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1. Introduction

Self-organizing maps (SOMs) are a powerful tool used to extract obscure diagnostic infor‐
mation from large datasets. In the context of issues related to threats from greenhouse-gas-
induced global climate change, SOMs have recently found their way into atmospheric
sciences, as well. In meteorology SOMs provide a means to visualize the complex distribu‐
tion of synoptic weather patterns over a region of interest (Hewitson and Crane 2002), ex‐
plore extreme weather and rainfall events (Hong et al. 2005, Zhang et al. 2006, Uotila et al.
2007), classify cloud patterns (Tian et al. 1999, Ambroise et al. 2000) and reveal causes and
effects of climate changes projected using global climate models (Lynch et al. 2006; Cassano
et al. 2007, Skific et al. 2009a, 2009b).

The SOMs’ unsupervised learning algorithm reduces the dimension of large data sets by
grouping similar multi-dimensional fields together and organizing them into a two-dimen‐
sional array (Kohonen 2001). To a trained operational meteorologist the interpretation of
SOMs is intuitive, as they are reminiscent of synoptic charts arranged adjacent to one anoth‐
er according to their similarity (much like tracking a weather system in time, as is done in
synoptic meteorology, Hewitson and Crane 2002). Although still largely underutilized,
SOMs are gradually becoming more widely used for applications in atmospheric science.
Unlike most traditional clustering algorithms, SOMs attempt to conserve space continuum,
utilizing the information from the provided data. The resulting clusters will therefore have
some resemblance because the process of SOM creation assumes that a single sample of data
will contribute to the creation of more than one cluster, as the whole neighborhood around
the best matching cluster is also updated in each step of training. It will also result in a more
detailed presentation of particular features appearing on neighboring clusters, if the infor‐
mation from the original data enables it to do so. On the other hand, as the SOMs attempts
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to span a continuous data space, some of the resulting clusters may have only a few mem‐
bers ascribed to them, in the attempt to overlap the data gap or the region where data infor‐
mation exists but is very sparse.

This chapter provides a brief summary of several experiments using SOMs to explore how
Arctic climate will change by the end of the 21st century. It demonstrates how the SOM tech‐
nique can be adapted to quantify a change in a meteorological variable of interest and possi‐
bly reveal the underlying mechanism driving that change.

2. Data preparation

In this application, the high-dimensional data subjected to SOM analysis are daily fields of
sea-level pressure (SLP) anomalies simulated by the Community Climate System Model,
version 3 (CCSM3), for time periods from 1960 to1999, 2010 to 2030, and 2070 to 2089. The
latter two periods are extracted from a simulation for the “worst-case scenario: of green‐
house gas emissions for the 21st century as specified by the Special Report on Emission Sce‐
narios, SRES A2 (Nakicemovic and Swart 2000). These scenarios are based upon
assumptions for future greenhouse gas pollution, land use, global economic development,
etc. The SLP fields are then interpolated from the original 1.4º x 1.4º grid to a 200 km x 200
km Equal Area-Scalable Earth (EASE) grid (Armstrong et al. 1997), covering the area north
of 60ºN and consisting of 51 x 51 grid points. Interpolation to an equal area grid avoids er‐
rors that might occur owing to equal weighting in the SOM algorithm of the original lati‐
tude-longitude grid boxes, which decrease in size toward the pole.

Daily SLP anomalies are then derived by subtracting the gridpoint SLP from the domain-
averaged SLP for each daily field (Cassano et al. 2007). The spatial distribution of the daily
SLP anomalies represent the SLP gradient, which drives the strength and direction of the
circulation, without being influenced by fluctuations in the area-mean absolute SLP values.
Areas with elevation higher than 500 m are removed from the fields because pressure reduc‐
tion to sea level can lead to unrealistic singularities emerging in the SOM training, which
then obscure the realistic patterns.

