunov function derivative, with (71) – (74) taken into account, may be expressed as: 
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where 
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 3 2 r m

r

R L
a

L
 .  

limit12 – is a dynamic limitation in the motor speed control subsystem, 

limit22 – is a dynamic limitation in the rotor flux control subsystem, 

k1…k4 and γ are the constant gains. 

The control variables take the form: 

 41 2 3 42 1

3 41 42( )d d
rx ry

x f a x f
e L

a x x 





, (80) 

 
3 1 2

3 41 42( )

rx ry

i
rx ry

a f f

a x x

 


 





. (81) 

The inverter control variables are: voltage ed and the output current vector pulsation. The 

two decoupled subsystems are obtained as in (34) - (37). 

The load torque m0 can be estimated from the formula: 

 1
0 1 2

ˆ ( )r

m

Le
m k e

J L
  . (82) 

4.4. Dynamic limitations of the reference variables  

In control systems with the conventional linear controllers of the PI or PID type, the 

reference (or controller output) variable dynamics are limited to a constant value or 

dynamically changed by (83) - (84), depending on the drive working point.   

Control systems where the control variables are determined from the Lyapunov function 

(like in backstepping control) have no limitations in the set variable control circuits. The 

reference variable dynamics may be limited by means of additional first order inertia 

elements (e.g. on the set speed signal).  

The author of this paper has not come across a solution of the problem in the most 

significant backstepping control literature references, e.g. [Tan H. & Chang J., 1999, Young 

Ho Hwang, 2008]. In the quoted reference positions, the authors propose the use of an 

inertia elements on the set variable signals. Such approach is an intermediate method, not 

giving any rational control effects. The use of an inertia element on the reference signal, e.g. 

of the rotor angular speed, will slow down the reference electromagnetic torque reaction in 

proportion to the inertia element time-constant. In effect a "slow" build-up of the motor 

electromagnetic torque is obtained, which may be acceptable in some applications. In 

practice the aim is to limit the electromagnetic torque value without an impact on the build-

up dynamics. Control systems with the Lyapunov function-based control without limitation 
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of the set variables are not suitable for direct adaptation in the drive systems. Therefore, a 

solution often quoted in literature is the use of a PI or PID speed controller at the torque 

control circuit input.   

The set values of the *
12x , *

22x  variables appearing in the e2 and e4 deviations can be 

dynamically limited and the dynamic limitations are defined by the expressions 

[Adamowicz M.; Guzinski J., 2005]: 

 2 2
12lim max 21 22sx I x x  , (83) 

 2 2
22 lim max max 11( , , )s sx f U I x , (84) 

where 

x12lim – the set torque limitation, 

x22lim – the x22 variable limitation, 

Ismax – maximum value of the stator current modulus, 

Usmax – maximum value of the stator voltage modulus. 

The above given expressions may be modified to: 

 
2

2 21
12lim max 21 2s

m

x
x I x

L
  , (85) 

giving the relationship between the x21 variable, the stator current modulus Ismax, and the 

motor set torque limitation.    

For the multi-scalar backstepping control, to the f1 and f2 variables the limit12 and limit22 

variables were introduced; they assume the 0 or 1 value depending on the need of limiting 

the set variable.   

Limitation of variables in the Lyapunov function-based control systems may be performed 

in the following way: 

  * 12
12 12 lim

2 12 lim 12

limit 0,
 x x    

e x x
if then

       
, (86) 

  * 12
12 12 lim

2 12 lim 12

limit 0,  
 x < x  then 

e x x
if

        
, (87) 

else 12limit 1 , 

  * 22
22 22lim

4 22lim 22

limit 0,
 x x    

e x x
if then

       
, (88) 
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  * 22
22 22 lim

4 22 lim 22

limit 0,  
 x < x  then 

e x x
if

        
, (89) 

 else 22limit 1 .   

