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1. Introduction

The hippocampus plays a central role to form new episodic memory in various species in‐
cluding humans (Scoville and Milner, 1959). The hippocampal neurons seem to process vari‐
ety of information, such as spatial location (Wills et al., 2010), temporal information
(Mitsushima et al., 2009), and emotional state (Chen et al., 2011) within specific episodes
(Komorowski et al., 2009; Gelbard-Sagiv et al., 2008). However, the critical mechanism how
to sustain a piece of specific memory and how to organize the memory fragment to form
"episodes" is still largely unknown.

Since selective blockade of long-term potentiation (LTP) induction by NMDA receptor an‐
tagonist impairs hippocampal learning (Morris et al., 1986), LTP has been considered as a
cellular model of hippocampal memory (Bliss and Lømo, 1973). In 2006, in vivo field EPSC
recording study showed that hippocampal learning induces LTP in CA1 region of hippo‐
campus (Whitlock et al., 2006). Further, we revealed that learning-dependent synaptic deliv‐
ery of AMPA receptors into the CA3-CA1 synapses is required for hippocampal learning
(Mitsushima et al., 2011). Since there is no tetanus electrode in brain, endogenous trigger
and/or the mechanism inducing the learning-dependent LTP were still unknown.

As an endogenous trigger of LTP, we hypothesized acetylcholine (ACh) release in the hip‐
pocampus that increases during learning or exploration in freely moving animals. In fact,
without electrode for tetanus stimulation, bath treatment of ACh agonist not only induces
specific bursts (Fisahn et al., 1998) but also forms LTP in CA1 region of hippocampal slices
(Auerbach and Segal 1996). Moreover, bilateral intra-hippocampal treatments of muscarinic
receptors impair hippocampal learning (Herrera-Morales et al., 2007; Rogers and Kesner
2004). In this review, we focused on in vivoACh release in the hippocampus in order to im‐
prove our understanding of sex specific and steroids-dependent mechanism of hippocampal
function.

© 2012 Mitsushima; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Role of ACh in the hippocampus

A number of studies suggest that AChplays an important role in orchestrating major hippo‐
campal functions (Fig. 1). In behavioural studies, ACh release increases during learning (Ra‐
gozzino et al., 1996; Stancampiano et al., 1999; Hironaka et al., 2001) and is positively
correlated with learning performance (Gold, 2003; Parent and Baxter, 2004). Bilateral injec‐
tions of scopolamine into the dorsal hippocampus impair spatial learning ability (Herrera-
Morales et al., 2007), suggesting that muscarinic ACh receptors mediate the formation of
spatial memory. At the network level, ACh generates a theta rhythm (Lee et al., 1994) that
modulates the induction of long-term potentiation (LTP) in hippocampal CA1 neurons (Hy‐
man et al., 2003). Studies exploring a genetic deficiency of muscarinic ACh receptors (M1or
M2) further show the impairment of LTP in the CA1 region (Seeger et al., 2004; Shinoe et al.,
2005). At the cellular level, both pyramidal and non-pyramidal neurons in the hippocampal
CA1 area receive direct cholinergic afferents mediated by muscarinic receptors (Cole and
Nicoll, 1983; Markram and Segal, 1990; Widmer et al., 2006). In vitro studies showed that
bath application of carbachol, a cholinergic agonist, induces LTP in CA1 pyramidal neurons
without electrical stimulus, suggesting that ACh in the hippocampus plays a principal role
in the synaptic plasticity of the CA1 pyramidal neurons (Auerbach and Segal, 1996). Fur‐
thermore, a recent study revealed an intracellular mechanism of ACh: focal activation of
muscarinic ACh receptors in one CA1 pyramidal neuron induces Ca2+ release from inositol
1,4,5-trisphosphate-sensitive stores to induce LTP (Fernández de Sevilla, 2008).

