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1. Introduction 

Ends of the eukaryotic chromosomes are capped with nucleoprotein complexes named 

telomeres. The DNA component of the telomeres usually is consisted of tandemly repeated 

G-rich DNA short sequences like TTTAGGG in plants (Cox et al., 1993; Fuchs et al., 1995), 

G2–8TTAC(A) in the fission yeast (Schizosaccharomyces pombe) (Murray et al., 1986) and T(G)2-

3(TG)1-6 in baker’s yeast (Saccharomyces cerevisiae) (Shampay et al., 1984), TTGGGG in 

Tetrahymena thermophila (Blackburn et al., 1978), TTAGGC in Ceanerhabditis elegans (Cangiano 

and La Volpe, 1993) or TTAGG in the insects (Okazaki et al. 1993), among others (for more 

telomeric DNA sequences see Telomerase Database, http://telomerase.asu.edu/). In all 

vertebrates studied to date, telomeres contains tandemly repeated G-rich hexanucleotide 

sequence (TTAGGG/CCCTAA)n and the associated proteins comprising six subunits: TRF1, 

TRF2, POT1, TIN2, TPP1 and RAP1 (Bolzán and Bianchi, 2006). The telomeric DNA length 

shows huge interspecies variation and ranged from less than 100 bp (base pairs) in the ciliate 

Oxytricha (Klobutcher et al., 1981), hundreds of base pairs in the baker’s yeast to 50 - 150 kb 

(kilo base) in the laboratory mouse (Mus musculus) (Kipling and Cooke, 1990) or even more 

(up to 2 Mb in chicken Galus galus domesticus) (Delany et al. 2003). The human normal cells 

show telomeric DNA of 5-20 kb length (Moyzis et al., 1988). Variation in the length of the 

telomeric arrays have been observed between non-homologous and even homologous 

chromosomes within individual cells in human and mice, among others (Landsorp et al., 

1996; Zijlmans et al., 1997). Moreover, p-arm telomeres have been shown to be shorter that 

their q-arm counterparts in the mouse and Chinese hamster chromosomes (Slijepcevic et al., 

1997). Mammalian telomeres replicate throughout S phase: some of the telomeres replicate 

early while other telomeres replicate later (Zou et al., 2004). Moreover, asynchronous 

replication of the mammalian p- and q-arm telomeres of the same chromosome has been 

observed (Zou et al., 2004).  

Telomeres prevent chromosomes from end-to-end fusions, allowing DNA repair machinery 

distinguish natural chromosomal ends from the ends that appear in the course of breakage 

events (de Lange, 2002; Bolzán and Bianchi 2006). Telomeres ensure proper chromosome 

topology in the nucleus and may silence genes located in the vicinity of the telomeric region, 

and this phenomenon is called a “telomere position effect” (Luderus et al., 1996; 
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Copenhaver and Pikaard, 1996). As the linear DNA cannot be entirely replicated by the 

DNA polymerases because of the “end replication problem” (Watsan, 1972; Olovnikov, 

1973), telomeres ensure complete replication of the chromosomal DNA and protect 

chromosomes from degradation (de Lange, 2002). Thus, telomeres shorten after each round 

of the cell division. In the cultured human cells, the loss of the telomeric repeats during each 

S phase has been estimated for 50-200 bp (Huffman et al., 2000). This loss may be 

compensated by telomerase, an enzyme whose catalytic protein subunit (TERT, telomerase 

reverse transcriptase) adds telomeric DNA repeats to the end of telomeres using as a 

template an integral RNA component (TR, telomerase RNA). Moreover, different cellular 

mechanisms may be used for the telomere length maintenance/elongation such as 

reciprocal recombination and transposition of the chromosomal terminal elements when 

telomerase is not active or inactivated (Biessmann and Mason, 1997).  

Although telomeres, by definition, are terminal elements of the chromosomes, telomeric 

DNA repeats are also observed at internal chromosomal sites and are called Interstitial (or 

Interchromosomal) Telomeric Sequences (ITSs), Interstitial Telomeric Repeat sequences 

(ITRs) or Interstitial Telomeric Bands (ITBs). ITSs may be located close to the centromeres 

or between centromere and the real telomeres. The first and the most well-known 

description of the existence of unusual locations of telomeric DNA sequences far from 

their natural occurrence at the ends of the chromosomes was brought to light in 1990 by 

Meyne and collaborators. These authors identified telomeric repeats at non-telomeric 

locations in 55 out of 100 vertebrate species studied. ITSs have been observed in the 

exponents of four classes of vertebrates: Mammalia, Aves, Reptilia and Amphibia. The 

majority of the intrachromosomally located (TTAGGG)n sequences were observed at the 

pericentromeric areas of the bi-armed chromosomes within or at the margin of the 

constitutive heterochromatin (Meyne et al., 1990). This observation led to a conclusion 

that ITSs might have been left by the ancient centric fusions of ancestral chromosome. 

Since then, more sensitive FISH techniques enabling identification of telomeric repeats 

such as PNA-FISH using peptide telomeric probe and PRINS using (TTAGGG)7/ 

(CCCTAA)7 primers for amplification of telomeric DNA have been developed (Koch et al., 

1989; Terkelsen et al., 1993). Application of such approaches together with chromosome 

banding techniques, molecular cloning, and genome sequencing led to identification of 

ITSs in species that were not studied previously to this regard as well as re-examination of 

the species that did not show any ITSs formerly.  

Below, patterns of the chromosomal distribution of telomeric DNA sequences in several 

chosen vertebrates have been reviewed in the context of the chromosomal rearrangements 

and other mechanisms that may lead to the internal insertion of the telomeric repeats. 