3. SOM methodology

The SOM consists of a two-dimensional grid of clusters or nodes, which in this case is a grid
of SLP anomaly maps. Each node i corresponds to an n-dimensional weight or reference vec‐
tor, mi, where n is the dimension of the input data, treated as a vector created from the grid-
points in each sample.

The initial step of this routine is the creation of a first-guess array, which consists of an arbi‐
trary number of nodes and corresponding reference vectors. In this study we use a grid of 35
nodes, creating a 7x5 array. Slightly smaller and larger SOM matrices were tested to deter‐
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mine a suitable number of nodes for this analysis. If the matrix is too small, some character‐
istic atmospheric patterns may not be represented; if it is too big, adjacent patterns will be
too similar and visualization is unwieldy. The 7x5 matrix appears to capture and separate
the important differences in pressure patterns. Moreover, the results are not affected by
small differences in the matrix size (see Skific et al. 2009a).

The reference vectors are created at the beginning using linear initialization, which consists
of first determining the two eigenvectors with the largest eigenvalues, then letting these ei‐
genvectors span the two-dimensional linear subspace (Kohonen 2001). We use the cova‐
riance matrix of the input SLP dataset to determine the two eigenvectors. In this case the
centroid of a rectangular array of initial reference vectors identified with array points corre‐
sponds to the mean of the sea level pressure values, and the vectors identified with the cor‐
ners of the array correspond to the largest eigenvalues. By initiating a SOM in this way, the
procedure starts with an already ordered set of weights, then training begins with the con‐
vergence phase. Linear initialization helps achieve faster convergence, which is an advant‐
age of this procedure over other methods (i.e., random initialization), but the SOM results
are not sensitive to the selected initialization method. In the process of training, each data
sample (i.e., one daily map of SLP) is presented to the SOM in the order it occurs in the orig‐
inal data set.

The similarity between the data sample and each of the reference vectors is then calculated,
usually as a measure of Euclidean distance in space. In this process, the “best match” node is
identified as that with the smallest Euclidean distance between its reference vector and the
data sample. Only the vectors for the best-matching node and those that are topologically
close to it in the two-dimensional array are updated. The updating scheme is shown below

mi(t + 1)=mi(t) + h ci(t)⋅ x(t)−mi(t) ,

where t is a discrete-time coordinate, mi is a reference vector, x is a data sample, and hci is a
neighborhood function (Kohonen 2001), usually in the form of the Gaussian function,

h ci =a(t)⋅exp(−
rc − ri

2

2σ 2(t ) .

α is the training rate function (usually an inverse function of time), r is the location vector in
the matrix, ||rc-ri|| corresponds to the distance between the best-matching node (location rc)
and each of the other nodes (location ri) in the two-dimensional matrix, and σ defines the
width of the kernel, or a relative distance between nodes, often referred to as the radius of
training. The training procedure is controlled by the training rate α, the training radius r,
and the duration of training, which is fixed at 20 times the number of data samples. This
choice is based on the “rule of a thumb” for optimal training length, which should be longer
than 500 times the vector size (see Kohonen 2001). The initial value of r is 4, and decreases
linearly in time. The training scheme is repeated several times, with the training rate re‐
duced by an order of a magnitude each time. At the end of each trial the mean quantization
error is calculated, defined as

mqe =
∑i=1

M (xi −mc)2

M ,
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where xi is a data sample, M is the number of samples, and mc is its best matching unit out of
35 reference vectors. A smaller mean quantization error indicates a closer resemblance be‐
tween mc and the daily SLP anomaly fields. Once the smallest mean quantization error is
found, we then fine-tune the training by varying the training rate slightly around that value
and calculating the error for each trial. The training is complete once the smallest mean
quantization error is identified, as the reference vectors from that training best approximate
the data space of interest. The final reference vectors are then mapped onto a 2D grid, with
their locations in the matrix corresponding to their matching nodes. The maps in the result‐
ing matrix represent the predominant patterns in which the atmosphere tends to reside, or
alternatively the centroid of the particular data cluster.