The dynamic limitations effected in accordance with expressions (83) – (84) limit properly 

the value of *
12x  and *

22x variables without any interference in the reference signal build-up 

dynamics.  

Fig. 7 presents the variable simulation diagrams. The backstepping control dynamic 

limitations were used.  

 

Figure 7. Diagrams of multi-scalar variables in the machine dynamic states, the x12ogr = 1.0 and x22ogr = 

0.74 limitations were set for a drive system with an induction squirrel-cage machine supplied from a 

CSC-simulation diagrams, x*12 – diagram of the machine set electromagnetic torque (without signal 

limitation), x*22 – diagram of the x*22 set signal (without limitation). 

4.5. Impact of the dynamic limitation on the estimation of parameters 

The use of a variable limitation algorithm may have a negative impact on the control system 

estimated parameters.  This has a direct connected with the limited deviation values, which 

are then used in an adaptive parameter estimation. Such phenomenon is presented in Fig. 7. 

The estimated parameter in the control system is the motor load torque 0m̂ . The set 

electromagnetic torque is limited to the x12lim = 1.0 value. Fig. 7 shows that the estimated load 

torque increases slowly in the intermediate states. Limitation of the set electromagnetic 

torque causes the limitation of deviation e2, which in turn causes limited increase dynamics 

of the estimated load torque. The 0m̂  value for limit12 = 0 in the dynamic states does not 

reach the real value of the load torque, which should be 0 12m̂ x . A large 0m  estimation 

error occurs in the intermediate states, which can be seen in Fig. 8. The estimation error in 

the intermediate states is 0 0m   because the torque limitation, introduced to the control 

system, is not compensated. The simulation and experimental tests have shown that the 

load torque estimation error in the intermediate state has an insignificant impact on the 
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speed control. Omitting 0m̂  in the set torque x*12 expression eliminates the intermediate 

state speed over-regulation. But absence of 0m̂  in x*12 for a steady state gives the deviation 

value 1 0e   and lack of full control over maintaining the rotor set angular speed. 

Compensation of the limit12 limitation introduced to the control system is possible by 

installing a corrector in the rotor angular speed control circuit.   

A corrector in the form of an e1 signal integrating element was added to the set 

electromagnetic torque x*12 signal. In this way a system reacting to the change of machine 

real load torque was obtained. The introduced correction minimizes the rotor angular speed 

deviation and the corrector signal may be treated as the estimated load torque value.   

The correction element is determined by the expression:  

 

1

1 1

k

k

t

L e
t

KT k e d


  , (90) 

where 

tk-1…tk is the e1 signal integration range, 

KTL – correction element, 

1ek  – is the correction element amplification.  

The gain ke1 should be adjusted that the speed overregulation in the intermediate state does 

not exceed 5%:  

 
1 10 0,1ek k   , (91) 

The correction element amplification must not be greater than k1, or: 

 1 1ek k . (92) 

For 1 1ek k  the KTL signal will become an oscillation element and may lead to the control 

system loss of stability.  

The KTL signal must be limited to the x12lim value. 

The x*12 set value expression must be modified:  

 *
12 1 1

r
L

m

JL
x k e KT

L
  , (93) 

where 

 0
ˆ

Lm KT . (94) 

The use of (93) in the angular speed control circuit improves the load torque estimation and 

eliminates the steady state speed error.  
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Fig. 9 presents the load torque (determined in (94)) estimation as well as x12 and the limit12 

limitations. 

 

Figure 8. Impact of the electromagnetic torque limitation x12lim on the estimated load torque 0m̂ (82). 

 

Figure 9. Diagrams of the limit12 variable, LKT load torque and  electromagnetic torque x12.. 