Not only is ACh critically involved in synaptic plasticity, ACh release in the hippocampus is
also responsible for neurogenesis in the dentate gyrus. Thus, neurotoxic lesions of forebrain
cholinergic neurons or long-term scopolamine treatment significantly decreases the number
of newborn cells in the dentate gyrus, approximately 90% of those were also positive for the
neuron-specific marker NeuN (Mohapel et al., 2005; Kotani et al., 2006).

3. Monitoring of in vivoACh release

Cholinergic neurons within the basal forebrain provide the major projection to the neocortex
and hippocampus (Mesulam, et al., 1983). Cortical regions receive cholinergic inputs mainly
from the nucleus basalismagnocellularis(NBM) or the diagonal band of Broca, whereas the
hippocampus receives cholinergic inputs mostly from the medial septum and horizontal
limb of the diagonal band of Broca (Mesulam, et al., 1983). Because the cholinergic projec‐
tions are necessary to maintain learning and memory (Perry et al., 1999, Sarterand Parikh,
2005), we hypothesized that in vivo monitoring of ACh release in the hippocampus is neces‐
sary to elucidate learning function. To measure ACh release, we have performed in vivo mi‐
crodialysis studies in freely moving rats. Briefly, a microdialysis probe with a semi-
permeable membrane (1.0 mm in length) was inserted into a specific brain area via a
surgically pre-implanted guide cannula. We perfused the inside of the membrane with arti‐
ficial cerebrospinal fluid, and assayed ACh in dialysates using a high-performance liquid
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chromatography system. As a result, we were successful in determining an in vivo ACh re‐
lease profile in selected brain areas in freely moving rats (Figure 2).

septo-hippocampal
cholinergic neurons

ACh release

LTP induction   Theta oscillation    Neurogenesis

Hippocampus

Exposure to episode

Figure 1. Schematic illustration of septo-hippocampal cholinergic neurons in rats. Exposure to episode induces ACh
release in the hippocampus that activates hippocampal functions. Scopolamine induces amnesia in many mammalian
species, including humans. For example, many people remember where they were and what they were doing when
serious events occur. ACh, acetylcholine. LTP, long-term potentiation.
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Figure 2. Experimental setup of in vivo microdialysis system. We examined in vivo ACh release and spontaneous loco‐
motor activity in the same subject.
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4. Sex differences inACh release

We first reported sex-specificACh release in the hippocampus in 2003 (Mitsushima et al.,
2003). Gonadally intact male rats consistently show a greater ACh release in the hippocampus
compared with diestrous or proestrous female rats, suggesting a sexually dimorphic septo-
hippocampal cholinergic system. Moreover, we found that sex-dependent ACh release also
shows a time-dependent 24-h profile: ACh release in the hippocampus was relatively similar
in the light phase, but consistently lower in female compared with male rats in the dark phase
(Masuda et al., 2005). Although ACh release clearly showed a daily rhythm in female rats, fe‐
males exhibited smaller amplitude of daily change than males. However, it is necessary to rule
out the possibility that the sex difference in ACh release reflects the differences in spontane‐
ous locomotor activity levels. By simultaneous monitoring of ACh levels and spontaneous lo‐
comotor activity, we revealed a real sex difference in the "ACh release property" (Figure 3,
Mitsushima et al., 2009): males showed higher ACh release than females while displaying sim‐
ilar levels of behavioural activity. Although female rats showed slightly higher overall sponta‐
neous activity than intact male rats, male rats showed higher ACh release than female rats.
Simple linear regression analysis was used to evaluate the relationship between ACh levels
and spontaneous locomotor activity (Figure 3). Pearson's correlation coefficient (r) or slope of
the best fit line was calculated for each rat, and sex difference was evaluated using ANOVA.
We found that the data from intact males had a steeps lope of fit line, while the data from fe‐
males had a gentle slope. These results suggest that sex-specific ACh release is not due to the
change in spontaneous behavior, but due to actual differences in the ACh release property in
gonadally intact rats (Mitsushima et al., 2009).
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Figure 3.  Sex specific  ACh release  property  in  behaving rats.  Representative  data  from a male  (#102)  and a  fe‐
male (#175) rat were shown. Simple linear regression analysis revealed a sex-specific "ACh release property." Male
rats showed higher ACh release than females undergoing similar behavioural  activity levels.  Although both sexes
showed a high correlation, male rats showed a steeper slope than female rats in the hippocampus (see Mitsushi‐
ma et al., 2009). Conversely, in neocortical area, females show higher ACh release and correlation than males (see
Takase et al., 2009)
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To evaluate neuroanatomical sex difference in the septo-hippocampal cholinergic neurons,
we performed immunocytochemistry. Stereological analysis showed that no sex difference
was observed in the number and the distribution of choline acetyltransferaseimmunoreac‐
tive(ChAT-ir) cells in the medial septum or horizontal limb of diagonal band (Takase et al.,
2009). Since the number of septo-hippocampal cholinergic neurons does not appear to be in‐
volved in the sex difference in ACh release in the hippocampus, we hypothesized that sex-
specific neural circuits or substance(s) may control the endogenous release.