Special attention has been paid to the distribution of the telomeric DNA sequences in the 

fish genome. Fishes with more than 30 000 species are the most numerous and diverse 

group of vertebrates (Nelson, 1994). This group of vertebrates comprises jawless fishes 

(hagfishes, lampreys), cartilaginous fishes (sharks and rays), and bony fishes (lobe-finned 

fish and ray-finned fish) (Nelson, 1994). Ray-finned fishes species represent more than 95% 

of all the extant fishes. More than 99.8% of ray-finned fishes belong to Teleostei (Volf, 2004). 

Although ancestral teleostean karyotype comprising 48-50 of one-armed chromosomes is 

still the most frequently observed pattern within teleosts, species with more derived 
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karyotypes composed of both – one- and bi-armed chromosomes – have been also observed. 

Diversification of teleostean karyotypes is attributed to whole genome duplication event in 

the Teleost ancestor and chromosomal rearrangements (Zhou et al., 2002). Moreover, some 

of the Teleost fish families like Salmonidae are thought to have a tetraploid origin. 

Tetraploidization event in the Salmonid ancestor has been followed by the rediploidization 

process leading to the recovery of disomic segregation and performed by the various 

chromosomal rearrangements like fusions and inversions (Phillips and Rab, 2001). On top of 

that, androgenetic fish developing in the gamma/X radiation-enucleated eggs seem to be 

promising models for studying the role of telomerase in the fish DNA Double Strand Breaks 

repair machinery (Ocalewicz et al., 2004a, 2009).  

2. Classification of interstitial telomeric DNA sequences 

Based on the chromosomal location, length, DNA composition and the origin, several kinds 
of the ITSs have been described (Nergadze et al., 2004; Bolzán and Bianchi, 2006; Lin and 
Yan, 2008; Ruiz-Herrera et al., 2008). In the human genome, three classes of ITSs have been 
proposed based on the sequence organization, localization, and flanking sequences by 
Azzalin et al. (2001): (Class 1) so-called short ITSs, composed of a few exact telomeric 
repeats up to 20 hexamers; (Class 2) subtelomeric ITSs consisted of several hundred base 
pairs of tandem repeats, many of which differ from the TTAGGG repeat sequence by one or 
more base substitutions and (Class 3) ITS sites formed by the ancestral chromosome fusions 
and composed of head-to-head arrays of repeats. Short ITSs may be further divided into five 
subclasses based upon their flanking sequences (Lin and Yan, 2008). Subtelomeric ITSs are 
observed at all human chromosomes, and short ITSs have been identified at 50 loci in 
human chromosomes, while only one ITSs derived from the fusion event have been 
described in the human genome (Azzalin et al., 1997; Azzalin et al., 2001; Ijdo et al., 1991). 
ITSs that represent class 1 and 2 may appear in the course of repair of double-strand breaks 
(DSBs) by the mechanism employing action of telomerase and/or recombination involving 
chromosome ends in the germ lines during evolution (Nergadze et al., 2004). Further 
rearrangements like amplifications, deletions, or transpositions of ITSs may cause its uneven 
distribution in the genome, for example (Lin and Yan, 2008).  

One of the recent proposition based on the purely cytogenetic characteristic of non-
telomeric distribution of (TTAGGG)n repeats in mammalian species is to differentiate two 
kinds of ITSs: short stretches (from a few to a few hundred base pairs) of internally 
located telomeric repeats (s-ITSs) and long stretches (up to hundreds of kilo base) of the 
heterochromatic ITSs (het-ITSs) mainly assigned to the centromeric chromosomal regions 
(Ruiz-Herrera et al., 2008). Short ITSs composed of head-to-tail tandem arrays are widely 
distributed in human, chimpanzee, mouse, or rat (Azzalin et al., 2001; Nergadze et al., 
2007). Analysis of DNA sequences adjacent to the s-ITSs suggested that telomeric 
sequences were internally inserted by transposition or synthesized by telomerase to repair 
DNA double-strand breaks (DSB) (Ruiz-Herrera et al., 2008). Heterochromatic ITSs on the 
other hand, seem to originate in the course of the ancestral chromosomal rearrangements, 
mostly fusions, accompanying evolution of mammalian karyotypes. Such ITSs are usually 
co-localized with heterochromatic regions. Although such classification of ITSs has been 
attributed to mammalian genome, ITSs of various origin have been also observed in the 
non-mammalian species. 



 
Reviews on Selected Topics of Telomere Biology 

 

274 

3. Chromosome rearrangements and distribution of telomeric DNA 
sequences in the vertebrates 

3.1 Internally located telomeric repeat sequences as relicts of the chromosome 
fusions 

Telomeric DNA observed at the non-telomeric locations might be associated with known 
chromosome rearrangements, like centric fusions (Robertsonian translocations) and 
tandem fusions. Fusion of two one-armed chromosomes leading to the formation of one 
metacentric or submetacentric chromosome may leave telomeric DNA sequences at the 
fusion site at the pericentromeric location. This region is usually heterochromatic. 
Interstitial non-centromeric sites of (TTAGGG)n sequences may be relicts of the tandem 
fusions. In such cases, coincidence between ITSs and heterochromatin is rarely observed 
(Nanda et al. 2002). Irrespective of the origin, such ITSs might be organized in very long 
arrays that are much longer than those observed at the chromosomal ends. In the Chinese 
hamster, large pericentromeric interstitial telomeric DNA sites are observed (Bertoni et al., 
1996), and telomeric DNA sequences have been discovered to be the main component of 
the satellite DNA with its abundance reaching up to 5% of the Chinese hamster genome 
(Bertoni et al., 1996; Slijepcevic et al., 1996; Faravelli et al., 1998; 2002). Moreover, ITSs 
might be interspersed with other repetitive DNA sequences (Salvadori et al., 1995). 
Sometimes, chromosome breakage occurs within the ITS region (Alvarez et al., 1993; 
Slijepcevic et al., 1996).  