5. The nonlinear multi-scalar current control of induction machine 

Conception of the CSI current control is based on forced components of the CSI output 

current. The dc-link circuit inductor could be modeled as the first order inertia element with 

the time constant T of a value equal to the dc-link circuit time constant value. The dc-link 

0
m̂

0
m̂

LKT
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equation may be introduced to the induction machine mathematical model to obtain the set 

CSI output current component. The time constant T is equal the inductance Ld, it can be 

written: 

 
i 1

( i i )s
f s

d

dt T
 


 

, (95) 

 d

d

R
T

L
 . (96) 

5.1. The simplified multi-scalar current control of induction machine 

The simplified version of the CSI output current control it is assumed that the output 

capacitors have negligibly small capacitance, so their impact on the drive system dynamics 

is small. Assuming that the cartesian coordinate system, where the mathematical model 

variables are defined, is associated with the CSI output current vector (which with this 

simplification is the machine stator current) the mathematical model can be obtained (95) 

and (42) - (43) equations).   

The multi-scalar variables have the form 

 11 rx  , (97) 

 12 sx rxx i   , (98) 

 2 2
21 rx ryx    , (99) 

 22 sx rxx i  , (100) 

where  

sxi  is treated as the output current vector component and f si i . 

For those variables, the multi-scalar model has the form:  

 
11

12 0

1m

r

Ldx
x m

d JL J
  , (101) 

 
12

12 1

1

i

dx
x v

d T
   , (102) 

 
21

21 222 2r r m

r r

R R Ldx
x x

d L L
   , (103) 
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 22
22 2

1 r m
d

i r

R Ldx
x i v

d T L
    . (104) 

Applying the linearization method, the following relations are obtained, where m1 is the 

subordinated regulator output in the speed control line and m2 is the subordinated regulator 

output in the flux control line 

 1 1

1

i

v m
T

 , (105) 

 2 2

1 r m
d

i r

R L
v m i

T L
  . (106) 

The control variables are modulus of the CSI output current and the output current vector 

pulsation, given by the following relations:  

 
2 1

f
21

i
rx ry

ry

v v
T

x

 




 , (107) 

 1 2
11

21
i

sx

v v
x

x i



  . (108) 

where: Ld –inductance, Ti– the system time constant. 

5.2. The multi-scalar current control of induction machine 

The current control analysis presented in the preceding sections does not take the CSI 

output capacitors into account. Such simplification may be applied because of the small 

impact of the capacitors upon the control variables (the machine stator current and voltage 

are measured). The capacitor model will have a positive impact on the control system 

dynamics.  

The output capacitor relations have the form: 

 
u 1

( i i )s
f s

M

d

dt C
 

  
, (109) 

where: us


is the capacitor voltage vector, i f


is the current source inverter output current 

vector, is


 is the stator current vector.  

Using the approximation method, relation (38) may be written as follows: 

 
u ( ) u ( 1) 1

i ( ) i ( )s s
f s

imp M

k k
k k

T C

     

   
. (110) 
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Deriving us(k) from (38), the motor stator voltage is obtained as a function of the output 

current, stator current and stator voltage, in the form: 

 u ( ) i ( ) i ( ) u ( 1)
imp

s f s s
M

T
k k k k

C
     
  

, (111) 

where 

u ( )s k


is the stator voltage vector at the k-th moment, Timp - sampling period. 

In the equations (5) - (9) representing the cage induction motor mathematical model the 

stator current vector components are appeared but the direct control variables do not. The 

motor stator current vector components cannot be the control variables because the multi-

scalar model relations are derived from them. This is a different situation than with the FOC 

control. The FOC control is based on the machine stator current components described in a 

coordinate system associated with the rotor flux and the stator current components are the 

control variables. Therefore, control variables must be introduced into the mathematical 

model (5) - (9). The control may be introduced considering the machine currents (5) - (6) and 

equation (95) written for the αβ components and describing the dc-link circuit dynamics. 