Although the measure of similarity between the data and the reference vector is linear, it is
this iterative training procedure that allows the SOM to account for the non-linear data dis‐
tributions (Hewitson and Crane 2002). The non-linear approximation of the data space is
therefore a great advantage of the method compared to some other approaches, such as em‐
pirical orthogonal functions (EOFs) (Reusch et al. 2005).

4. SOMs application in practical meteorology

4.1. Detection of regional climate change

Once the SOM has been trained and the final set of reference vectors has been identified,
daily fields of SLP anomalies can be mapped to the best-matching pattern to form clusters of
daily maps that are most similar to each pattern. This is achieved by finding the pattern in
the SOM that minimizes the Euclidean distance between itself and the daily field. Once all
the SLP anomaly fields have been assigned to a node, the frequencies of occurrence (FO) can
be determined, i.e., the fraction of daily fields that reside in each cluster. Ascribing a particu‐
lar daily SLP sample to a specific circulation pattern in the SOM also enables an analysis of
associated variables (such as temperature, precipitation, cloud amount, etc.) for the same
days as those in each cluster. By mapping the new variable onto a particular SLP-derived
cluster, the matrix of maps for any other variable can be used to describe the conditions as‐
sociated with a specific circulation regime. The following examples elaborate this procedure
in more detail.

Figure 1a shows dominant circulation regimes in which Arctic atmosphere resides, accord‐
ing to the CCSM3 model output described above. These clusters or neuronal weights form a
discrete approximation of the data distribution, which in the process of SOM creation, be‐
come organized on a 2D grid. Clusters near each other on the grid are more similar than
clusters farther away. Most distinct patterns are situated in the corners of the map, while the
cluster positions on the master SOM and their mutual distances approximate the probability
density function of a given dataset. This technique results in an overlap among neighboring
clusters because the process of training a single data sample will contribute to defining the
neighboring clusters as well, not only to the most similar one.
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In this example, the clusters in the lower right side of the master SOM are characterized by a
pronounced low pressure center in the North Atlantic and Pacific region, and high pressure
over the Eurasian continent. These features bare close resemblance to the North Atlantic Os‐
cillation (NAO), the most dominant SLP mode of variability in the high-latitude winter at‐
mosphere. The upper right side of the master SOM has cluster groups characterized by a
pronounced low pressure in the North Atlantic that extends farther northward and east‐
ward, towards the Norwegian and Barents Seas. A strong high-pressure ridge generally re‐
sides over the western Arctic in these clusters. The lower left corner of the map contains
clusters with low pressure over the Arctic, while in the clusters of the upper left corner low
(high) pressure is generally present in the western (eastern) Arctic. The clusters in the mid‐
dle of the map show a weak or moderate ridge over the central Arctic region.

Further insight about the relationships between adjacent nodes is provided by the so-called
Sammon map (Figure 1b). This distortion surface is a projection of Euclidean distance be‐
tween neighboring nodes of the SOM matrix (Figure 1a) to a set of 2D vectors, following a
Sammon mapping algorithm (Sammon 1969). Numbers 1 to 35 on the distortion surface cor‐
respond to the nodes on the SOM matrix, from the upper left to the bottom right corner of
the map. Generally, the closer two nodes are together on the Sammon map, the more similar
they are to each other. Although the distortion surface generally conforms to the expected
rectangular shape of the SOM matrix (Figure 1a), some more detailed relationships between
the nodes are revealed. One can see that nodes on the left of the SOM are closer in Euclidean
space than those on the right. This shows that node distribution approximates the multi-di‐
mensional distribution function, as the nodes are more closely spaced in regions where data
density is higher, i.e., where nodes have more members in their group. The Sammon map is
also useful for visualizing the process of creating the SOM. If one were to draw a Sammon
projection at each step of SOM training, each iteration would look like a wrinkled tablecloth
that is gradually becoming less wrinkled, until at the end of the training, it resembles its fa‐
miliar rectangular shape (Figure 1c).