Internally located telomeric DNA sequences have been observed in many mammalian and 
non-mammalian species showing more degenerative karyotypes when compared to their 
plesiomorphic (ancestral) complements. A 2n = 22 karyotype, is thought to be an ancestral 
for the marsupial family Macropodidae (kangaroos and wallabies) (Metcalfe et al. 2007). In 
the swamp wallaby (Wallabia bicolor) (2n= 10 in female, 2n= 11 in male) telomeric DNA 
sequences were retained at the fusion sites in four chromosomes formed in the course of 
centric fusions (Metcalfe et al., 1998). The lowest chromosome number exhibited in the 
mammalian species equals 6/7 (female/male) and is observed in the Indian muntjac deer 
(Muntiacus muntjak vaginalis MMV). The common ancestor of the muntjacs lived about 1.7-
3.7 million years ago and its karyotype was presumably composed of 70 chromosomes. 
(Hartman and Scherthan, 2004). Cytogenetic survey of the muntjacs revealed that 
chromosome reduction observed in the genus occurred linearly from the putative ancestral 
complement 2n= 70 through a Chinese muntjac-like (2n= 46) to a Fea’s muntjac-like (2n= 
13/14) karyotypes. Further chromosome reduction to 2n= 8/9 observed in the Black and 
Gongsham muntjac and to 6/7 chromosomes in the Indian muntjac were rather 
independent events (Wang and Lan, 2000). Such drastic chromosome reduction and 
karyotype diversification that happened in such a short stretch of time has been supposed to 
be caused by the multiple tandem fusions and relatively few centric fusions (Hsu et al., 
1975). This assumption has been later proved by the comparative and molecular cytogenetic 
analysis of the muntjac genome (Lee et al., 1993; Schertchan, 1995; Yang et al., 1997; Zou et 
al., 2002). Several sites of internally located telomeric repeat sequences in the Indian muntjac 
chromosome were observed to be co-localized with satellite DNA repeats (Lee et al., 1993; 
Scherthan, 1995; Hartman and Scherthan, 2004). Such interstitial satellite DNA sequences 
were assumed to be the “footprints” of the breakage of chromosomal syntenies in the Indian 
muntjac and thus may be treated as relicts of the ancestral fusion points (Fronicke and 
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Scherthan, 1997). In the Hartman’s zebra (Equus zebra hartmannae) showing karyotype 
composed of relatively low chromosome number (2n= 32) when compared to other equids 
(2n= 44- 66), several sites of internally located telomeric repeats have been described 
(Santani et al., 2002) Comparison of the chromosomal distribution of ITSs and 
comparative chromosome painting of human and Hartman’s zebra showed that all ITSs 
are located at the junctions of evolutionary conserved human- Hartman’s zebra 
chromosomal segments, suggesting that ITSs are relicts of the putative fusions of ancestral 
chromosomes (Santani et al., 2002). Telomeric sequences at the fusion sites have been also 
observed in other mammalian species like okapi (Okapia johnstoni) (Vermeesch et al., 
1996), Eulemur species (Garagna et al. 1997), akodont rodents (Akodon cursor and Bolomys 
lasiurus) (Fagundes and Yonenaga-Yassuda, 1998), lemurs (Go et al. 2000), rock wallabies 
(Petrogale) (Metcalfe et al., 2002), among others. 

Chromosome fusions seem to play an important role during the avian karyotype evolution. 

The avian karyotype has a characteristic structure. It comprises several pairs of relatively 

gene-poor macrochromosomes and numerous microchromosomes enriched with genes, and 

even distant species show similar karyotypes (Nanda et al., 2002). It has been discover that 

chicken telomeric DNA sequences range from 0.5 kb to about 2 Mb (Delany et al., 2000, 

2003). Telomeric DNA sequences cover up to 4 % of the chicken diploid genome, which is 

contrasted with a rather low amount of the telomeric DNA in the human diploid cell (about 

0, 3%) (Delany et al., 2003). Based on the size and genome location three classes of telomeric 

DNA arrays were distinguished in the chicken. It has been suggested that telomeric DNA 

arrays ranging from 0.5 to 10 kb in length (Class I arrays) represent the interstitial telomeric 

DNA sequences, while the larger tracts arrays ranging from 10 to 40 kb (Class II) and from 

200 kb to 2 Mb (Class III) represent telomeric DNA from the chromosome terminus (Dealny 

et al. 2003). Many of the cytogenetically studied bird species have exhibited telomeric DNA 

sequences in non-telomeric positions on the macrochromosomes. However, patterns of their 

distribution are different in the primitive (Palaeognathae) and modern (Neognathae) birds 

(Meyne et al., 1990; Nanda et al., 2002). The primitive birds like ostrich (Struthio camelus), 

emu (Dromaius novaehollandiae) and the American rhea (Rhea americana) show numerous 

interstitially located telomeric DNA sites along the entire length of most of the 

macrochromosome arms. Rather few of the macrochromosomes show ITSs at the 

(peri)centromeric positions. In the rhea and emu most of the interstitially located 

telomeric sequences did not coincide with the C-banded heterochromatin. Such 

distribution pattern of the telomeric DNA sequences in these birds has been proposed to 

be due to the tandem fusions of macro and microchromosomes in their common ancestor. 