Adding the respective sides of equations (5) and (95) and equations (6) and (95), where 

equation (95) must be written with the (αβ) components – the mathematical model of the 

drive system fed by the CSI is obtained: 

 

2 2
1

2 2 2 2 2
s s r r m r r m m r

s r r r s f
r r

di R L T R L T L w R L L L
i u i

d L w T L w w w T
 

    
   

  


 
      , (112) 

 

2 2
1

2 2 2 2 2

s s r r m r r m m r
s r r r s f

r r

di R L T R L T L w R L L L
i u i

d L w T L w w w T

 
    

   
  


 

      , (113) 

and equations (7) - (8). 

The multi-scalar variables are assumed like in [Krzeminski Z., 1987]: 

 11 rx  , (114) 

 12 r s r sx i i      , (115) 

 2 2
21 r rx     , (116) 

 22 r s r sx i i      . (117) 

Introducing the multi-scalar variables (114) - (117), the multi-scalar model of an IM fed by 

the CSI is obtained:  



 
Induction Motors – Modelling and Control 

 

450 

 12
12 11 22 11 22 1

1
( )

2 2 2
m r

s r s r
i

L Ldx
x x x x x u u v

d T w w    
 

 


       , (118) 

 222
22 11 12 21 2

1
+ ( )

2 2 2 2
r m r m r

s r s r s
i r r

R L R L Ldx
x x x x i u u v

d T L w L w    
 

 


       , (119) 

where 

 1

1 1

2 2r f r fv i i
T T      , (120) 

 2

1 1

2 2r f r fv i i
T T      . (121) 

Applying the linearization method to (118) - (119), the following expressions are obtained:  

 1 1 11 22 11 21 1 12

1
( 1) ( 1)

2 2 2
m r

s r s r
i

L L
v m x x x x u k u k a x

T w w    
 

           , (122) 

2
2 2 11 21 21 1 22

1
- ( 1) ( 1)

2 2 2 2

r r r
s s r s r

i r r

R L R L Lm mv m x x x i u k u k a x
T w L L w    

 
           , (123) 

where 

 1 1 f r f rv a i i        , (124) 

 2 1 f r f rv a i i         . (125) 

The control variables take the form 

 
2 1

2
21

r r
f

v v
i a

x

 


 
 , (126) 

 
1 2

2
21

r r
f

v v
i a

x

 


 
 , (127) 

where  

 1 2

r imp

M

L T
a

w C
 , (128) 

 2 1

1

2
a a

T
  . (129) 
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The time constant Ti for simplified for both control method is given 

 
2 2

r
i

s r r m r

w L T
T

R L T R L T L w






 

, (130) 

5.3. Generalized multi-scalar control of induction machine supplied by CSI or 

VSI 

A cage induction machine fed by the CSI may be controlled in the same way as with the 

voltage source inverter (VSI). The generalized control is provided by an IM multi-scalar 

model formulated for the VSI machine control [Krzeminski Z., 1987]. The (114) - (117) multi-

scalar variables and additional u1 and u2 variables are used  

 1 r s r su u u      , (131) 

 2 r s r su u u      , (132) 

which are a scalar and vector product of the stator voltage and rotor flux vectors.  

The multi-scalar model feedback linearization leads to defining the nonlinear decouplings 

[Krzeminski Z., 1987]: 

 *
1 11 22 21 1

1
( )m

r v

w L
U x x x m

L w T




 
   

  
, (133) 

 * 2
2 11 12 21 2

1
[ ]r m r m

s
r r r v

w R L R L
U x x i x m

L L L w T



     . (134) 

The control variables for an IM supplied by the VSI have the form [Krzeminski Z., 1987]: 

 

* *
2 1*

21

r r
s

U U
u

x

 


 
 , (135) 

 

* *
1 2*

21

r r
s

U U
u

x

 


 
 . (136) 

The controls (135) - (136) are reference variables treated as input to space vector modulator 

when the IM is supplied by the VSI. 