5. Neural control of septo-hippocampal cholinergic neurons

Neurotransmitters may be involved in expression of the sex difference in ACh release. For
instance, dopaminergic neurons in the ventral tegmental area (A10) have been shown to
control septo-hippocampal cholinergic neurons through the A10-septal dopaminergic path‐
way in male rats(Swanson, 1982; Nilsson et al., 1992; Yanai etal., 1993). A neuroanatomical
study suggested that dopamine D2receptors rather than D1 receptors mediate the dopami‐
nergic control of septo-hippocampal cholinergic neurons (Weiner et al., 1991). It has been
shown that opiatergic neurons also control septo-hippocampal cholinergic neurons in male
rats (Mizuno and Kimura, 1996); the injection of naloxone, a μ opioid receptor antagonist,
into the medial septum markedly increased ACh release in the hippocampus, while a μ
opioid receptor agonist decreased its release (Mizuno and Kimura, 1996). In contrast, GABA
seems to inhibit septo-hippocampal cholinergic neurons; the injection of muscimol, a GABA
receptor agonist, into the medial septum decreased ACh release in the hippocampus, while
the injection of bicuculline, a GABA receptor antagonist, increased it (Moor et al., 1998). Al‐
though the neural systems are still unknown for female rats, it seems likely that neural con‐
trol of septo-hippocampal cholinergic neurons is involved in the expression of sex
differences in ACh release. It will be important to investigate these neural systems in female
rats in future studies.

