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1. Introduction 

Design of new food products is one of the most important tasks in the food industry. 

Improving or controlling texture of foodstuffs leads to products with advanced 

functionalities e.g. creation of nursing-care foods, ‘’ready-to swallow foods’’, soft or hard 

gels etc. (Funami, 2011). 

Texture change can be achieved by adding hydrocolloids that in small quantities bind large 

amounts of water and can then control both structure and texture. Starches belong to the 

same category of hydrocolloids, although they are used in a wide range of products either as 

raw materials or as food additives. Starches can differ with respect to the amylose content 

depending on their origin, or can be structurally modified. Native starches could have 

negative aspects such as gel syneresis, retrogradation, breakdown, cohesive, rubbery pastes 

and undesirable gels formation (Whistler & BeMiller, 1997), but this is not the case with 

modified starches. Moreover, modified food starches are less expensive and are more 

widely available than gums or other food stabilizers. A way to overcome shortcomings of 

native starches is their blending with polysaccharide hydrocolloids. Native or modified 

starches, and non-starch hydrocolloids are increasingly important ingredients in the modern 

health-conscious food industry (Techawipharat et al., 2008), considering that specific starch 

types such as resistant starch can be considered insoluble fibers as well. 

This chapter aims at highlighting recent research in the field of viscoelastic properties of 

starches and their mixtures with some selected hydrocolloids. Furthermore, these 

interactions will be linked to the final rheological characteristics of specific products aimed 

at successful product development. 

The control of texture in real foods with several ingredients can be achieved through 

viscoelasticity measurements of carbohydrate mixtures at low concentrations. This research 
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can result in new products development that aims at specific texture characteristics. 

Examples are focused on oscillatory experiments and in some case correlations to viscous 

properties are presented. The role of rheology in current research is further shown and 

discussed through these examples. 

2. Oscillatory rheological method and hydrocolloids behavior 

Among different techniques used to distinguish between the solid and liquid-like 

characteristics of a food colloid, the best technique is to use an oscillatory rheological 

method (Dickinson, 1992). In an oscillatory rheological experiment, both stress and strain 

commonly present a sinusoidal variation. This is the most popular method to characterize 

viscoelasticity, since relative contributions of viscous and elastic response of materials can 

be measured. The cycle time, or frequency of oscillation, defines the timescale of these tests. 

By observing material response as a function of frequency, material can be tested at different 

timescales. The observation of material response at different frequencies is also referred to 

as mechanical spectroscopy (Stanley et al., 1996). Linear viscoelasticity is known as the 

region where stress and strain waves are set at such low values that stress is proportional to 

strain. This type of tests is also known as small amplitude oscillatory shear (SAOS). The 

relationship between stress and strain is then described and storage, loss modulus, complex 

shear modulus as well as dynamic viscosity can be measured. The storage dynamic 

modulus (G’) is a measure of the energy stored in the material and recovered from it per 

cycle while the loss modulus (G’’) is a measure of the energy dissipated or lost per cycle of 

sinusoidal deformation (Ferry, 1980, Stanley et al., 1996 ). The ratio of the energy lost to the 

energy stored for each cycle can be defined by tanδ. 

The viscoelastic behavior of a simple or more complex structure can be determined in the 

above way. Furthermore, as structure is not disrupted, changes including sol-gel transition, 

gel curing, aggregation, flocs creation etc. can be monitored. Generally speaking, rheological 

properties could be of high interest in a) product quality characterization b) process design 

and flow conditions analysis (e.g. pump sizing, filtration, extrusion etc.) c) design of new 

foodstuffs d) basic research on ingredients’ interactions. 

According to Roos-Murphy (1984) solutions and gels belong to the categories of 

entanglement solutions, weak gels and strong gels. Hydrocolloids including starch can 

belong to all of the three categories revealing the wide spectrum of structures they can adopt 

according to their own natural state and the environmental conditions found. 