On the other hand, there are only few if any internally located telomeric DNA sequences 

in the modern birds like duck (Cairina moschata), greylag goose (Anser anser), the ring-

necked pheasant (Phasianus colchicus), Japanese quail (Coturnix coturnix) and parrots 

(Nanda et al,. 2002). Centromerically located telomeric DNA sequences that coincide with 

the heterochromatin observed on the bi-armed macrochromosomes in two owl species are 

likely relicts of the chromosome centric fusions. (Meyne et al., 1990; Nanda and Schmid, 

1994; Delany et al., 2003). 

Reduction of the chromosome number from the ancestral 2n= 32 to 2n= 16 in the lizard 

Gonatodes taniae probably occurred through the centric fusions. Telomeric DNA sequences 

observed at the pericentromeric regions of all G. taniae bi-armed chromosomes were 
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presumably the remnants of the above-mentioned rearrangements. On the other hand, 

interstitially located telomeric repeats could be also a major component of the repetitive 

DNA in the pericentromeric C band-positive heterochromatin (Schmid et al. 1994) (see 

chapter 3.3). Similar location of the telomeric repeats in one and three meta-submetacentric 

chromosomes in the Brazilian lizards, Leposoma guianense and L. oswaldoi, respectively 

indicated Roberstonian translocations were involved in the evolution of these lizards’ 

karyotypes (Pellegrino et al., 1999). Centric fusion in the Brazilian gecko, Gymnodactylus 

amarali also left telomeric repeat DNA sequences at the fusion sites of two chromosomes 

(Pellegrino et al., 2009).  

As pericentromeric ITSs quite frequently coincide with the heterochromatin, it has been 

proposed to describe such ITS sites as heterochromatic ITSs (het-ITSs) by Ruiz-Herrera et al. 

(2008), who suggested a four-step mechanism to explain the presence of such sites in the 

fused chromosomes. The first step is the initial fusion event without loss of the telomeric 

sequences from the fusion site (1). The next step is formation of the (peri)centromeric 

heterochromatin by expansion of the internally located telomeric arrays including 

amplification of the telomeric sequences and other repeats (2). Subsequently the 

heterochromatic ITSs were reorganized via chromosomal rearrangements that may lead to 

the redistribution of the telomeric DNA, degeneration of the original ITS array, gradual 

shortening of the array, and even the loss of the ITS. Finally, breakage within the 

heterochromatic ITS site may result in chromosome fissions (step 4).  

3.2 Chromosome fusions and loss of the interstitial telomeric sequences 

Not all chromosome fusions occur with retention of the telomeric DNA repeats at the fusion 

sites. Telomeric DNA sequences from the ancestral chromosomes may be lost during or after 

the chromosomes fusion process. Chromosome breakage within centromeric satellite DNA 

followed by Roberstonian fusions leaves no telomeric repeats at the fusion sites (Garagna et 

al., 1995; Nanda et al., 1995). On the other hand, telomeric DNA sequences that retain at the 

fusion sites may undergo gradual loss leading to the shortening of the non-functional 

telomeric repeats and are therefore undetectable by the cytogenetic approaches (Slijepcevic, 

1998). Lack of the internally located telomeric DNA sequences at the fusion points was 

described in the mouse (Mus musculus) (Garagna et al., 1995), neotropical water rat 

(Nectomys) (Silva and Yonenaga-Yassuda, 1998) and short-tailed shrew (Blarina carolinensis) 

(Qumsiyeh et al., 1997), among others.  

Chicken chromosomes 1 - 4 presumably appeared in the course of the ancestral chromosome 

fusion events. However, only chromosome 1-3 exhibited ITSs at the fusion sites (Nanda et 

al., 2002). In comparison to the primitive bird species like ostrich and emu that display 

voluminous number of ITS sites in their chromosomes, species showing high number of the 

bi-armed chromosomes and listed as highly evolved such as parrots lack TTAGGG 

sequences at non-telomeric sites (Nanda et al., 2002). This may suggest that in the 

Neognathae birds ITS sites were lost after the divergence of the primitive and modern birds 

(Nanda et al., 2002). The lack of ITSs in the more derived karyotypes when compared to the 

ancestral models is in opposite to the suggestion made by Meyne et al. (1990) that ITS sites 

appear in the course of chromosome rearrangements accompanying karyotype evolution 

and thus can be observed in the evolutionary advanced species. 



Genomic Distribution of Telomeric DNA Sequences –  
What Do We Learn from Fish About Telomere Evolution? 

 

277 

3.3 Non-telomeric TTAGGG sequences as components of the satellite DNA 

Although many ITS sites observed within or at the margin of the constitutive 

heterochromatin are remnants of chromosome fusion events (Meyne et al., 1990), such 

coincidence is not a general rule. Australian and American marsupials (Marsupialia) 

presumed ancestral karyotype (2n= 14) is observed in the exponents of six of the seven 

extant marsupial orders (Metcalf et al., 2004). Such karyotype includes bi-armed 

chromosomes showing centromerically located telomeric sequences that overlap with the 

large amounts of heterochromatin (Pagnozzi et al., 2000, Metcalf et al. 2004). Comparison of 

the distribution of the telomeric DNA sequences in the ancestral and more evolved 

karyotypes with known chromosomal rearrangements suggested that pericentromeric and 

heterochromatic ITSs in the marsupial 2n= 14 complements might be a component of the 

native satellite DNA rather than relicts of the recent chromosome rearrangements (Pagnozzi 

et al., 2000; Metcalfe et al. 2004).  

Most of the cytogenetically studied amphibians show telomeric DNA sequences exclusively 

located at the chromosomal ends (Meyne et al., 1990; Schmid et al., 2003, Schmid et al., 

2009). Unexpectedly, interstitial location of the telomeric DNA sequences has been described 

in the quite conserved karyotypes of the American hylid frogs (Wiley et al., 1992), Xenopus 

laevis (Meyne et al., 1990, Nanda et al., 2008) and Xenopus clivii (Nanda et al., 2008). 

