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1. Introduction

This chapter is devoted to the theory of open resonators. It is well known that lasers uses open

resonators as an oscillatory system. In the simplest case, this consists of two mirrors facing

each other. This is the first but not the only application of open resonators, whose salient

features consist in the fact that their dimensions are much larger than the wavelength and the

spectrum of their eigenvalues is much less dense than that of close cavity.

The origin of Open Resonators can be dated to the beginning of the twentieth century when

two French physicists developed the classical Fabry-Perot interferometer or Etalon [1]. This

novel form of interference device was based on multiple reflection of waves between two

closely spaced and highly reflecting mirrors.

In [2] and [3] a theory was developed for resonators with spherical mirrors and approximated

the modes by wave beams. The concept of electromagnetic wave beams was also introduced

in [5, 12] where was investigated the sequence of lens for the guided transmission of

electromagnetic waves.

The use of open resonators either in the microwave region, or at higher frequencies (optical

region) has taken place over a number of decades. The related theory and its applications

have found a widespread use in several branches of optical physics and today is incorporated

in many scientific instruments [6].

In microwave region open resonators have also been proposed as cavities for quasi-optical

gyrotrons[16] and as an open cavity in a plasma beat wave accelerator experiment [9].

The use of Open Resonators as microwave Gaussian Beam Antennas [10, 11, 18] provides a

very interesting solution as they can provide very low sidelobes level. They are based on the

result that the field map at the mid section of an open resonator shows a gaussian distribution

that can be used to illuminate a metallic grid or a dielectric sheet.

©2012 Di Massa, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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For microwave applications a reliable description of the coupling between the cavity and the

feeding waveguide is necessary. Several papers deal with the coupling through a small hole or

a rectangular waveguide taking into account only for the fundamental cavity and waveguide

mode [7, 8, 17].

In [4] a complete analysis of the coupling between a rectangular waveguide and an open

cavity has been developed taking into account for all the relevant eigenfunctions in the

waveguide and in the cavity.

In this paper we review the general theory of Open Resonators and propose to study the

coupling between a feeding coupling aperture given by a rectangular or circular waveguide.

Starting from the paraxial approximation of the wave equation, we derive the modal

expansion of the field into the cavity taking into account for the proper coordinate system.

The computation of the modal coefficients takes into account for the characteristics of the

mirrors, the ohmic and diffraction losses and coupling.

2. Open resonator theory

2.1. Parabolic approximation to wave equation

A parabolic equation was first introduced into the analysis of electromagnetic wave

propagation in [13] and [14]. Since then, it has been used in diffraction theory to

obtain approximate (asymptotic) solutions when the wavelength is small compared to all

characteristic dimensions. As open resonators usually satisfy this condition, the parabolic

equation finds wide application in developing a theory of open resonators.

A rectangular field component of a coherent wave satisfies the scalar wave equation:

∇2u + k2u = 0 (1)

where k = 2π/λ is the propagation constant in the medium.

For a wave traveling in the zeta forward direction, assuming an ejωt time dependance, we put:

u = ψ(x, y, z)e−jkz (2)

where ψ is a slowly varying function which represents the deviation from a plane wave. By

inserting (2) into (1) and assuming that ψ varies so slowly with z that its second derivative can

be neglected with respect to
∣

∣

∣
k

∂ψ
∂z

∣

∣

∣
, one obtains the well know parabolic approximation to the

wave equation:

∂2ψ

∂x2
+

∂2ψ

∂y2
− 2jk

∂ψ

∂z
= 0 (3)

The differential equation (3), similar to the Schrodinger equation, has solution of the type:

ψ = e
−j
(

P+ k
2q r2
)

(4)

where:

r2 = x2 + y2 (5)

4 Microwave Materials Characterization
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The parameter P(z) represents a complex phase shift associated to the propagation of the

beam along the z axis, q(z) is the complex parameter which describe the Gaussian beam

intensity with the distance r from the z axis.

The insertion of (4) in (3) gives the relations:

dq

dz
= 1 (6)

dP

dz
= − j

q
(7)

The integration of (6) yields:

q(z2) = q(z1) + z (8)

which relates the intensity in the plane z2 with the intensity in the plane z1.