Entanglement solutions (e.g. guar gum solutions) present a strong dependence of both 

storage and loss modulus on frequency. Weak gels behavior (e.g. xanthan gum) is 

characterized by gel-type mechanical spectrum, whereas strong gels (e.g. amylopectin, 

amylose gels) present high storage modulus values irrespective of frequency, as junction 

zones among macromolecules are stable on a relatively long time scale. The spectrum of 

hydrocolloids can vary at different concentrations.  

When at low frequency the loss modulus G’’ is higher than the storage modulus G’, both 

parameters vary sharply with frequency: G’’(ω) and G’(ω2). This behavior is said to be 
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typical of a liquid-like material. As frequency increases, G’(ω) crosses G’’(ω), the response of 

the material beyond this cross-over frequency is said to be solid-like. Entanglements of 

macromolecular solutions can result in such behavior. When G’ is higher than G’’ over most 

of the frequency range investigated, a weak gel behavior is observed due to the formation of 

a weak three-dimensional network of ordered chain segments.  

Thus, viscoelastic structures of hydrocolloids may differ considerably. So, recent data about 

their behavior in mixtures with starch or model foods is discussed. 

3. Starch under heating 

Dynamic rheological tests allow continuous measurement of dynamic moduli during 

temperature and frequency sweep testing of a starch suspension. The rheological properties 

of starches differ, because their composition and granules’ morphology is different. Thus, the 

identification of native starch sources is required in order to achieve the desired functionality 

and unique properties (Duxbury, 1989). Furthermore, concentration effects, temperature, 

heating rate and shear rate effects can be found and measured by rheological properties. 

Concerning starch the following changes under heating can be measured using oscillatory 

experiments. 

 Gelatinization 

 Pasting 

 Gelling and 

 Retrogradation, which can be distinguished in short-term by network formation and 

long-term retrogradation that lasts several weeks 

3.1. Dynamic rheology and gelatinization 

During this first stage of heating, starch granules swell during the process of gelatinization. 

Soluble polymer molecules leach from the swollen granules and the rheological properties, 

such as storage modulus (G’) and loss modulus (G’’) of the starch increase to a maximum. A 

sharp increase in G’ may occur between 60-80°C (Ahmed et al., 2008) caused by the 

formation of three-dimensional (3D) gel network developed by leached out amylose and 

reinforced by strong interactions among swollen starch particles (Fig. 1). Similar changes 

can occur when viscosity is measured.  

The swelling of the granules is important for both viscosity increase and viscoeleasticity of 

the produced dispersions. Granules’ morphology and rigidity, complexes with other 

components (e.g. lipid-amylose), amylose content, protein content are some factors that 

determine both peak values of the viscoelastic parameters and their breakdown thereafter. 

Concerning their botanical source, among native starches (corn, rice, wheat and potato), 

potato starches exhibit the highest swelling power and final viscoelastic values. Their shape 

and size differs with respect to starches of other botanical sources. Starch granules of potato 

are smooth-surfaced and of different shapes form oval and irregular to cube-shaped. Starch 
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granules of corn are angular-shaped, while those of rice are pentagonal and angular-shaped. 

Finally, wheat starch granules are spherical (B-granules) and lenticular-shaped (A-granules). 

Moreover, potato starch granules are the largest (<110μm) in size followed by wheat 

(<30μm), corn (<25μm) and rice (<20μm) starches. Τhe granule size of potato starch is 

variable and ranges form 1 to 20μm for small and from 20 to 110 μm for large potato 

granules, whereas rice starch granules commonly range from 3 to 5μm in size (Hoover, 2001; 

Singh et al., 2003). Large and cubical or irregularly shaped granules in potato starch exhibit 

higher storage and loss modulus and lower tanδ than the small and oval granules (Singh & 

Singh, 2001). Thus, potato starch shows higher G’, G’’ and lower tanδ than corn, rice and 

wheat starches during the heating cycle. Furthermore, starch dispersions may exhibit 

significantly higher G’ values (~100 times) as compared to flour dispersions at the first 

period of heating (40-60 °C) (Ahmed et al., 2008). 