To better understand the origin and characteristics of circulation patterns in the master
SOM, we create monthly histograms of CCSM3 mean SLP for each node in the SOM. Figure
2 shows a matrix of histograms corresponding to the master SOM (Figure 1). The x-axis of
each histogram is a month, while the y-axis is the number of times that this particular cluster
was a best match for an individual daily SLP map during that month. The histograms illus‐
trate the frequency with which a particular regime occurs during each month. As mentioned
earlier, the clusters on the right side are recognized as the NAO pattern, which is most com‐
mon in winter. The histograms for these clusters confirm that the non-summer days are
most likely to have these patterns. A single cluster in the upper left corner of the master
SOM also describes non-summer circulation patterns. These cold-season histograms show
that the clusters with pronounced low pressure in the North Atlantic along with a ridge
over the Eurasian continent or over the western Arctic occur most frequently in the winter
months. Come spring, although still present, these patterns become less frequent through
summer, then increase again in fall. These patterns thus depict the annual cycle of develop‐
ment and intensification of the Icelandic low, influenced by strong temperature gradients
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along the sea ice margins (Serreze 1995; Serreze et al. 1997a), “splitting” of lows moving in

from the south and southwest by the high orographic barrier of Greenland (Serreze and Bar‐

ry 2005), and lee-side vorticity production off the southeast coast of Greenland (Petersen et

al. 2003). The vigorous synoptic activity in the Atlantic is also related to the large moist static

energy transport into the Arctic through this sector (Overland et al. 1996). Features towards

the middle left side of the master SOM are primarily summer patterns, with increased FOC

as the warmest season approaches. They are characterized by either weak low pressure,

most commonly in the western Arctic, or a weak atmospheric ridge over the central Arctic.

 

(a) 
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Figure 1. a: Master SOM of sea level pressure anomaly patterns (hPa) derived from daily SLP anomaly fields CCSM3
(1960-1999, 2010-2030, and 2070-2089), and from the ECMWF Reanalysis (ERA-40) from 1958 to 2001. b: Sammon
map of the SOM matrix shown in Figure1 a.c: Projections of reference vectors in 2-dimensional space for various
stages of map training (from Kohonen, 1990).
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Figure 2. Frequency of occurrence displayed as monthly histograms for each node in the master SOM. The x–axis is
month, y-axis is the number of times that node was the best matching unit during that month.

The SOM algorithm keeps track of which days in the data record fall into which of the clus‐
ters, thus one can analyze other variables corresponding to the same days that exhibit that
circulation regime. This is a highly valuable tool for attributing causes for variations in par‐
ticular variables. We illustrate this tool by investigating fields of cloud fraction.

Figure 3 shows cluster-averaged cloud fraction for the CCSM3 1971-1999 period. The fact
that the minimum values are near 50% indicates that the Arctic is a very cloudy place. Low
stratus clouds account for over 80% of the total cloud cover in this region. Clusters on the
right side of the map correspond to the cold-season regimes, and as expected, these are char‐
acterized by lower values of cloud fraction, typically around 50% for the central Arctic re‐
gion. Summer patterns, located in the middle left of the SOM, show the most extensive
cloud cover for the central Arctic, ranging around 75%. The projection of cloud features on a
geographic map assist in understanding the reasons for observed cloud patterns. Variability
over the central Arctic, for example, is primarily driven by the seasonality in the low-level
stratus, which is related to the availability of moisture. In summer when the surface is melt‐
ing, evaporation increases and clouds are more abundant than in the much colder winter
months when evaporation is small (Beesley and Moritz 1999). The Atlantic sector, in con‐
trast, is frequently overcast, reflecting abundant moisture and intense cyclonic activity, par‐
ticularly during the winter season. Large cloud fractions over the Scandinavian Peninsula in
winter patterns (right side of the map) are due to orographic uplift at the continental boun‐
dary. Heavy overcast is also seen along the land-ocean boundary in the summer patterns (in
the middle left of the SOM). These areas of increased cloudiness likely reflect summer cy‐