Homogeneity of the karyotypes among related species excluded chromosome fusions as the 

potential source of ITSs. Moreover, the interstitial telomeric sites in these species coincided 

with the constitutive heterochromatin identified in the course of C-banding. The clear 

correspondence between ITSs and the constitutive heterochromatin suggest that 

(TTAGGG)n sequences might be a component of a repetitive DNA. Although it is still 

unknown how the telomeric DNA sequences were inserted into the interstitial positions 

and amplified, the repair of the DNA Double Strand Breaks with the telomerase should be 

taken into consideration (Nergadze et al., 2004, 2007). Previously, several authors 

suggested that telomeric or telomeric like DNA sequences were components of the 

satellite DNA in some vertebrates (Garrido-Ramos et al., 1998). In other species, telomeric 

DNA sequences are scattered along the NORs (Nucleolus Organizer Region) DNA 

sequences (see chapter 4.4). 

4. Distribution of telomeric DNA sequences in fish 

4.1 Telomerase and the length of the fish telomeres 

So far, the telomerase gene in fish has been shown to be expressed in most cells throughout 
the entire fish life (Elmore et al., 2008; Hartman et al., 2009; Lund et al., 2009). This is in 
contrast to humans where telomerase activity is absent in most somatic cells but present in 
embryonic stem cells and tumors (Hiyama and Hiyama, 2007). Although some authors 
presume that high expression of fish telomerase may be related to the longevity, 
comparative analysis of telomerase activity in the short- and long-lived fish species showed 
no positive relationship between telomerase activity and the fish longevity (Elmore et al., 
2008). Instead, another hypothesis was suggested: retention of the telomerase in adult fish 
might be crucial to maintain their regenerative capacity. To test this hypothesis, short 
fragments of the caudal fish tissue have been removed in medaka (Oryzias latipes), zebrafish 
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(Danio rerio), and mummichog (Fundulus heteroclitus) specimens, and telomerase activities 
were assayed before and during the regeneration period. Telomerase was shown to be 
upregulated during the tissue regeneration, which suggested that telomerase is involved in 
the fish tissue regeneration after injury (Elmore et al., 2008).  

The length of the telomeric DNA in fish studied to date varies from 2 kb to 15 kb (Chew et 

al., 2002, Elmore et al. 2008) and is similar to that observed in normal human cells (Elmore et 

al., 2008). Furthermore, retention of the telomere length throughout the entire life has been 

demonstrated in zebrafish, but not in the medaka (Hatekeyama et al., 2008; Lund et al., 

2009). Telomere shortening with age has been also observed in the long-lived strain of 

Nothobranchius furzeri while such attrition has not been detected in the short-lived strain of 

the same species (Hartmann et al. 2009). Thus, age dependent telomere shortening in fish 

may be species-specific or even strain specific (Lund et al., 2009; Hartman et al., 2009).  

Application of PRINS using (CCTAAA)7 primer and PNA-FISH using telomeric probes 

revealed different intensity of the hybridization foci on fish chromosomes (Ocalewicz and 

Dobosz, 2008; Pomianowski et al., 2012). As the fluorescence intensity of the telomere 

hybridization focus reflects the length of the telomeric repeat sequence (Zijlmans et al., 

1997), the differences in the telomere hybridization signal intensity observed on different 

chromosomes are likely related to variations in their respective telomere lengths. 

Chromosome rearrangements may lead to such variation. In the albino rainbow trout 

(Oncorhynchus mykiss), one of the X chromosome isoforms has shorter p-arm with weak 

telomeric hybridization signals. Partial deletion or translocation including telomeric region 

has been suggested to contribute to the p-arm length difference between two morphological 

variants of the X chromosome (Figure 1a-b) (Ocalewicz and Dobosz, 2009). 

4.2 Fish karyotype evolution and distribution of telomeric repeats:  
Major rearrangements 

As mentioned above, internally located telomeric DNA repeat sequences may be the relicts 

of the chromosomal rearrangements such as fusions that accompanied the karyotype 

evolution of many vertebrate species. This may be also true for the fish species. Teleostean 

fish, the major clade of the ray-finned fish (Actinopterygii) is the largest and the most 

diverse group of vertebrates. More than half of the cytogenetically surveyed 

actinopterygians have karyotypes composed of 48-50 chromosomes (Mank and Avise, 2006) 

and the complement of 48 one-armed chromosomes (NF= 48) is supposed to be ancestral in 

the Teleostei. Such teleostean ancestral like karyotype (2n= 48) may be the plesiomorphic 

condition in Scorpeanidae fish (Caputo et al., 1998). However, in Scorpaena notata, only 34 

uni-armed chromosomes (NF= 34) are observed (Caputo et al., 1998). As the karyotype of S. 

notata comprises of only subtelo-acrocentric chromosomes, the reduction of both 

chromosome and chromosome arm numbers from 48 to 34 likely occurred in the course of 

the tandem fusions. Nevertheless, only one pair of chromosomes showed interstitial 

telomeric DNA sequences in the putative fusion sites in this species. Presumably other ITS 

sites have been lost or exist in very short arrays that may not be detected by fluorescence in 

situ hybridization (Caputo et al., 1998).  
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Fig. 1. a-b. Albino rainbow trout (Oncorhynchus mykiss) partial metaphase with two morphs 

of the X chromosome after hybridization with the telomeric probe (PNA-FISH) (a) and 

staining with DAPI fluorochrome (b). Arrowheads show two morphs of the rainbow trout X 

chromosomes. White arrowhead – long morph (XL) with distinct p-arm and bright telomeric 

signals, yellow arrowhead – short morph (XL) with reduced p-arm and weak telomeric 

signals. Fig. 1 c-e. Chromosomes of brook trout (Salvelinus fontinalis) (c), Arctic charr 

(Salvelinus alpinus) (d) and their hybrid (e) after PRINS (c, e) and PNA-FISH (d) enabling 

localization of the telomeric DNA sequences. White arrows indicate brook trout 

chromosomes with interstitial telomeric sites (ITSs), yellow arrows point the Arctic charr 

chromosomes with ITSs.  