Amylose amount is also quite important for controlling the viscoelastic properties of starch 

dispersions. Amylose results in higher G’ indicating a well-cross-linked nature. Specifically 

G’ can increase exponentially as a function of amylose content (Biliaderis & Juliano, 1993). 

Concentration effects are also linear for wheat and maize starch in the range of 6-30% (Ring, 

1985) and follow a power law in the case of rice starches (8-40%). 

Starch is a complicated viscoelastic structure. Under heating it can be described as a 

composite system, in which gelatinization may be regarded as an example of a phase-

separated composite gel, primarily governed by the volume fraction occupied by the 

swollen particles, whereas the continuous phase makes an additional contribution due to its 

own viscoelastic properties (Alloncle & Doublier, 1991; Dickinson,1992). 

 

Figure 1. Viscoelastic changes of starch suspensions under heating and further cooling. Curves can shift 

to both axes accordingly to the factors that are mentioned. Changes in starch granules are also shown. 

Peak and plateau values can be seen at maximum starch swelling. Thereafter network breakdown and 

paste formation is shown. (Modification according to data from Ahmed et al., 2008, Food Hydrocolloids 

22, pp 278-287 and Singh et al, 2007a, Starch/Stärke, 59, pp. 10-20) 
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3.2. Pasting and viscoelastic properties 

After gelatinization the process of pasting follows. Under continuing heating, granules are 

further swollen and finally disrupted (Fig.1). A hot paste is then created consisting of swollen 

granules, granule fragments, and soluble materials. The botanical source of the starch, water 

content, temperature and shearing during heating determine the consistency of this paste. 

The network created consists of dissolved starch polymers (amylose and amylopectin) and a 

discontinuous phase of swollen granules, empty (ghost) ones and fragments.  

Rheologically, a peak value of both viscosity and G’, G’’ is reached resulting mainly from 

maximum swelling. Furthermore a plateau e.g. constant values may occur (from 80-85°C) 

due to irreversible swelling and solubilisation of amylose (Ahmed et al., 2008) followed by a 

sudden drop of G’ under extensive heating and shear and time. Granules disintegrate. At 

this point a hot paste is created (Fig. 1). The height of the peak at a given concentration 

reflects the ability of the granules to swell freely before their physical breakdown. Α sudden 

drop after the maximum indicates the breakdown on cooking as well as a great ability to 

swell (Adebowale & Lawal, 2003). 

G’ decrease indicates the gel structure disruption due to the ‘’melting’’ of the crystalline 

regions or disentanglements of the amylopectin molecules in the swollen particles that 

softens the particles (Tsai et al., 1997). The network collapses due to the loss of interactions 

between the particles (Ahmend et al., 2008). 

3.3. Retrogradation and viscoelastic properties 

The distinction between a paste and a gel is not always evident. A paste usually refers to the 

hot freshly cooked system and gel is formed after cooling. Both are viscoelastic materials. As 

the hot pastes, especially of amylose –containing starches, begin to cool they become more 

elastic and develop solid properties. The transition from a viscous to an elastic gel can be 

determined by storage and loss moduli thus the setback can be found as a transition point 

from viscous to solid one (BeMiller, 2011). This setback is known as retrogradation (Atwell 

et al., 1988). At this critical gel point the system is wall-to-wall connected (percolation 

threshold) and is characterized by a critical behavior with G’(ω) and G’’(ω) obeying the 

same power law: G’(ω)~ G’’(ω) ~ ωn (Doublier & Cuvelier, 2006). 

The first phase of retrogradation begins as the paste cools and a formation of entanglements 

and/or junction zones is created between amylοse molecules resulting in an elastic gel. This 

phase may last up to 48 h. The second phase of retrogradation involves amylopectin 

changes, which is a much slower process that may proceed for several weeks depending on 

the storage temperature. Both G’ and G’’ increase upon cooling and during short-storage, G’ 

and G’’ increase indicating that the gels become firmer. 