6. Circulating sex steroids activate ACh release

Not  only  neurotransmitters,  but  also  circulating  sex  steroids,  may  regulate  cholinergic
neurons. In fact,  neuroanatomical studies have demonstrated that,  in intact male and fe‐
male rats, a number of dopaminergic neurons in the A10 region have androgen receptor
immunoreactivity (Kritzer,1997) and 45-60% of cholinergic neurons in the medial septum
have  estrogen  receptor  α  immunoreactivity  (Miettinen  et  al.,2002;  Mufson  et  al.,  1999).
Taken together with the fact that female rats show a greater circulating estrogen concen‐
tration than male rats (Shors et al., 2001; Mitsushima et al., 2003b) and male rats show a
greater circulating androgen concentration than female rats (Falvo et al.,  1974; Rush and
Blake, 1982), it is possible that cholinergic neurons are affected by sex steroids differently
in male and female rats.
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The activational effects of sex steroids on cholinergic neurons have been suggested by previ‐
ous neuroanatomical and neurochemical findings. For example, male gonadectomy decreas‐
es the density of cholinergic fibers in the dorsal hippocampus, while testosterone
replacement in gonadectomized male rats maintains fibre density (Nakamura et al., 2002).
Also, estradiol increases the induction of choline acetyltransferase in the basal forebrain in
gonadectomized female rats (Luine et al., 1986; McEwen and Alves, 1999). A previous in vi‐
tro study demonstrated that estradiol treatment increases both high affinity choline uptake
and ACh synthesis in basal forebrain neurons (Pongrac et al., 2004). Furthermore, we recent‐
ly reported an activational effect of sex steroids on the maintenance of stress-induced ACh
release in the dorsal hippocampus in immobilized rats (Mitsushima et al., 2008). These find‐
ings suggest the activational effect of sex steroids on ACh release in the dorsal hippocam‐
pus, and we presented conclusive evidence of activational effects on dynamic ACh changes
in behaving animals. To analyze the precise effects of sex steroids on ACh release, we simul‐
taneously analyzed ACh release and spontaneous locomotor activity to determine the pre‐
cise effect of sex steroids. Simultaneous analysis revealed that gonadectomy severely
impaired ACh release without affecting spontaneous locomotor activity levels. Moreover,
the activational effect on ACh release was apparent, especially during the active period, ie
the dark phase, but not during the rest period, the light phase (Figure 4 and Mitsushima et
al., 2009). Our results provide the first evidence that the sex-specific 24-h profile of ACh re‐
lease is highly dependent on the presence of sex steroids.
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Figure 4. ACh release in the hippocampus is time-dependent, sex-specific, and hormone-dependent. Time-dependent
ACh release may transmits the information such as time of day. Experiments were performed 2 weeks after gonadec‐
tomy or steroid replacement. Horizontal black bars indicate the dark phase. Gdx, gonadectomized. +T, testosterone-
priming. +E, estradiol-priming. The number of animals was 6 to 8 in each group. 19h to 5h is the dark phase, shown as
black bars on the x axes.(see Mitsushima et al., 2009)

Moreover, we found that after gonadectomy, the positive correlation between ACh release
and locomotor activity levels was severely impaired, suggesting that hippocampal function
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may not always be activated at low sex steroid levels (Mitsushima et al., 2009). This there‐
fore suggests that learning impairment in gonadectomized rats (Gibbs and Pfaff, 1992; Dan‐
iel et al., 1997; Kritzer et al., 2001; Markowska et al., 2002; Luine et al., 2003) may be due to
insufficient activation of hippocampus at the appropriate time. Because the replacement of
sex-specific steroids restored the high positive correlation between ACh release and activity
levels, the correlation appears to depend on the presence of sex steroids. These results sug‐
gest that circulating sex steroids strengthen the coupling between spontaneous behaviour
and ACh release (Mitsushima et al., 2009).

7. Sexual differentiation produces the sex-specific activational effect

The  activational  effect  of  sex  steroids  was  sex-specific  (Figure  4).  Testosterone  replace‐
ment in gonadectomized female rats failed to increase ACh release to levels seen in go‐
nadectomized  testosterone-primed  male  rats.  Similarly,  estradiol  replacement  was
unable  to  restore  ACh release  in  gonadectomized male  rats.  Moreover,  estradiol  consis‐
tently  increases  N-methyl-D-aspartate  receptor  binding  and  spine  density  in  the  CA1
area of  gonadectomized female rats,  although the treatment fails  to increase these same
parameters  in  gonadectomized  male  rats  (Romeo  et  al.,  2005;  Parducz  et  al.,  2006).
These results  suggest  that  sex-specific  steroids are important  for maintaining hippocam‐
pal  function.  Based  on  our  data,  we  hypothesized  that  the  action  of  sex-specific  ste‐
roids  is  due to  neonatal  sexual  differentiation rather  than the  activational  effects  of  sex
steroids in adult  rats.  Moreover,  in  the latest  study,  we found that  neonatal  androgeni‐
zation  in  females  increased  ACh  release  to  resemble  that  of  normal  males  without  af‐
fecting  spontaneous  activity  levels  (Mitsushima  et  al.,  2009).  These  results  indicate  an
organizational  effect  on sex-specific  ACh release  in  behaving rats,  and support  current‐
ly accepted theories of  sexual  differentiation.