A wave with a Gaussian intensity profile, as (4), is one the most important solutions of

equation (3) and is often called fundamental mode.
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Figure 1. Amplitude distribution of cavity fundamental mode

Two real beam parameters, R and w, are introduced in relation to the above complex

parameters q by
1

q
=

1

R
− j

λ

πw2
(9)

Introducing (9) in the solution (4), we obtain:

ψ = e
−j
(

P+ π
λ

r2

R

)

e−
r2

w2 (10)

Now the physical meaning of these two parameters becomes clear:

5Microwave Open Resonator Techniques – Part I: Theory
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• R(z) is the curvature radius of the wavefront that intersects the axis at z;

• w(z) is the decrease of the field amplitude with the distance r from the axis.

Parameter w is called beam radius and the term 2w beam diameter. The Gaussian beam contracts

to a minimum diameter 2w0 at beam waist where the phase is plane. The beam parameter q

at waist is given by:

q0 = j
πw0

λ
(11)

and, using (8), at distance z from the waist:

q = q0 + z = j
πw0

λ
+ z (12)

Combining (12) and (10), we have:

R(z) = z

[

1 +
( zR

z

)2
]

(13)

and

w2(z) = w2
0

⎡

⎣1 +

(

λz

πw2
0

)2
⎤

⎦ (14)

where zR is the Rayleigh distance:

zR =
πw2

0

λ
(15)

The beam contour is an hyperbola with asymptotes inclined to the axis at an angle:

θ =
λ

πw0
(16)

In (14) w is the beam radius, w0 is the minimum beam radius (called beam waist) where one

has a plane phase front at z = 0 and R is the curvature radius of of the phase front at z. It

should be noted that the phase front is not exactly spherical; therefore, its curvature radius is

exactly equal to R only on the z-axis. The parameter of the Gaussian beam are illustrated in

Fig. 2.

Figure 2. Parameters of Gaussian beam

6 Microwave Materials Characterization



Microwave Open Resonator Techniques – Part I: Theory 5

Dividing (14) by (13), the useful relation is obtained:

λ

πw2
0

=
πw2

λR
(17)

The expression (17) is used to express w0 and z in terms of w and R:

w2
0 =

w2

1 +
(

πw2

λR

)2
(18)

z =
R

1 +
(

λR
πw2

)2
(19)

Inserting (11) in (7) we obtain the complex phase shift at distance z from the waist:

dP

dz
= − j

z + j
πw2

0
λ

(20)

Integration of (20) yields

jP(z) = lg

[

1 − j

(

λz

πw2
0

)]

= lg

√

√

√

√1 +

(

λz

πw2
0

)2

− j arctan

(

λz

πw2
0

)

(21)

The real part of P represent the phase shift difference Φ between the Gaussian beam and an

ideal plane wave, while the imaginary part produces an amplitude factor w0
w which gives the

decrease of intensity due to the expansion of the beam. Now we can write the fundamental

Gaussian beam:

u(r, z) =
w0

w
e

{

−j(kz−Φ)−r2
(

1
w2 +

jk
2R

)}

(22)

where:

Φ = arctan

(

λz

πw2
0

)

(23)

2.2. Stability of open resonator

A resonator with spherical mirrors of unequal curvature is representable as a periodic

sequence of lens which can be stable or unstable. The stability condition assumes the form:

0 <

(

1 − 2l

R1

)(

1 − 2l

R2

)

< 1 (24)

The above expression was previously derived in [3] from geometrical optics approach based

on equivalence of the resonator and a periodic sequence of parallel lens and independently in

[5] solving the integral equation for the field distribution of the resonant modes in the limit of

infinite Fresnel numbers.

7Microwave Open Resonator Techniques – Part I: Theory
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To show graphically which type of resonator is stable and which is unstable, it is useful to plot

a stability diagram on which each type of resonator type is represented by a point (Fig. 3).

Figure 3. Stability diagram. g1 = 1 − 2l
R1

, g2 = 1 − 2l
R2

.