4. Modified starches 

Briefly, chemical modification leads to a considerable change in the rheological and pasting 

properties of starches. Storage (G’) and loss modulus (G’’) of acetylated, hydroxypropylated 
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and cross-linked starches from different sources increase to a maximum and then drop 

during heating following the same general rheological pattern as native starches (Singh et 

al., 2007b). 

The temperature of maximum G’ drops significantly on acetylation or hydroxypropylation, 

while it increases after cross- linking (Kaur et al., 2004, 2006; Singh et al., 2004). Acetylated 

corn and potato starches showed greater values of G’ and G’’ under heating but lower 

compared to their native starch gels upon cooling of heated starch gels, confirming their 

lower tendency to retro gradate. 

Strengthening bonding between starch chains by cross-linking will increase resistance of the 

granules towards swelling resulting in lower G’ values in a high degree of cross-linking. 

Cross-link concentration and location could lead to different rheology. Botanical source also 

influences cross-linking and potato starches show a higher susceptibility towards cross-

linking than other kinds of starches (Kaur et al., 2004). 

5. Interactions with other hydrocolloids 

According to an excellent review of BeMiller (2011) twenty-one different native starches in 

combination with thirty two different hydrocolloids have been investigated in different 

studies. Thus there is an increased interest in starch-hydrocolloid systems as well as a 

significant amount of scientific work in this area. New research works are mainly presented 

in this section, enhancing the knowledge about such systems.  

5.1. Hydrocolloids influence in starch pastes 

Starch pastes have typical biopolymer gel behavior. In typical biopolymer gel behavior 

greater G’ values than G’’ along the frequency sweep are observed, however in starch pastes 

both moduli are frequency dependent. Hydrocolloids modify the dynamic spectra of starch, 

although different trends can be observed.  

First assumption: Hydrocolloids lead to weaker structures with less gel-like character. 

With their addition, starch network shifts from an elastic-like to a more viscous-like one 

(Rosell et al., 2011). Starch-hydrocolloid systems can be considered as biphasic systems. 

When starch granules are swollen, the hydrocolloid is located entirely in the continuous 

phase. The concentration of hydrocolloid will then increase as the volume of the phase 

accessible to the hydrocolloid is reduced. This fact changes the viscoelasticity of the starch. 

Thus, cellulose derivatives and carrageenans can lead to less solid-like pastes than the 

control paste (Techawipharat et al., 2008). This assumption depends on starch type as well. 

In waxy starches, due to an absence of amylose, short-term retrogradation does not occur 

and therefore, the addition of hydrocolloids could not alter the viscoelastic characteristics of 

these starch pastes. 

Second assumption: Hydrocolloids addition leads to associations with starches resulting in 

increased G’, G’’ values. 
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Several hydrocolloids can promote associations with starches and as a result, when they are 

added in starch pastes, an increase in G’, G’’ is often observed, see examples: Mandala et 

al.(2004a); Achayuthakan & Suphantharika, (2008); Wang et al., (2008). In such systems the 

question is which ingredient predominates in the overall rheology, starch or hydrocolloid. 

In wheat starch-hydrocolloid systems, it is the hydrocolloid that predominates in the whole 

system, according to the shift factors found.  

 

(a) In water of xanthan 0.1 wt% (□, ■) and 0.5 wt% (○, ●), starch 2 wt%/xanthan 0.5 wt% (∆, ▲), amylose 0.3 

wt%/xanthan 0.1 wt% (◊, ♦), amylose 0.3 wt%/xanthan 0.5 wt% (    ,▼).  

(b) In 0.1 M NaCl of xanthan 0.1 wt% (□, ■), 0.5 wt% (○, ●) and 0.8% (◊, ♦), starch 2 wt%/xanthan 0.5 wt% (∆, ▲), 

amylose 0.3 wt%/xanthan 0.5 wt%,(     ,▼). (From Mandala et al, 2004a. Carbohydrate Polymers 58, pp 285–292, with 

permission). 