Because testosterone can be aromatized to estradiol in the forebrain, neonatal sex steroids
activate both estrogen and androgen receptors (McEwen, 1981). In our study, both testoster‐
one and estradiol treatment in neonatal female pups masculinized ACh release profile in
adults, suggesting an estrogen receptor-mediated masculinization of septo-hippocampal
cholinergic systems (Mitsushima et al., 2009). These results are consistent with the previous
finding that testosterone or estradiol treatment in neonatal female pups improves their adult
spatial performance, whereas neonatal gonadectomy in male pups impairs the performance
(Williams and Meck, 1991). In contrast, dihydrotestosterone treatment failed to masculinize
the ACh release profile. Although dihydrotestosterone has been classically considered as a
prototypical androgen receptor agonist, a metabolite of dihydrotestosterone, 3β-diol, has a
higher affinity for estrogen receptor β (Lund et al., 2006). Therefore, dihydrotestosterone
and its metabolites may stimulate both androgen receptor and estrogen receptor β, whereas
estradiol stimulates estrogen receptor α and β. Considering the action of sex steroids and
their metabolites, estrogen receptor α may mediate the organizational effect on the septo-
hippocampal cholinergic system.

Hippocampal Function and Gonadal Steroids
http://dx.doi.org/10.5772/52713

71



8. Interaction with environmental conditions

Various  environmental  conditions  may  interact  with  the  activational  effects  of  sex  ste‐
roids.  First,  we  reported  an  interaction  between  stress  and  sex  steroids.  Although  sex
steroids  did  not  show  activational  effects  on  baseline  levels  of  ACh  release,  sex  ste‐
roids  clearly  activated the  immobility  stress-induced ACh release  response.  In  addition,
we  found  that  the  contributing  sex  hormone  effect  to  maintain  the  ACh  release  re‐
sponse  was  sex-specific:  testosterone  enhanced  the  ACh  release  response  in  male  rats,
while  estradiol  maintained  the  response  in  females  (Mitsushima  et  al.,  2008).  Second,
we reported an interaction between the  light/dark cycle  and sex  steroids.  Although sex
steroids  slightly  enhanced  ACh  release  during  the  light  phase,  the  activational  effects
were  much  stronger  during  the  dark  phase  (Figure  4).  Considering  the  fact  that  the
time-dependent  activational  effect  was  also  sex-specific  and  hormone-dependent,  envi‐
ronmental conditions seem to have complicated interactions with sex steroids (Mitsushi‐
ma et  al.,  2009).

Some other environmental effects may affect the basal forebrain cholinergic system. Envi‐
ronmental  conditions,  such  as  complex  or  restricted(Brown,  1968;  Smith,  1972),enriched
or impoverished (Greenough et  al.,  1972),  social  or isolated conditions (Hymovitch,1952;
Juraska et al., 1984; Seymoure et al., 1996), seem to affect spatial learning ability in a sex-
specific manner. For example, male rats exhibited superior performance in learning maze
tests  compared with  female  rats  if  they were  housed socially  (Einon,  1980).  But  if  they
were  housed in  isolation,  female  rats  exhibited  a  performance  superior  to  that  of  male
rats (Einon, 1980). Although few studies were performed on the relationship between the
sex-specific environmental effects and ACh release in the brain, we have reported that 4-
day housing in a small cage attenuates the ACh release in the hippocampus in male rats
(Mitsushima  et  al.,  1998),  but  not  in  female  rats  (Masuda  et  al.,  2005).  Taken  together,
these results suggest that housing conditions contribute to the sex difference in ACh re‐
lease and spatial learning ability.