Huge variation in the diploid chromosome number and the karyotype composition are 
observed in the bitterlings (Acheilognathinae). Diploid chromosome number and the 
number of chromosome arms vary from 42 to 48 and 50-78, respectively, which was 
attributed to both Roberstonian and tandem fusions, chromosomal inversions, and some 
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minor rearrangements involving heterochromatic regions (Ueda, 2007). In two bitterling 
species, The Japanese rosy bitterling (Rhodeus ocellatus kurumeus) and the oily bitterling 
(Tanakia limbata), both with similar karyotypes that comprise 8 metacentric, 20 
submetacentric and 20 subtelocentric chromosomes (2n= 48, FN= 76) FISH with telomeric 
probe was applied and showed different distribution patterns of the hybridization signals. 
In the Japanese bitterling interstitial telomeric sites were observed in the pericentromeric 
regions of 14-16 chromosomes, which is the highest number of ITSs detected in any of the 
fish chromosomes studied to date, whereas in the oily bitterling no such location of ITS was 
exhibited (Sola et al., 2003). Similar phenomenon was observed in the mammalian species 
that experienced several Roberstonian fusions. ITSs were not described in Mus musculus 
domesticus (Garagna et al., 1995; Nanda et al., 1995) whereas in M. minutoides telomeric 
sequences at the putative fusions sites were retained and observed near the centromeres 
(Castiglia et al., 2002; Castiglia et al., 2006).  

Two interstitial telomeric sites have been detected in the Nile tilapia (Oreochromis niloticus) 

(2n= 44) chromosome 1 that is significantly larger than all the other chromosomes in this 

organism (Chew et al. 2002). This observation supported hypothesis that chromosome 1 in 

the Nile tilapia appeared in the course of the fusion of three chromosomes and explained the 

reduction of chromosome number from the ancestral teleost karyotype of 2n= 48 to 2n= 44 

in the Nile tilapia (Chew et al. 2002). In Oreochromis karongae, diploid chromosome number 

is reduced to 38. The O. karongae karyotype comprises one large subtelocentric pair of 

chromosomes, four medium sized pairs (three subtelocentric, one submetacentric) and 

fourteen small pairs. Three of the medium sized chromosome pairs seem to derive in the 

course of fusions. Distribution of the telomeric repeats show two interstitial telomeric 

sites on the chromosome 1 similar to these observed in the Nile tilapia chromosome 1 and 

one ITS in each of the six fusion chromosomes. Comparison of the position of the current 

and relic centromeres performed with FISH and the tilapia centromere specific probe and 

ITS sites in O. karongae suggests that the three fusions all occurred in different 

orientations: the ends of the two q arms to produce pair 2, a p-q fusion in the case of pair 3 

and a p-p fusion for pair 4 (Mota-Velasco et al., 2009). In the non-teleostean Elasmobranch 

fishes (sharks and rays) that are considered as the ancient vertebrates only four species 

have been studied with FISH and telomeric probe, so far (Rocco 2006). In two of them 

(Taeniura lymma and Torpedo ocellata), pericentromeric location of telomeric DNA 

sequences was detected in four bi-armed chromosomes (Stingo and Rocco, 2001; Rocco et 

al., 2001; Rocco et al., 2002). This is in agreements with the hypothesis that in cartilaginous 

fish, karyotype evolution involved a progressive decrease of chromosome number due to 

the centric fusions (Rocco, 2007). 

4.2.1 Salmonid fish species: Chromosome fusions and lack of ITSs  

Chromosomal rearrangements like centric and tandem fusions have played important role 

in the salmonid karyotype evolution during rediploidization process following the whole 

genome duplication experienced by the salmonid ancestor 100-25 mya (Allendorf and 

Thorgaard, 1984). The polyploid origin of the Salmonidae has been considerably 

substantiated (Leong et al., 2010). Both the genome size and the chromosome arms number 

are approximately twice that of the Salmonid closest relatives, the Esociformes (Phillips and 

Ráb, 2001). Most of the salmonid species have karyotypes composed of both bi-armed and 
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one-armed chromosomes and have the chromosome arm number (FN) that ranged from 94 

to 104, while the related Esocidae fish have the ancestral teleostean karyotype with about 50 

one-armed chromosomes. Different chromosome number and the constant chromosome 

arm number resulted from the centric fusions known as Roberstonian polymorphisms are 

observed in the salmonid fish from the genera Hucho, Salmo, Oncorhynchus and Salvelinus 

(Phillips and Ráb, 2001). Moreover, large acrocentric chromosomes in the Atlantic salmon 

(Salmo salar) karyotype are thought to be the result of tandem fusions (Phillips and Ráb, 

2000). Robertsonian fusions, paracentric and pericentric inversions were suggested to be 

involved in changes leading to the establishment of the present karyotypes of three 

Coregonus species: European whitefish (Coregonus lavaraetus), vendace (Coregonus lavaretus) 

and peled (Coregonus peled) (Jankun et al., 2007). Unexpectedly, none of the cytogenetically 

studied salmonid fish species with fused meta- and submetacentric chromosomes showed 

pericentromeric locations of the telomeric repeats (Abuin et al., 1996; Jankun et al., 2007; 

Ocalewicz et al., 2008). The lack of ITS at the putative fusion sites in the bi-armed salmonid 

chromosomes may suggest p-arm telomeres were lost in the course of the chromosome 

breakage that preceded chromosome fusions. On the other hand, telomeric repeats retained 

at the fusion sites might have experienced successive loss and degeneration leading to 

gradual shortening of the non-functional telomeric arrays (Slijepcevic, 1998). Consequently, 

too short internally located telomeric repeats may be below the resolution of the techniques 

enabling chromosomal location of DNA sequences. On the other hand, interstitial telomeric 

DNA sequences located far from the centromeric region have been detected in the Atlantic 

salmon large subtelocentric chromosomes, which supported hypothesis concerning tandem 

fusions as the mechanism leading to the formation of some of the chromosomes in this 

species (Abuin et al., 1996).  