On the other side, when the IM is fed by the CSI, calculation of the derivatives of (131) - 

(132) multi-scalar variables yields the following relations: 

 1
1 11 2 12 11

1r r m
s

r r M

R R Ldu
u x u q x v

d L L C
      , (137) 
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 2
2 11 1 22 22

1r r m
s

r r M

R R Ldu
u x u p x v

d L L C
      , (138) 

where ps and qs are defined in (59) - (60). 

By feedback linearization of the system of equations, one obtains  

 11 1 12 11 2

1r r m
p s

r r M

R R L
v v q x x u

L L C
     , (139) 

 22 2 22 11 1

1r r m
p s

r r M

R R L
v v p x x u

L L C
     , (140) 

where 

vp1 and vp2 are the output of subordinated PI controllers. 

The control variables of the IM fed by the CSI have the form: 

 
11 22

21

r r
f M

v v
i C

x

 


 
  , (141) 

 
11 22

21

r r
f M

v v
i C

x

 


 
 . (142) 

As a result, two feedback loops and linear subsystems are obtained (Fig. 15). 

6. The speed observer backstepping 

General conception of the adaptive control with backstepping is presented in references 

[Payam A. F. & Dehkordi B. M. 2006, Krstic M.; Kanellakopoulos I.; & Kokotovic P. 1995]. In 

[Krstic M.; Kanellakopoulos I.; & Kokotovic P. 1995] the adaptive back integration observer 

stability is proved and the stability range is given.   

Proceeding in accordance with the adaptive estimator with backstepping conception, one 

can derive formulae for the observer, where only the state variables will be estimated as well 

as the rotor angular speed as an additional estimation parameter.  

Treating the stator current vector components ,
ˆ
si   as the observer output variables (as in 

[Payam A. F. & Dehkordi B. M. 2006, Krstic M.; Kanellakopoulos I.; & Kokotovic P. 1995]) 

and vα,β  as the new input variables, which will be determined by the backstepping method, 

one obtains: 

 1 5 4 6

ˆ
ˆ ˆ ˆ ˆs
s r r r s

di
a i a a a u v

d


      


      , (143) 
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 1 5 4 6

ˆ
ˆ ˆ ˆ ˆs
s r r r s

di
a i a a a u v

d


      


      , (144) 

 
ˆ ˆˆ ˆ ˆr r r m

r r r s
r r

d R R L
i

d L L


  


 


    , (145) 

 
ˆ

ˆˆ ˆ ˆr r r m
r r r s

r r

d R R L
i

d L L


  


 


    . (146) 

In accordance to the backstepping method, the virtual control must be determined together 

with the observer stabilizing variables. In that purpose, the new   and   variables have 

been introduced and linked with the stator current estimation deviations (the integral 

backstepping structure [Krstic M.; Kanellakopoulos I.; & Kokotovic P. 1995]): 

 a
s

d
i

d 




  , (147) 

 b
s

d
i

d 




  . (148) 

The stator current vector component deviations are treated as the subsystem control 

variables [Payam A. F. & Dehkordi B. M. 2006, Krstic M.; Kanellakopoulos I.; & Kokotovic P. 

1995]. Adding and deducting the stabilizing functions, one obtains: 

 s

d
i

d


  


 


  
  , (149) 

 s

d
i

d


  


 


  

  , (150) 

where  

 1c     , 1c     , (151) 

by introducing the deviation defining variable, one obtains:  

 1sz i c     , (152) 

 1sz i c     . (153) 

Transformation of (152) - (153) leads to: 

 1

d
z c

d


 





 


  (154) 
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 1

d
z c

d


 





 


 . (155) 

Calculation of the (152) - (153) deviation derivatives gives:  

 5 4 1
ˆ ˆ( )r r r r r r sz a a v c i                 

     , (156) 

 5 4 1
ˆ ˆ( )r r r r r r sz a a v c i                 

     . (157) 