Feeding conditions  after  weaning also  affect  spatial  learning ability.  If  fed pelleted diet
(i.e.  standard  laboratory  diet),  male  rats  show  performance  superior  to  that  of  female
rats  (Beatty,  1984;  Williams and Meck,  1991).  But  when fed powdered diet,  female rats,
but  not  male  rats,  showed  improved  performance  (Endo  et  al.,1994;  Takase  et  al.,
2005a).  In  our  study,  it  was  found  that  feedingwith  powdered  diet  after  weaning  in‐
creased ACh release  in  the  hippocampus in  female  rats,  but  not  in  male  rats(Takase  et
al.,  2005b).  24-HACh  release  in  female  rats  fed  powdered  diet  was  as  high  as  that  in
male  rats  fed  either  powdered  or  pelleted  diet,  showing  no  sex  difference.  Since  feed‐
ing  with  powdered  diet  improved  spatial  learning  ability  in  female  rats  (Endo  et  al.,
1994),  the  increase  in  the  ACh  release  in  the  hippocampus  in  female  rats  fed  pow‐
dered diet may partly contribute to this effect.  Our findings provide evidence that envi‐
ronmental  conditions  such  as  housing  or  feeding  may  play  a  role  in  sex-specific
hippocampal function.
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9. Aging and Alzheimer's disease

Activational effects of sex steroids are very important in humans, since circulating sex ste‐
roid levels decline with age. A reduction in ACh synthesis is known as a common feature of
Alzheimer's disease (Coyle et al., 1983), afflicting more than 18 million people worldwide
(Ferri et al., 2005; Mount and Downtown 2006). The disease is the most common form of de‐
mentia (Cummings 2004) and is frequently accompanied by insomnia, poor concentration,
and day/night confusion (McCurry et al., 2004; Starkstein et al., 2005). The centrally active
acetylcholinesterase inhibitor (donepezil) is effective in not only mild, but also moderate to
severe cases (Petersen et al., 2005; Winblad et al., 2006), proving the importance of endoge‐
nous ACh in humans. In addition, women are twice as likely to develop the disease (Swaab
and Hofman 1995), and estradiol seems to play a protective role (Zandi et al., 2002; Norbury
et al., 2007). A recent study using single photon emission tomography showed that estrogen
replacement therapy in healthy post-menopausal women increases muscarinic M1/M4 recep‐
tor binding in the hippocampus (Norbury et al., 2007). Conversely in men, testosterone but
not estradiol seems to play a protective role (Moffat et al., 2004; Rosario et al., 2004) and tes‐
tosterone supplementation clearly improved hippocampal-dependent learning deficits in
men with Alzheimer's disease (Cherrier et al., 2005). These results suggest a sex-specific acti‐
vational effect of gonadal steroids on the cholinergic system in humans. Thus, there are
many similarities between the rat model and human studies, supporting the idea that gona‐
dal steroid replacement therapy or an increase in bioavailability is beneficial when there is a
subthreshold level of the hormone. Based on the neonatal sexual differentiation of the septo-
hippocampal cholinergic system, we may have to search for sex-specific clinical strategies
for Alzheimer's disease.

10. Conclusions

Gonadally intact male rats consistently show a greater ACh release in the hippocampus
compared with diestrous or proestrous female rats. The activational effects of sex steroids
are important for sex-specific ACh release in the hippocampus, since impaired ACh release
in gonadectomized rats does not show sex-specific effects. Neonatal treatment with either
testosterone or estradiol clearly increased ACh release in female rats, suggesting neonatal
sex differentiation of septo-hippocampal cholinergic systems. Moreover, environmental ef‐
fects on the basal forebrain cholinergic system seem to be sex-specific; housing in a small
cage attenuated ACh release in male ratsonly, while feeding with powdered diet after sexual
maturation increases ACh release in female ratsonly. These results indicate that: (i) sex-spe‐
cific circulating sex steroids are necessary for sex-specific ACh release, (ii) neonatal activa‐
tion of estrogen receptors is sufficient to mediate masculinization of the septo-hippocampal
cholinergic system, and (iii) sex-specific effects of environmental conditions may suggest an
interaction with the effect of sex hormones.

Understanding the importance of gonadal steroids and the sex-specific effects in cognitive
disorders such as Alzheimer's disease is essential for real improvementsin therapy.
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