Figure 2. Superimposed shifted spectra.  

Furthermore, except G’, G’’ values, tanδ may be important in interpretations of the behavior 

of starch-hydrocolloids interactions. Thus, although some hydrocolloids promote an 

increase in G’, G’’ by their addition, in fact they lead to a less solid-like system (higher tanδ 

values) as described above. On the contrary, in some cases, hydrocolloid addition may lead 
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to a more solid-like system as noticed in systems of maize starch with flaxseed gum (Wang 

et al., 2008).  

In this research work, the variation of the G’ with frequency for the maize starch alone and 

the flaxseed gum-maize starch mixtures with different flaxseed gum concentrations was not 

significant. This suggests that both the maize starch and its mixture with flaxseed gum have 

a typical biopolymer gel network, but flaxseed gum helps the formation of stronger gels. 

Concerning temperature effects, at a temperature range of 25-75°C, flaxseed gum addition 

shows more significant temperature dependence compared to that of maize starch alone. An 

increase in temperature results in a decrease in G’ of the mixture, indicating that the 

addition of flaxseed gum affects the thermal stability of the mixture (Wang et al., 2008). 

5.2. Influence of hydrocolloids during storage 

Gelation and short- or long-term retrogradation of starch can be influenced by 

hydrocolloids. The addition of a hydrocolloid can accelerate gelation and reduce 

retrogradation (Kim & Yoo, 2006, Lee et al., 2002; Mandala & Palogou, 2003; Fumami et al., 

2005, 2008) but this depends on many parameters, some of which are discussed extensively 

in the following text. 

Concerning gelation, starch-hydrocolloid mixtures may display weak gel-like behavior 

(Funami et al., 2008; Kim & Yoo, 2006; Lee at al., 2002). According to time-dependent curves 

of the mixtures of rice starch-xanthan gum, G’ values increase rapidly during the first few 

hours at low temperature aging (5°C) and remained steady afterwards. Gelation could be 

considerably shortened by the presence of xanthan gum. Increasing xanthan gum 

concentration increased G’ values during aging, indicating that the elastic character of 

xanthan gum influences the reinforcement of the overall gel properties during aging. A 

rapid increase and subsequent plateau of G’ can be shown by xanthan gum addition (Fig. 3). 

This is due to the rapid aggregation of amylose chains at the early stage and the slow 

aggregation of amylopectin chains at the late stage respectively (Kim & Yoo, 2006). 

First-order kinetics for structure development of starch-xanthan mixtures during aging 

(recrystallization) and further retarding during longer storage can be developed. The rate of 

G’ increase (structure development) due to the retrogradation of rice starch during cold 

storage is apparently affected by the presence of xanthan gum and greatly dependent on the 

xanthan gum concentration. The same was observed for wheat starch-xanthan mixtures 

aging (Mandala & Palogou, 2003). 

In the long-term retrogradation of different hydrocolloid-starch mixtures (Funami et al., 

2008; Kim & Yoo, 2006; Lee at al., 2002) molecular associations between the gum and the 

amylopectin fraction inhibit the formation of crystalline structures during storage. As 

another factor to inhibit long-term retrogradation, gums can stabilize water molecules, 

therefore they can act as water binder effectively depriving amylose or amylopectin of 

usable water for crystallization as described in the case of corn starch fenugreek gum 

mixtures (Funami et al., 2008). 
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Figure 3. Changes in storage modulus (G’) during aging at 4°C for 10h. Close symbol rice starch. Open 

symbols rice starch-xanthan gum mixtures (XG:0.2-0.8%). (From Kim & Yoo, 2006, Journal of Food 

Engineering 75, pp. 120-128, with permission). 