2.3. Spherical cavity in cartesian coordinates

In cartesian (x, y, z) coordinates, the separate solutions for (3) are [12]:

ψmp(x, y, z) = φmp(x, y, z)exp

[

j(m + p + 1) tan−1 z

zR
− j

π

λ

r2

R(z)

]

(25)

where1

φmp(x, y, z) =
1

w(z)

√

2

π2m+pm!p| Hm

(√
2

x

w

)

Hp

(√
2

y

w

)

exp

[

− r2

w2(z)

]

(26)

Hm is a Hermite polynomial of order m (Appendix A).

Note that both the φmp and ψmp functions are orthonormal on the transverse planes z=cost.

When we assume that the mirrors are sufficiently large to permit the total reflection of the

gaussian beams of any relevant order, we can put:

Ψmpq = u
(+)
mpq + u

(−)
mpq (27)

1 To be consistent with the parabolic approximation the condition |m + n + 1| << (kw0)2 must be satisfied.

8 Microwave Materials Characterization
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where u
(+)
mpq and u

(−)
mpq represent Hermite Gauss beams propagating from left to right and from

right to left,respectively.

Resonance occurs when the phase shift from one mirror to the other is a multiple of π. Using

(2), (4) and (9) this condition leads to:

kmpq2l − 2(m + p + 1) tan−1

(

l

zR

)

= π(q + 1) (28)

where q is the number of nodes of the axial standing wave pattern and 2l >> zR the distance

between the mirrors (Fig.4).

The fundamental beat frequency Δ f0, i.e. the frequency spacing between successive

longitudinal resonances, is given by:

Δ f0 =
c

4l
(29)

where c is the velocity of light. From (10) the resonant frequency f of a mode can be expressed

as:
fmpq

Δ f0
= q + 1 +

1

π
(m + p + 1) cos−1

(

1 − 2l

R

)

(30)

The combined use of eqs. (2),(4) and (9) yields:

Ψmpq(x, y, z) = φmp(x, y, z) cos

[

kmpqz − (m + s + 1) tan−1 z

zR
+

π

λ

r2

R(z)
+

qπ

2

]

(31)

Figure 4. Spherical Open Cavity

In the paraxial approximation the eigenfunctions Ψspq satisfy the normalization relation

∫∫∫

cavity

ΨmpqΨ∗
nstdxdydz =

{

l, mpq ≡ nst;

0, mpq �= nst .
(32)

9Microwave Open Resonator Techniques – Part I: Theory
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3. Coupling to feeding waveguide

Because the expressions for the solution of scalar wave equation (3) with the boundary

condition Φ = 0 on the mirrors is given by (31) the electromagnetic field inside the cavity

can be expressed in terms of (quasi) transverse electromagnetic modes (TEM):

E = ∑
n

Vnen (33)

H = ∑
n

Inhn (34)

According to the results reported in sect. 2, the expressions for the ŷ polarized modes are:

en = φmp(x, y, z) cos

[

kmpqz − (m + p + 1) tan−1 z

zR
+

π

λ

r2

R(z)
+

qπ

2

]

ŷ

hn = −φmp(x, y, z) sin

[

kmpqz − (m + p + 1) tan−1 z

zR
+

π

λ

r2

R(z)
+

qπ

2

]

x̂

and similarly for the x̂ polarized ones.

In (33) the index n summarizes the indexes (mpq).

From Maxwell equations we get for the mode vectors [15]:

knhn = ∇× en (35)

and for the coefficients Vn , In

In =
jωε0

k2 − k2
n

1

l

∫∫

S
n̂ × E · h∗

ndS (36)

Vn =
kn

k2 − k2
n

1

l

∫∫

S
n̂ × E · h∗

ndS = −j
ζ0ωn

ω
In (37)

where S is the cavity surface, ∗ denotes the complex conjugate and ζ0 is the free space

impedance. Note explicitly that the tangential electric field appearing in expression (36) and

(37) is the actual field over S. This is not given by expression (33), which, at variance with

expression (34), does not provide a representation for the tangential components uniformly

valid up to the cavity boundaries. Let us divide the surface S into three parts: the coupling

aperture A, the mirrors M and the (ideal) cavity boundary external to the the mirrors, M̂ (see

Fig. 4). Hence:

In =
jωε0

k2 − k2
n

1

l
·
{

∫∫

A
n̂ × E · h∗

ndS +
∫∫

M
n̂ × E · h∗

ndS +
∫∫

M̂
n̂ × E · h∗

ndS

}

(38)

Strictly speaking, in one of the integrals over the mirrors surfaces the coupling aperture should

be deleted. However, the error that we make in extending the integration to the whole mirror

is negligible provided that the waveguide dimension is much smaller than that of the mirrors.