By selecting the following Lyapunov function 

 2 2 2 2 2 2 21
r r rV z z         


           , (158) 

calculating the derivative and substituting the respective expressions, new correction 

elements can be determined, treated in the speed observer backstepping as the input 

variables. The Lyapunov function is determined for the dynamics of the ,  , ,z  variables 

and for the rotor flux components. Calculating the (158) derivative, one obtains:  

2 2 2 2 2 2
1 1 2 2 5 4 4

1 2 5 4 4 1 2

ˆ ˆ( ( )

ˆ ˆ) ( ( ) )

ˆ ˆ( (

r r
r r r r r r r r
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r

R R
V c c c z c z z a a a

L L

v c i c z z a a a v c i c z

R

L

          

            

   

         

       

     

           

            

   

        

      

     ˆ ˆ)) ( ( )).r
r r r r r r r

r

R

L                  

 (159) 

The input variables vα,β, resulting directly from (159), should include the estimated variables 

and the estimation deviations: 

 
5 4 1 2

ˆ
r r r sv a a c i c z                , (160) 

 5 4 1 2
ˆ

r r r sv a a c i c z                . (161) 

Taking (160) - (161) into account, the deviation derivatives may be written in the form: 

 
4 2

ˆ( )r r rz a c z              , (162) 

 4 2
ˆ( )r r rz a c z               . (163) 

Using (162) - (163), the Lyapunov function may be written as follows: 

 2 2 2 2
1 1 2 2 4

1
ˆ ˆ ˆ( ) ( )r r r r r rV c c c z c z a z z                


 

          
 

      . (164) 

The observer, defined by the (143) - (146) and (154) - (155) equations, is a backstepping type 

estimator.  
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In the (160) - (163) expressions the rotor flux deviations appear, which may be neglected 

without any change to the observer properties (143) - (146). Besides, the ,   deviations in 

(160) - (161) may be zero, thus lowering the observer order. Assuming the simplifications, 

one obtains 

 1 2sv c i c z     , (165) 

 1 2sv c i c z     , (166) 

and  

  4
ˆ ˆ ˆ

r r ra z z        . (167) 

where 

c1, c2, γ are constant gains, 

4
mL

a
w

 , 5
r m

r

R L
a

L w
 , 6

rL
a

w
 . 

In Fig. 10, 11 the backstepping speed observer test is shown. When the load torque is set to 

~-0.1 p.u. the rotor speed in backstepping observer is more precisely estimated than e.g. 

Krzeminski’s speed observer. 

 

 

 
 

 

Figure 10. The Speed observer test: the estimated rotor speed x11 is changed from 0.1 to -0.1 p.u., the 

rotor flux and stator current coefficients are shown 

r
ˆ 

r
ˆ 

sî 

sî 



 
Induction Motors – Modelling and Control 

 

456 

 

Figure 11. The Speed observer test: the estimated rotor speed x11 in backstepping observer is changed 

from 0.1 to -0.1 p.u., the estimated rotor speed _
ˆ

r K  by Krzeminski’s speed observer [Krzeminski Z., 

1999] and the multi-scalar variable: x12, x21, x22 are shown . The load torque m0 is set to -0.1 p.u. 

7. The control system structures 

In Fig. 12 and Fig. 14 the voltage and current multi-scalar control system structure is shown. 

These structures are based on four PI controllers and contain: the modulator, the speed 

observer and decouplings blocks .  

 

Figure 12. The voltage multi-scalar control system structure 

11x

r _ K̂

-

x11

ed ud

i

m1

m2

x12*

-

-

x21*

Current Source 
Inverter

xy

abc

xy

abc

v1

v2

Speed 
observer 

backstepping

Multi-scalar 
variables

x22

us

us

is

is

x21

x12
id

r
ˆ r

ˆ


Ld

ua

ub

ia

ib
IM
~

-

x22*

idr̂

x11*



 
Sensorless Control of Induction Motor Supplied by Current Source Inverter 

 

457 

 

Figure 13. The voltage multi-scalar adaptive backstepping control system structure 

 

Figure 14. The current multi-scalar control system structure. 
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Figure 15. Generalized Multi-scalar Control System of Induction Machine supplied by CSI or VSI. 