Gelation and retrogradation can be also influenced by the molecular size of the hydrocolloid in 

a starch-gum mixture. Thus, the molecular mass and size of guar gum influences 

gelatinization and retrogradation behaviour of corn starch according to Funami et al. (2005a, 

2005b). Viscosity and viscoelastic properties can be measured. Molecular interactions between 

guar gum and amylose are responsible for an earlier onset of viscosity increase for the 

composite system of starch-guar gum, whereas molecular interactions between guar gum and 

amylopectin are responsible for the increase in peak viscosity of the composite system. 

Moreover, the addition of guar gum accelerates the gelation of starch, in particular when the 

amylose fraction increases. Concerning the control of retrogradation by adding guar gum, 

storage modulus (G’) for starch systems increases rapidly at very early stage of storage at 4°C.  

Short-term retardation of retrogradation is also suggested, because the gelled fraction in the 

system is reduced with the addition of guar gum (loss targent increase). This happens due to 

the decrease in the amount of amylose leached out of the starch granules during 

gelatinization. There is a critical Mw up to which the amount of leached amylose can be 

influenced, which is 15.0x105 g/mol. The effect of guar gum on the inhibition of short-term 

retrogradation becomes less Mw-dependent at above this Mw value. On the other hand, the 

higher the Mw of guar gum, the easier the guar interacts with amylopectin. 

G’ becomes less-frequency dependent with decreasing Mw of guar gum. These results 

suggest that the interactions between guar gum and amylose should hardly contribute to 

forming a gelled or ordered structure (Funami, 2005). Furthermore, the ability of guar gum 

to inhibit long-term retrogradation is enhanced markedly when the Mw of the guar is over 

30.0x105 g/ml. Thus, above this molecular weight guar gum can act easily on either amylose 

or amylopectin to retard starch crystallization. 

Concluding: 

 Hydrocolloid addition may decrease or increase the gel-like character of starch pastes 

depending on hydrocolloid and starch type as well as on gum concentration. The most 
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common observation was the increase in both viscous and elastic character with more 

pronounced effects on the viscous one. 

 Regarding gelation, it is induced by adding hydrocolloids. Short-term retrogradation is 

also related to this gelation acceleration, as well as to amylose amount.  

 Gelation acceleration does not mean retrogradation acceleration as well, since a more 

viscous character is maintained by hydrocolloid addition in many cases.  

 Concerning long-term retrogradation, it is clearly reduced by hydrocolloid addition. 

Factors that may contribute are the associations of hydrocolloid-amylopectin, the 

stabilization of water molecules and last but not least the molecular weight of the gum. 

6. Applications to foodstuffs 

In a food system, many other ingredients influence the process of gelatinization, pasting, 

breakdown and retrogradation/setback of starch pastes (BeMiller, 2011). Recent data about 

starch pastes and gels as governed by their ingredients and the interactions with other 

hydrocolloids is presented. Furthermore, the role of these interactions in controlling 

rheology in model food is discussed. Examples given include stability issues of ready to eat 

white sauces, soups and caramel sauces.  

6.1. White sauces 

Béchamel sauce or ‘’white sauce’’ is used in a lot of preparations or as a basis for other more 

complex sauces (Heyman et al., 2010). Sauces often exhibit stability problems during 

prolonged storage either caused by emulsion instability or by changing polymer interactions 

(Mandala et al., 2004b; Mc Clemments, 2006). 

Non-starch hydrocolloids added in starch paste can alter the continuous phase of the system 

which contains them. In a complex system like that of a sauce, apart from rheology, they can 

also alter water holding capacity of the sauces. The effects of partially replacing modified 

starch by hydrocolloids (guar gum, xanthan gum and carboxymethylcellulose) on the 

rheological behavior and the physicochemical stability of the sauces is discussed. 

Oscillatory spectra of all sauces are very similar to those of starch gels (example model sauce 

and guar gum at different concentrations, (Fig. 4)). All samples exhibit a dominant elastic 

behavior since G’ is larger than G’’ over the studied frequency range.  