10 Microwave Materials Characterization
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The Leontovic̃ boundary condition:

n̂ × E =
1 + j

σδ
n̂ × H × n̂ (39)

wherein σ is the electric conductivity of the mirrors and δ =
√

2
ωσμ is the penetration depth,

can be applied to express the (tangential) electric field over the mirrors in terms of magnetic

one, given by (16). Hence:

∫∫

M
n̂ × E · h∗

ndS = ∑
m

Im
1 + j

σδ

∫∫

M
hm · h∗

ndS = 2
1 + j

σδ ∑
m

αnm Im (40)

being:

αnm =
1

2

∫∫

M
h∗

n · hmdS (41)

Outside the mirrors we can assume that the field is an outgoing locally plane wave

(Fresnel-Kirchhoff approximation), so that on M̂:

n̂ × E = ζon̂ × H × n̂ (42)

Accordingly, we have for the last integral in (38):

∫∫

M̂
n̂ × E · h∗

ndS = ζo ∑
m

Im

∫∫

M̂
hm · h∗

ndS = 2ζo ∑
m

Im(δnm − αnm) (43)

The last equality in (43) follows from the fact that:

∫∫

M∪M̂
hm · h∗

ndS ≃
∫∫

z=−l
hm · h∗

ndxdy +
∫∫

z=l
hm · h∗

ndxdy = 2δnm (44)

according to the orthogonality condition satisfied by the φ functions.

The cavity quality factor Qn for the n-th mode is defined as:

Qn = ωn
Wn

Pn
(45)

where Wn is the mean electromagnetic energy stored in the cavity and Pn is the power lost

when only the nth mode is excited at the resonance pulsation ωn. The power is lost due to

diffraction and ohmic losses.

By taking (32) into account, we can express the diagonal term in (40) as a function of the

quality factor for the ohmic losses, Qrn,:

2αnn =
∫∫

M
|hn|2dS =

ωnμ0

Qrn
σδn l (46)

being δn the skin depth at the resonant frequency.

The diffraction losses of a cavity can be calculated by taking into account for the diffraction

effects produced by the finite size of the mirrors. Under the simplifying assumption of

11Microwave Open Resonator Techniques – Part I: Theory
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quasi-optic nature of the problem (dimensions of the resonator large compared to wavelength

and quasi-transverse electromagnetic fields) the Fresnel-Kirchhoff formulation can be invoked

for the diffracted field from the mirrors. Hence we have for the diffraction loss of the nth

mode:

Pdn = Re

(

∫∫

M̂

1

2
En × H∗

n · n̂dS

)

=
1

2
ζ0 |In|2

∫∫

M̂
|hn|2ds (47)

and for the corresponding quality factor for the diffraction losses, Qd,:

ζo

l

∫∫

M̂
|hn|2dS =

ωnμ0

Qdn
(48)

By using (40, 41,44, 45) and taking into account that σδζ0 >> 1 and δn/δ ≃ 1 for all relevant

modes, equation (38) becomes:

In =
jωε0

(

k2 − k2
n + kkn

Qrn

)

− j kkn
QTn

1

l

{

∫∫

A
E × h∗

n · n̂dS − 2ζ0 ∑
m

′ Imαnm

}

(49)

wherein ∑
′ ≡ ∑

n �=m
and:

1

QTn
=

(

1

Qdn
+

1

Qrn

)

(50)

A metallic waveguide is assumed to feed the cavity. The waveguide field on the coupling

aperture A is represented as:

Eg = ∑
n

V
g
n e

g
n (51)

Hg = ∑
n

I
g
nh

g
n (52)

where eg and hg are TE electromagnetic modes of the waveguide:

Assuming that the mirror curvature can be neglected over the extension of the coupling

aperture,fields (51, 52) verify the following orthonormality relation:

∫∫

A
e

g
n × h

g
m · ẑdS = δnm (53)

Expressing the field over the coupling aperture A by means of expression (52) we obtain from

(3):

In + 2Fn

′

∑
m

αnm Im =
Fn

ζ0
∑
m

βnmV
g
m (54)

where:

Fn =
jk/l

(

k2 − k2
n +

kkn
Qrn

)

− j kkn
QTn

(55)

and:

βnm =
∫∫

A
e

g
m × h∗

n · n̂dS = −
∫∫

A
h∗

n · h
g
mdS. (56)

By introducing the matrices A and B, whose elements are:

anm =

{

1
Fn

n=m
2αnm n �= m.