Developments and Applications of Self-Organizing Maps258



clonic activity in connection with the development of the summer Arctic frontal zone. This
discontinuity is sustained by differential heating between the Arctic Ocean (at temperatures
kept at the melting point) and snow-free land, as well as sharpening of the baroclinicity by
coastal orography (high topography can “trap” the cold ocean air). Increased summer cloud
fraction over Eurasia and northwestern Canada likely also reflects increased cyclogenesis
over land areas and more abundant convective clouds, in contrast to the winter months that
are dominated by low stratus.

Figure 3. Node- averaged cloud fraction (in %) ascribed to a corresponding SLP pattern of the master SOM.

Another related variable that is highly dependent on cloud characteristics is the downward
longwave (infrared) radiation flux (DLF). This is an important quantity for studies of the
Arctic energy balance, as no energy is received from the sun during the 6-month polar night.
Figure 4 shows cluster-averaged downward longwave flux (DLF), corresponding to each
circulation pattern on the master SOM (Fig 1). The spatial pattern of the mean DLF is similar
to the distribution of total cloud fraction (Fig 3), underscoring the close relationship between
DLF and cloud properties. During the cold season (patterns on the right of the matrix) the
highest values of DLF occur in the Atlantic sector, where cloud cover is extensive both hori‐
zontally and vertically, water vapor is abundant, and temperatures are relatively warm. The
surface elevation of central Greenland is above much of the cloud cover, which along with
low temperatures and humidity values, results in low DLF values in all clusters and sea‐
sons. Higher values of DLF for the clusters on the left side of the map, corresponding to the
summer patterns, are related to seasonal increase of surface temperature and atmospheric
water vapor.
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Figure 4. Node-averaged downward longwave flux (W m-2) ascribed to each individual SLP pattern on the master
SOM.

In addition to investigations of relationships between circulation patterns and correspond‐
ing atmospheric variables, the SOM analysis also allows an assessment of changing tenden‐
cies for the atmosphere to reside in particular circulation patterns. These kinds of questions
are relevant to climate-change studies (for example, whether summer-like patterns are be‐
coming more frequent as the climate warms, or whether the relative locations of high and
low pressure centers are shifting.

The top two panels of Figure 5 display the percentage of winter and summer days that fall
into each node during the late 20th century. Corresponding to the histograms shown in Fig‐
ure 2, it is clear winter days tend to exhibit the circulation patterns along the right side of the
master SOM, while summer patterns occur in nodes in the center left. By calculating fre‐
quencies of occurrence (FO) in two time periods, one can determine whether the atmospher‐
ic circulation patterns are shifting. We present an example in the lower panel of Figure 5 that
assesses changes in the FOs of each cluster on the master SOM from the late 20th century
(1971-1999) to the late 20st century (2070-2089). Black solid (dashed) contours show areas of
significantly (> 95% confidence) higher (lower) difference in frequency of occurrence. The
range in a 95% confidence interval,

±1.96
p1(1 − p2)

n2
+

p2(1 − p2)
n2

,
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where  p1(1-p1)/n1  and  p2(1-p2)/n2  are  variances  of  two  independent,  random,  binomial
processes,  p1  and p2  are the expected frequencies of occurrence for the two time periods
(p=1/35), n1  is the number of samples in the first data set,  and n2  is the number of sam‐
ples in the second data set (for more details see Cassano et al., 2007). Because this statis‐
tical test does not account for the effects of serial correlation in the daily SLP fields, and
thus likely overestimates the degrees of freedom, we determine an approximation for the
effective degrees of freedom by dividing the number of samples of the two data sets by
7. This value is determined from the serial correlation of the SLP time series, which indi‐
cates  that  the  atmosphere  tends  to  reside  in  a  circulation  regime  for  about  one  week.
This  procedure  decreases  the  degrees  of  freedom,  thus  establishing  a  higher  threshold
for determination of a significance level.