When different hydrocolloids such as xanthan, guar or CMC gum are added, xanthan gum 

causes the greatest increase in G’ compared to the model system. Guar gum and CMC also 

shift the G’ curve to higher values (Fig.4), but in a less pronounced way than xanthan gum 

does. White sauces present similarities between their values and those of starch gels alone 

supporting the hypothesis of a strong influence of both native and modified starches present 

in the system (Caisawang & Suphantharika 2006). Same conclusions are reached by 

Mandala et al. (2004b). During preservation at 7°C for 30 days the overall profile of the 

frequency curves does not change. Slight reductions in both G’ and G’’ are noticed with the 

most significant changes to occur the first 2 weeks. 
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Figure 4. Effect of guar addition on oscillatory measurement of béchamel sauces. (From Heyman et al. 

(2010). Journal of Food Engineering 99, 115-120, with permission). 

6.1.1. White sauce and freeze-thaw stability 

Starches combined with different hydrocolloids are used in white sauces and the 

freeze/thaw stability of the produced samples is investigated. In a typical white sauce, after 

a freeze/thaw cycle, an increase in the viscoelastic functions is observed as a consequence of 

extensive starch retrogradation. By adding hydrocolloids this increase is reduced, leading to 

a less structured system. This can be justified by hydrocolloid interaction with solubilised 

amylose that reduces amylose - amylose interactions, preventing also structure ordering and 

hence reducing the extent of retrogradation (Arocas et al., 2009). 

6.1.1.1. Ambient conditions’ thawing 

Specifically, the viscoelastic properties of fresh and thawed white sauces containing 

different corn starches (native waxy corn starch (NWS), native corn starch (NS), 

hydroxypropyl distarch phosphate waxy corn starch (HPS) and pregelatinized acetylated 

distarch adipate waxy corn starch (AAS)) are compared. Samples are frozen at -18°C and 

thawed at room temperature until 20°C. 

A different behavior is found among the modified and the native starch sauces (Fig. 5). 

The fresh modified starch sauces show higher G’ and G’’ values than the fresh native starch 

sauces, HPS being the one with the highest capacity and NWS the one with the lowest 

capacity. A high thickening capacity is ascribed to the fact that modified starches present 

high starch granule stability in comparison to the native starches and their granules do not 

break down in the thermal and shear conditions. 

Moreover, a temperature increase from 20 to 80°C does not affect the values of G’ and G’’ 

either in the fresh or freeze/thaw samples. On the contrary, in native starch sauces a slight 

decrease in the values of the viscoelastic moduli is observed after 50°C, particularly 

pronounced after the freeze/thaw cycle. Furthermore, the values of the G’, G’’ of samples 



 
Viscoelasticity – From Theory to Biological Applications 228 

prepared with native starches after freeze/thaw cycle are much greater than those of the 

fresh samples due to retrogradation phenomena occurring during the freezing process. 

 

Figure 5. G′ and G″ as a function of increasing temperature for : a) freshly prepared sauces and b) 

freeze/thawed sauces. NS sauce (G′:●, G″:○), NWS sauce (G′:♦, G″: ◊), AAS sauce (G′:(▲, G″:∆) and HPS 

sauce (G′:■, G″:□). Frequency: 1 Hz. γ: 0.001. Heating rate: 1.5 °C/min. (From Arocas et al., 2009, Food 

Hydrocolloids, 23, pp 901-907, with permission). 

Concerning mechanical spectra, all samples behave as soft gels with values of G’ higher than 

values of G’’. A weak dependence on frequency is observed, as well as in starch-

hydrocolloid mixtures. After freeze/thaw, as it was expected, structural changes occur 

mainly in sauces containing native starches. As a consequence, great values of G’ and G’ are 

observed and these samples presented a spongy structure depending also on freezing rate 

(the lower the freezing rate, the more pronounced the spongy structure). Thus, chemical 

modification is effective in providing freezing and thermal structure stability. 