(57)

12 Microwave Materials Characterization
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and βnm respectively 2, and the vectors I ≡ {In} and Vg ≡ {V
g
n }, relation (3) can be written

in a compact form as:

ζ0A · I = B · Vg = B ·
(

V+ + V−) (58)

wherein V+ and V− are the vectors of the incident and reflected waveguide mode amplitudes

respectively. By enforcing the continuity of the magnetic field tangential component over the

coupling aperture, we get:

−B+ · I = Ig =
1

ζ0
ζ−1 ·

(

V+ − V−) (59)

wherein B+ is the adjoint (i.e., the transpose, being B a real matrix) of B and ζ is the diagonal

matrix whose elements are the modes characteristic impedances, normalized to ζ0. From (48)

and (49) we immediately obtain:

(

I −A−1 · B · ζ · B+
)

· I =
2

ζ0
A−1 · B · V+ (60)

(

I − ζ · B+ · A−1 · B
)

· V− =
(

I + ζ · B+ · A−1 · B
)

· V+ (61)

wherein I is the unit matrix and A−1 the inverse of the matrix A.

Solution of eq. (60) and (61) provides the answer to our problem. In particular, from (61) we

get the (formal) expression for the feeding waveguide scattering matrix S :

S =
(

I − ζ · B+ · A−1 · B
)−1

·
(

I + ζ · B+ · A−1 · B
)

(62)

4. Field on the coupling aperture

In order to solve the system (60-61) a suitable description of the field on the aperture A is

necessary. Any device, able to support electromagnetic field matching the cavity field on the

mirror (33-34), can be used to feed the cavity. In the following, the case of metallic and circular

waveguide will be treated in detail.

4.1. Modes in rectangular waveguide

A rectangular metallic waveguide, with transverse dimensions a × b, is assumed to feed the

cavity. The waveguide TE electromagnetic modes of the metallic rectangular waveguide, on

the coupling aperture A, is represented as:

hn = hpq =
1

ktpq

√

4εpεq

ab
· (63)

{

pπ

a
sin

pπ

a

(

x +
a

2

)

cos
qπ

b

(

y +
b

2

)

x̂ +
qπ

b
cos

pπ

a

(

x +
a

2

)

sin
qπ

b

(

y +
b

2

)

ŷ

}

2 Note explicitly that αnm and βnm are real quantities, as both the cavity and waveguide mode vectors are real. Moreover
αnm = αmn so that the matrix A is symmetric.

13Microwave Open Resonator Techniques – Part I: Theory
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epq = hpq × ẑ (64)

εp =

{

1, p �= 0;
1
2 , p = 0.

(65)

k2
tpq =

( pπ

a

)2
+
( qπ

b

)2
(66)

and the TM electromagnetic modes:

en = epq = − 1

ktpq

√

4εpεq

ab
· (67)

{

pπ

a
cos

pπ

a

(

x +
a

2

)

sin
qπ

b

(

y +
b

2

)

x̂ +
qπ

b
sin

pπ

a

(

x +
a

2

)

cos
qπ

b

(

y +
b

2

)

ŷ

}

hpq = ẑ × epq (68)

Note explicitly that in expressions (63-68) the index n summarizes the indexes (pq).