In Fig. 14 the ed_ref value is determined in ed reference block. The ed reference block can be PI 

current controller or other controller. 

In Fig. 13 the voltage multi-scalar adaptive backstepping control system structure is 

shown. 

In Fig. 15 generalized multi-scalar control system structure is presented. This control 

structure is divided into two parts: the control system of IM fed by VSI and the control 

system of IM fed by CSI.  

8. Experimental verification of the control systems 

The tests were carried out in a 5.5 kW drive system. The motor parameters are given in 

Table 2 and the main per unit values in Table 3. In Fig. 16, 17 motor start-up and reverse for 

control system presented in chapter 4.1-4.2 are shown. In Fig. 18, 19 motor start-up and 

reverse for control system presented in chapter 5 are shown. Fig. 20,21 presents the same 

steady state like previous but for adaptive backstepping control system (chapter 4.3). Fig. 22 

presents diagram of stator currents and voltages when motor is starting up for voltage 

control system (chapter 4.3). In Fig. 23 load torque setting to 0.7 p.u. for current control is 

presented. In Fig. 24, 25 the id current and the sinusoidal stator voltage and stator current 

are presented. 

*
sαu

*
sβu
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Figure 16. Motor start-up (chapter 4.1- 4.2)  

 

 

Figure 17. Motor reverse (chapter 4.1- 4.2) 

 

 

Figure 18. Motor start-up (chapter 5) 
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Figure 19. Motor reverse (chapter 5) 

 

Figure 20. Motor start-up (chapter 4.3)  

 

Figure 21. Motor reverse (chapter 4.3) 
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Figure 22. The currents and voltages  

 

Figure 23. Load torque is set to 0.7 p.u. (chapter 5) 

 

Figure 24. id current and the stator voltage 
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Figure 25. The stator current in stationary state. 

where:  

x11 is the rotor speed, x12 is the variable proportional to electromagnetic torque, x21 is the 

square of rotor flux and x22 is the additional variables, id is the dc-link current, usα,β are the 

capacitor voltage components, KTL is correction element (load torque), isα,β are the stator  

current components. 

9. Conclusion 

In this chapter two approaches to control of induction machine supplied by current 

source converter are presented. The first of them is voltage multi-scalar control based on 

PI controllers or backstepping controller. The voltage approach seems to be a better 

solution than the second one: current control, because the control system structure is 

more simple than the current control structure. The voltage in dc-link is the control 

variables obtained directly from decouplings. The current in dc-link is not kept at 

constant value but its value depend on induction machine working point. The current 

control gives higher losses in dc-link and higher transistor power losses than the voltage 

control. The power losses can be minimized by modulation index control method but the 

control system is more complicated. Both control systems lead to decoupling control 

path and sinusoidal stator current and voltage when space vector modulation of 

transistors is applied. 
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PARAMETER VALUE 

Pn (motor power) 5.5 kW 

Un (phase to phase voltage) 400 V 

In (current) 10.9 A 

J (interia) 0.0045 kgm2 

nn (rotor speed) 1500 rpm 

PARAMETER PER UNIT VALUES 

Rs (stator resist.) 

Rr (rotor resist.) 

Lm (mutual-flux induct.) 

Ls (stator induct.) 

Lr (rotor induct.) 

0.045 

0.055 

1.95 

2.05 

2.05 

Current Source Converter 

C (capacitor in dc-link) 

Rd (inductor resist.) 

CM,L (input-output caps) 

0.1 

0.002 

0.2 

Table 2. The motor drive system parameters 

 

DEFINITION DESCRIPTION 

3b nU U  base voltage 

b nI I  base current 

b b bz U I  base impedance 

Table 3. Definition of per unit values 
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