 

Figure 5. Frequency of occurrence (FO) of winter (DJF) days (upper left) and summer (JJA) days (upper right) in
CCSM3. Frequencies are presented as percent of total days of the 1971-1999 period that map into each node of the
master SOM. Change in FO from the late 20th century to the late 21st century is shown in bottom panel. Significantly
larger (smaller) differences are indicated with solid (dashed) lines, with a level of confidence above 95%.

A pronounced, statistically significant increase is apparent in patterns with low pressure
over the central Arctic (left of the master SOM, Figure 1), as well as those with strong high
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pressure across the western Arctic region and strong low pressure in the Atlantic sector and
eastern Arctic (upper right SOM). The clusters in the middle, mostly dominated by a weak
or a moderate high pressure over the central Arctic, decrease significantly. Taken together
these changes represent a decrease in pressure over the central Arctic in this greenhouse-
gas-forced model projection, but SOMs and their corresponding FOs allow for a more de‐
tailed, quantified look at regional variability in pressure change.

4.2. Attribution of regional climate change

This section demonstrates how the SOM technique can be adapted to better understand
what processes are driving the change in a variable of interest. Cassano et al. (2007) formu‐
lated a method that separates the factors contributing to a temporal change in a variable of
interest into the portion caused by a change in the FO of daily maps in a cluster, the portion
due to a change in the cluster-mean value of the physical variable, and a third due to a com‐
bination of the two effects. The equation is given as follows:

1
( )( )

N

i i i i i i
i

x x x f f x f
=

D = + D + D -å (1)

where Δx is the total change in a variable between two different time periods, xi is the clus‐
ter-averaged variable in the initial time period, fi is the FO of the daily maps in cluster i dur‐
ing the initial period, Δfi is the change in FO for cluster i between the two periods of interest,
Δxi is the change in the cluster-averaged variable between the two periods of interest, and N
is the total number of clusters (N = 35 in this study). Expanding (1):

1( ).N
i i i i i itx x f f x x fD = = D + D + D Då (2)

The first term, xiΔfi  relates changes in the pressure field to changes in the FO of circula‐
tion  patterns.  It  shows a  portion  of  the  total  change  owing to  shifts  in  the  frequencies
with which daily SLP fields reside in the patterns depicted in the SOM. A change in this
distribution represents  a  change in  the surface  circulation,  and thus we loosely  refer  to
this  contribution  as  the  “dynamic  factor.”  The  second  term,  fiΔxi,  relates  to  temporal
changes in the variable of interest averaged over all days that belong to a cluster. In the
case of  cloud fraction,  changes of  this  type are likely caused mainly by thermodynamic
effects – such as changes in the horizontal and vertical distribution of water vapor, vary‐
ing moisture and temperature gradients, or changes in evaporation—thus we refer to this
contribution as the “thermodynamic factor” (Cassano et  al.  2007;  Skific  et  al.  2009a;
2009b).  The third term in Eq.  2  represents  the contribution from the interaction of  both
changing  pattern  frequency  and  the  cluster-averaged  variable.  This  term  tends  to  be
small compared to the other two.
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(b) 

Figure 6. a: Annual and seasonal changes in total cloud fraction (%) in the region north of 70°N in the CCSM3 from
the late 20thcentury (1971-1999) to the late 21st century (2070-2089). Contributions to the total change from the dy‐
namic, thermodynamic, and combined terms are also shown b: Annual and seasonal changes in downward longwave
flux (DLF, in W m-2) over the region north of 70°N in the CCSM3 from the 20th century (1971-1999) to the late 21st

century (2070-2089). Contributions to the total change from the dynamic, thermodynamic, and combined terms are
also shown.