4.2. Modes in circular waveguide

When a circular waveguide , with radius a, is assumed to feed the cavity, the TE

electromagnetic modes are:

hn = hpr = −
√

ξp

π

1
√

q
′2
pr − p2

1

Jp(q′pr)
·

{[

q′pr

a
J′p(k

′
tprρ) cos φ

{

cos (pφ)
sin (pφ)

− p

ρ
Jp(k

′
tprρ) sin φ

{

sin (pφ)
− cos (pφ)

]

x̂

+

[

q′pr

a
J′p(k

′
tprρ) sin φ

{

cos (pφ)
sin (pφ)

+
p

ρ
Jp(k

′
tprρ) cos φ

{

sin (pφ)
− cos (pφ)

]

ŷ

}

(69)

epr = hpr × ẑ (70)

and the TM electromagnetic modes:

en = epr = −
√

ξp

π

1

J′p+1(qpr)
·

{[

1

a
J′p(ktprρ) cos φ

{

cos (pφ)
sin (pφ)

+
p

qprρ
Jp(ktprρ) sin φ

{

sin (pφ)
− cos (pφ)

]

x̂

+

[

1

a
J′p(ktprρ) sin φ

{

cos (pφ)
sin (pφ)

− p

qprρ
Jp(ktprρ) cos φ

{

sin (pφ)
− cos (pφ)

]

ŷ

}

(71)

hpr = ẑ × hpr (72)

where:

k2
tpr =

( qpr

a

)2
; k

′2
tpr =

(

q′pr

a

)2

(73)

14 Microwave Materials Characterization
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qor is the r-mo zero of Bessel function of order p and q′or r-mo zero of the derivative of Bessel

function of order p.

ξp =

{

1, p = 0;

2, p �= 0.
(74)

Note explicitly that in expressions (69, 71) the index n summarizes the indexes (pr).

5. Equivalent circuit

Let us consider systems (60) and (61) under the following assumptions:

1. Negligible intercoupling between cavity modes, i.e. :

(A)pq =
1

Fp
δpq ⇐⇒ (A−1)pq = Fpδpq (75)

2. Single cavity mode approximation, i.e., -see (3)-:

Fp = δp0F0 (76)

3. Beam diameter at the mirror much larger than the waveguide dimension, i.e. :

w = w(l) � a (77)

Putting

V
g
n = V+

1 δ1n + V−
n (78)

and taking (75-76) into account, equations (60-61) became

−ζ0ζnβ0n I0 = V+
1 δ0n − V−

n (79)

(

1 − F0 ∑n
β2

0nζn

)

I0 =
2F0

ζ0
β01V+

1 (80)

From (79,80) we immediately get:

V−
n =

⎛

⎝δ1n +
2F0ζn

β0n

β01

1 − F0 ∑k β2
0kζk

⎞

⎠V+
1 (81)

Hence

Γ =
V−

1

V+
1

=
1 + F0ζ1β2

01 − F0 ∑k �=1 ζkβ2
0k

1 − F0 ∑k ζkβ2
0k

(82)

From (82) we get for the equivalent terminal impedance relative to the fundamental mode:

Z = ζ0ζ1
1 + Γ

1 − Γ
= − ζ0

β2
01F0

+ ζ0 ∑
k �=1

(

β0k

β01

)2

ζk (83)
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Taking into account for the expression (55) for F0, we get the equivalent circuit representation

of Fig. 5.

Figure 5. Equivalent Circuit

where the explicit expression for its elements are collected under Table 1.

L0 μ0l (H) C εl/(k0l)2 (F)
L’ μ0δ (H) R′ 2/σδ (Ω)

Table 1. Expressions for the circuit elements of Fig.5

The value of Le depends on the feeding waveguide and is reported in the following

subsections for rectangular and circular waveguides.

5.1. Rectangular waveguide

The cavity is assumed to be excited by the incident fundamental TE10 mode. From expressions

(51-52) and (63) follows that in the cavity are excited only the (0,0,q) mode, in the feeding

waveguide are excited the modes TEn0.

When the cavity is fed by a rectangular waveguide under the approximation 3), the expression

(56) for β0k can be explicitly evaluated, leading to:

β0n =
4

π

1

n

√

ab

w2
n = 1, 3, · · · (84)

Hence, for the sum at the right hand side of (83) we have:

ζ0 ∑
k=3,5,··

(

β0k

β01

)2

ζk = jζ0

∞

∑
k=0

1

(2k + 3)2

1
√

(

2k+3
2a λ

)2
− 1

≃

≃ jζ0

(

2a

λ

) ∞

∑
k=0

1

(2k + 3)3
= jωμa

1

π

[(

1 − 1

8

)

ζ(3)− 1

]

= jωLe (85)

wherein ζ(·) denotes the Rieman zeta function. From equation (85), we have the value of Le:

Le = 16.5 10−3μ0 a [henry] (86)
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5.2. Circular waveguide

The cavity is assumed to be excited by the incident fundamental TE11 mode. From expressions

(51, 52) and (69) follows that in the cavity are excited the (0,0,q) mode, in the feeding

waveguide are excited the modes TE1r .