4.3 ITSs and minor rearrangements – A Salvelinus fish case  

Other mechanisms leading to the ITS formation have been suggested in three Salvelinus 

species: lake trout (Salvelinus namaycush), brook trout (Salvelinus fontinalis) and the Arctic 

charr (Salvelinus alpinus) showing subterminal position of the interstitial telomeric sequences 

(Figure 1c-d) assigned to the vicinity of the CMA3 positive GC-rich heterochromatin (Reed 

and Phillips, 1995; Ocalewicz et al., 2004b; Pomianowski et al., 2012). Guanine-rich 

chromosomal regions are involved in several rearrangements like transpositions, 

duplications and (or) translocations resulted in multichromosomal location and variation in 

size of CMA3 positively stained chromatin in Salvelinus species (Phillips et al., 1988; Phillips 

and Ráb, 2001). Dispersion of CMA3 positive chromatin segments among homologous and 

non-homologous chromosomes could be followed by the insertion of the telomeric repeats 

linked to the translocated chromosome fragment into the interstitial position. Similar 

location of ITS in these three species may indicate similar mechanism leading to the 

insertion of (TTAGGG)n sequences in the non-telomere position in the Salvelinus fish. In the 

case of the Arctic char metaphase spreads showing extended chromatin, the non-telomeric 

fluorescent hybridization signal covered a longer stretch of the chromosome than the signal 

from the telomere position, however the interstitial signal was less intense. This observation 

suggested that telomeric regions and ITS might have different structures (Pomianowski et 

al., 2012). It is possible that telomeric DNA sequences were not the only component of the 

ITS region. Internally inserted short telomeric repeats are frequently flanked by the 
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repetitive or transposable elements and undergo amplification process leading to 

elongation/expansion of the chromatic region built with different DNA sequences including 

telomeric repeats (Garrido-Ramos et al., 1998). 

It has been also observed that ITSs might be considered as sites fragile for recombination 

and thus may potentially increase rates of chromosome breaks and rearrangements (Lin and 

Yan, 2008). This could partially explain the high level of size and location polymorphisms of 

the heterochromatic regions in Salvelinus species (Phillips et al., 1988; Phillips and Ráb, 2001; 

Pomianowski et al., 2012). Moreover, chromosomes with unusual distribution of telomeric 

DNA sequences may be useful cytogenetic markers enabling identification of parental 

chromosomes in hybrid organisms. Recently, Arctic charr and brook trout chromosomes 

with internally located telomeric repeats have been identified in the karyotype of Arctic 

charr x brook trout hybrids (Figure 1e) (Ocalewicz, unpublished). 

4.4 Other uncommon locations of the telomeric sequences in fish 

In addition to the interstitial location of the telomeric DNA, (TTAGGG)n repeats may also 

coincide with the nucleolar organizer regions (NORs). Telomeric DNA sequences are 

observed to scatter along the heterochromatic NORs in the Atlantic eels (Anguilla anguilla) 

(Salvadori et al. 1995), rainbow trout (Abuin et al., 1996), straight-nosed pipefish (Nerophis 

ophidion) (Libertini et al., 2006) and three mullet species (Mugilidae) (Sola et al., 2007). Such 

unusual distribution of TTAGGG repeats suggests telomeric sequences are interspersed 

with rDNA sequences. Similar location of telomeric repeats has been previously described 

in mammalian species including American mole (Scalopus aquaticus), Seba’s fruit bat (Carollia 

perspicillata) (Meyne et al., 1990), wood lemming (Myopus schisticolor) (Liu and Fredga, 1999), 

and amphibians Xenopus borealis and Xenopus muelleri (Nanda et al., 2008). The origin of the 

telomeric sequences interspersed with NORs is unclear. It was suggested that the presence 

of telomeric repeats within NORs may cause unequal crossing-over and thus give rise to the 

chromosomal length polymorphism (Salvadori et al., 1996). Moreover, the presence of the 

telomere sequences may epigenetically inactivate NORs (Guillén et al., 2004; Copenhaver 

and Pikaard, 1996).  

In the sturgeon Acipenser gueldenstaedti, two entire chromosomes were light up with the 

fluorescent signals derived from the telomeric probe in FISH analysis (Fontana et al., 

1998). Similar observation has been made in some of the bird microchromosomes. The 

ability of interstitial telomeric repeats to promote recombination (Ashley and Ward, 1993) 

may explain enormously high recombination rate in the bird microchromosomes (Nanda 

et al., 2002).  