We therefore  utilize  the  derived master  SOM and the  aforementioned procedure  to  de‐
termine  a  portion  of  a  total  change  in  cloud  fraction  (Figure  6a)  and  DLF  (Figure  6b)
from the late 20th century to the late 21st century due to dynamics, thermodynamics, and
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their combination. The experiment focuses on both the annual and seasonal changes. To‐
tal  cloud fraction north  of  70ºN is  projected to  increase  by 6.5% by the  end of  the  21st

century, with largest changes expected to occur in the fall and winter (increase in cloud
fraction  of  about  2%).  The  figures  show  that  for  both  variables,  the  increase  is  caused
mainly by the thermodynamics factor,  while the contribution to cloud and DLF changes
from shifting FO of particular pressure patterns is relatively small. Thermodynamic proc‐
esses driving the cloud changes are likely related to local temperature changes and their
effects  on  cloud  formation,  such  as  changes  in  precipitable  water  that  would  lead  to
changes  in  cloud  amount  even  under  the  same  dynamics,  changes  in  the  temperature
and humidity  profiles,  and changes  in  relative  humidity  owing  to  changes  in  evapora‐
tion.  The  largest  increase  in  cloud  fraction  in  this  model  run  occurs  in  the  fall  season
and smallest  in  the  summer (Figure  6a).  These  changes  are  driven by the  projected in‐
creases  in  surface  temperature,  which  are  strongest  in  fall  and  winter.  It  also  suggests
that the seasonality in cloud cover over the Arctic is primarily driven by low-level stra‐
tus (Serezze and Barry 2005),  as they constitute about 80% of the total cloud cover over
the central Arctic Ocean. They are greatly affected by the changes in surface temperature
through its affect on the stratification of the atmospheric boundary layer. Fall and winter
seasons have experienced the largest  changes in surface temperature in connection with
the  loss  of  sea  ice  and  resulting  increased  absorption  of  solar  energy  into  the  Arctic
Ocean.

DLF increases most in the winter (by 12.6 W m-2, Figure 6b), which points to the sensitivity
of DLF to surface temperature, water vapor, and cloud cover. Small summer increases in
both cloud amount and DLF because surface temperature is fixed at the melting point while
sea ice melts, and a heavy overcast of low clouds persists through the melt season. These
relatively constant conditions dictate small changes in DLF. Because the model projects only
a small increase in summer surface temperature by the end of the 21st century, it is expected
that cloud fraction and DLF will not increase substantially either.

Changes in both cloud fraction and DLF are driven mainly by processes that occur for a
fixed circulation regime, which implies that the same synoptic pattern with similar pressure
gradients will generate more clouds and thus a larger DLF occur by the end of the 21st centu‐
ry. Because clouds are an important element of Arctic energy budget, these changes will
feed back on surface temperatures, leading to even higher surface temperatures.

5. Conclusion

Here we present examples of our application of SOMs to understanding changes in the Arc‐
tic climate system as greenhouse gas concentrations continue to increase. The purpose of
this exercise is to illustrate the power and adaptability of the SOM technique for a variety of
scientific applications. Understanding and possibly predicting potential drivers of the Arctic
climate change has great implications for society as a whole, such as sea-level rise, mid-lati‐
tude weather patterns, marine and terrestrial productivity, to name only a few. Linkages be‐
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tween the dramatic changes within the Arctic and the global system remain poorly
understood in present conditions, thus the uncertainty regarding future changes will remain
an important focus for global-change research.

Changes in Arctic cloud fraction and downward longwave flux, and mechanisms responsi‐
ble for those changes, are presented through the rather simple and conceptually appealing
neural network technique of SOMs, introduced in Cassano et al. (2007), and further elaborat‐
ed in Skific et al. (2009a, 2009b). Given the recent and rapid changes of the Arctic climate
system and uncertainties associated with many climate feedbacks over this region, this tech‐
nique offers a valuable contribution toward attributing these changes to either shifts in the
dominant atmospheric circulation patterns or to thermodynamically driven changes in the
set of variables associated with them.
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