When the cavity is fed by a circular waveguide under the approximation 3), the expression

(56) for β0k can be evaluated (Appendix A), leading to:

β0r = − 2

π

1
√

q
′2
pr − p2

1

Jp(q′pr)

1

w(l)
· [I1 − I2] (87)

I1 = π
q′pr

a

∫ a

0
J′1(k

′
t1rρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

ρdρ (88)

I2 = π
∫ a

0
J1(k

′
t1rρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

dρ (89)

allowing the computation of Le.

Author details

Giuseppe Di Massa

University of Calabria, Italy

Appendix

A. Hermite polynomials

The Hermite polynomials are defined as:

Hn(x) = (−1)nex2 ∂n

∂xn
e−x2

(90)

The differential equation:

∂2y

∂x2
− 2x

∂y

∂x
+ 2y = 0 (91)

admits as solution the Hermite polynomial Hn(x). For the the Hermite polynomials the

following orthogonal relation holds:

∫ +∞

−∞
e−

x2

2 Hn(x)Hm(x) =

{√
π2nn!, n=m;

0, n �= m.
(92)

In the following some particular values with the recursion relation are reported:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2
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H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

−−− −−−−−−−
Hn+1 = 2xHn(x)− 2nHn−1(x)

B. Coupling cavity - circular waveguide

The x component of the magnetic field, for TE modes, in the waveguide is:

h
g
xpr = −

√

ξp

π

1
√

q
′2
pr − p2

1

Jp(q′pr)
· (93)

[

q′pr

a
J′p(k

′
tprρ) cos φ cos (pφ)− p

ρ
Jp(k

′
tprρ) sin φ sin (pφ)

]

The x component of the magnetic field in the cavity is:

hxn = −φmp(x, y, z) sin

[

kmpqz − (m + p + 1) tan−1 z

zR
+

π

λ

r2

R(z)
+

qπ

2

]

(94)

where

φmp(x, y, z) =
1

w(z)

√

2

π2m+pm!p| Hm

(√
2

x

w

)

Hp

(√
2

y

w

)

exp

[

− r2

w2(z)

]

(95)

According to the position of sect.4 we consider the mode (0,0,q) in the cavity, so the equation

(95) reduces to:

φ00(x, y, z) =
1

w(z)

√

2

π
exp

[

− r2

w2(z)

]

(96)

and the equation (94) on the mirror (for z=l):

hxn = − 1

w(l)

√

2

π
e

[

− r2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

r2

R(l)
+

qπ

2

]

(97)

β0m = −
∫∫

A
h∗

0 · h
g
mdS (98)

= − 2

π

1
√

q
′2
pr − p2

1

Jp(q′pr)

1

w(l)
· (99)

∫∫

A

[

q′pr

a
J′p(k

′
tprρ) cos φ cos (pφ)− p

ρ
Jp(k

′
tprρ) sin φ sin (pφ)

]

· (100)

e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

ρdρdφ (101)

18 Microwave Materials Characterization



Microwave Open Resonator Techniques – Part I: Theory 17

β0r = − 2

π

1
√

q
′2
pr − p2

1

Jp(q′pr)

1

w(l)
· [I1 − I2] (102)

where:

I1 = p
sin(2pπ)

p2 − 1

q′pr

a

∫ a

0
J′p(k

′
tprρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

ρdρ (103)

I2 =
sin(2pπ)

p2 − 1

∫ a

0

p

ρ
Jp(k

′
tprρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

ρdρ (104)

that are not equal to zero for p=1, giving:

I1 = π
q′pr

a

∫ a

0
J′1(k

′
t1rρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

ρdρ (105)

I2 = π
∫ a

0
J1(k

′
t1rρ)e

[

− ρ2

w2(l)

]

sin

[

k00ql − tan−1 l

zR
+

π

λ

ρ2

R(l)
+

qπ

2

]

dρ (106)
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