4.5 Distribution of telomeric DNA sequences in the androgenetic fish  

Androgenesis is a reproductive process in which diploid offspring inherit only paternal 

nuclear DNA. Although natural (spontaneous) androgenesis is observed in limited number 

of plant and animal species (McKone and Halpern, 2003), paternal chromosome inheritance 

can be induced intentionally in fish (Komen and Thorgaard, 2007). Artificial androgenesis 

includes three steps: inactivation of the nuclear DNA in eggs by UV or ionizing (gamma and 

X) irradiation, insemination of enucleated eggs with untreated or cryopreserved sperm, and 
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diploidization of the paternal chromosomes by exposition of the haploid zygotes to 

temperature or high pressure shock to suppress the first mitotic division (Komen and 

Thorgaard, 2007). UV radiation damages chromosomes by inducing thymidine dimers that 

inhibit process of replication what results in DNA fragmentation, and gamma and X 

radiations act by inducing chromosome breaks like double strand breaks (DSB). Insufficient 

dose of radiation results in incomplete inactivation of maternal nuclear genome. 

Undamaged pieces of the irradiated genome in the forms of chromosome fragments were 

observed in the androgenetic alevins and adult fish (Parsons and Thorgaard, 1985; 

Ocalewicz et al. 2004a). In the course of partial inactivation of maternal chromosomes, 

different chromosome fragments may be provided; acentric terminal fragments with 

telomeric region at only one end or without any telomeres and centric incomplete 

chromosomes without telomeres, or telomere at only one arm. Additionally, dicentric 

chromosome can be formed when the broken end of one centric incomplete chromosome 

join with a broken end of another incomplete chromosome (Disney et al., 1988). Acentric 

fragments may be removed from the zygote during the cell divisions or may associate with 

or even incorporate into paternal intact chromosomes. ITSs observed on the androgenetic 

rainbow trout chromosomes could be the remnants of the incorporation process (Figure 2a) 

(Ocalewicz et al., 2004). The centric chromosome fragments with chromosome breaks on 

both sides of the centromere form ring chromosomes presumably in the course of non-

homologous end joining (NHEJ) repair (e.g. Pfeifer et al., 2004). On the other hand, the 

broken ends of the chromosomes could have been repaired with the telomeric DNA repeats 

synthesized de novo by telomerase or another mechanism capable of de novo telomere 

addition (Biessmann et al., 1990). Some of the ionizing radiation induced fish chromosome 

fragments retained linear construction with telomeric DNA sequences newly added to their 

broken ends (Figure 2b) (Ocalewicz et al., 2009). Chromosome fragment with two 

interstitially located telomeric signals observed in the androgenetic brook trout (Figure 2c) 

might have been also ring chromosome formed in the course of fusion of a radiation-broken 

chromosome arm with the opposite unbroken arm or arm broken within telomeric region 

(Henegariu et al., 1997). However we do not exclude that this fragment might have 

originated from one of the brook trout chromosomes with interstitially located telomeric 

DNA sequences (Ocalewicz et al., 2004b). Chromosome fragments showing two, always 

terminally located telomeres detected in the androgenetic brook trout represented another 

chromatin arrangements (Figure 2d). Such shape and distribution of the hybridization spots 

suggested formation in the course of the telomere loss in only one chromosome arm and 

fusion between sister chromatids. On the other hand, both chromosomal ends might have 

been broken and repaired in the course of two mechanisms – action of the telomerase may 

heal broken ends of the p-arm while broken ends of the q-arm may undergo fusion. 

Although telomerase is capable of healing the broken ends of the irradiated fish 

chromosomes, most of the fragments show spherical shape. It is possible that fish 

telomerase is not always able to heal the broken chromosome ends with newly synthesized 

telomeric DNA due to the limited access to DNA breaks (Latre et al., 2004). However, 

telomerase in fish seems to be involved in the ionizing radiation induced DSB repair, which 

is in agreement with the observations made in human, chimpanzee, mouse and rats 

genomes, where analysis of flanking sequences suggested that some of the ITSs were 

inserted during the repair of DSB (Ruiz-Herrera et al., 2008).  
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Fig. 2. Chromosomes of androgenetic progenies of rainbow trout (Oncorhynchus mykiss) (a), 

brook trout (Salvelinus fontinalis) X Arctic charr (Salvelinus alpinus) hybrid (b) and brook 

trout (c-d) after Primed IN Situ (PRINS) technique with telomeric (CCCTAA)7. White arrows 

indicate chromosomes with interstitial telomeric DNA sequences (a), yellow arrowhead 

shows linear chromosome fragment with telomeres (b), white arrowheads point to the 

telomerless ring chromosome fragments (b), pink arrow indicates chromosome fragment 

with interstitially located telomeric signals (c) while yellow arrow indicates chromosome 

fragment with telomeric signals situated terminally (d). Both type of chromosome fragments 

with telomeric signals are enlarged and framed (c, d).  
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5. Conclusions 

Chromosome fusions are the source of the interstitial telomeric DNA sequences (ITSs) in the 

vertebrates. On the other hand, quite frequently such rearrangements involve loss of the 

telomeric repeats at the fusion sites. ITSs can also appear in the course of DNA DSB repair. 

Internally located telomeric DNA sequences may undergo amplification, degeneration 

and/or further redistribution. TTAGGG repeats may be part of the centromeric and 

subterminal satellite DNA or rDNA forming nucleolus organizer regions (NORs). Fish seem 

to be good models to study the distribution and genomic organization of the ITSs. First, 

most of the ITSs observed in the fish chromosomes appeared in the course of the similar 

mechanisms responsible for the ITS formation in the higher vertebrates. Second, apart from 

the well-known fusion scenario of the ITS origin, other genomic rearrangements such as 

transposition-mediated translocations of the chromosomal regions including telomeric DNA 

sequences may result in the interstitial inclusion of the telomeric repeats in fish 

chromosomes. ITSs observed in the androgenetic fish derive from the incorporation of the 

ionizing radiation induced terminal acentric chromosome fragments into the intact 

chromosomes. Moreover, fish telomerase, which is active during the entire ontogenetic 

development, may be involved in the DSBs repair mechanism in these organisms.  
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