6.1.1.2. Microwave and water bath thawing 

Differences between conductive heating and MW heating of starch dispersions are found 

not in the mechanism of gelatinization but on the starch crystallinity, which disappears 

at a higher rate when samples were heated by microwaves. Furthermore, the attainment 

of a certain viscosity required longer time in the conduction-heated samples. 

Microwaving can cause incomplete gelatinization of the starch in comparison to 
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convection heating and potato starch can be influenced much more than corn starches 

(An et al., 2008). 

The effects of microwave thawing and water bath thawing on white sauces prepared with 

two different native starches (potato and corn) and a modified waxy maize starch are 

compared. Starch retrogradation is strongly affected by freezing and thawing. Thus, 

possible reduction of starch retrogradation upon different thawing methods could be 

beneficial for the quality characteristics of the final product. 

Furthermore, microwave treated samples are quite similar to the freshly prepared sauces 

compared to the water bath-thawed ones. In this regard, microwaving could be considered 

more suitable than the water bath for diminishing the loss of quality associated with the 

freezing step (Table 1). 

The differences in the viscoelastic properties of the microwave-and water bath-thawed 

native starch sauce can be explained because of the shorter heating time required in the 

microwave, which reduces the time available for the retrogradation occurring from -5 to 

20°C. Furthermore, the big local temperature and the differences occurring during 

microwave heating can lead to an improved localized melting of amylopectin and eventual 

melting of amylose (at temperatures near 100°C).  

 

Starch type Treatment G′ (Pa) G* (Pa) tanδ

Corn 

WB 326.0 A 328.0 A 0.114 C

MW 265.2 B 267.0 B 0.118 C

Fresh 80.4 E 81.9 E 0.189 B

Potato 

WB 177.6 C 179.8 C 0.158 BC

MW 114.7 D 116.7 D 0.183 B

Fresh 97.6 DE 101.0 DE 0.265 A

Modified waxy corn

WB 270.7 B 272.5 B 0.118 C

MW 264.7 B 267.7 B 0.149 BC

Fresh 206.6 C 210.5 C 0.194B 

Table 1. Influence of starch type and treatment in the rheological parameters G′, G*  

and tan δ. Frequency: 1 Hz. ABCDE Means with the same letter are not significantly different  

(p < 0.05) according to the Tukey’s multiple range test. WB water bath thawed samples, MW  

microwave thawed samples. (From Arocas et al, 2011, Food Hydrocolloids 25, pp 1554- 1562, with 

permission).  

This can lead to new starch/water interactions and consequent water adsorption. Generally, 

heating during thawing improves the quality of frozen sauces as amylose bonds formed 

during retrogradation are broken accompanied with re-absorption of the previously 

released water. Furthermore, the modified starch resists the heating applied during the 
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sauce preparation as well as during the thawing process. Although the modified starch 

granules swell, little release of the starch components occurs. Thus, the differences between 

thawing techniques are related to their effect on structure changes related to starch 

retrogradation (Arocas et al., 2011). 

6.2. Chilli sauce 

Chilli sauces investigated presented a dominant elastic behavior compared to the viscous 

behavior typically observed in suspensions with network-like structure (Gamonpilas et al., 

2011). Weak gel-like characteristics are found in chilli sauces containing starch and 

hydrocolloids, as well as in white sauces mentioned above. The presence of starch/xanthan 

mixture in the commercial chilli sauces promotes their elastic properties. Furthermore, the 

sauce with low solid content and without xanthan gum has weak network structure and 

inferior flow properties. The addition of xanthan gum and/or modified starch can provide a 

network-like characteristic of the sauce. 

6.3. Soup formulation 

In a soup formulation corn starch was gradually replaced with fenugreek gum (FG) till 0.9% 

wt. Pure systems of corn starch and fenugreek gum dispersions are also tested. Pure corn 

starch-FG mixtures and soups are subjected to rheological measurements after preparation. 

(Matia-Merino & Ravindran, 2009). 

Final viscosities increase with increasing FG replacement levels. Soup containing FG 

(without starch) exhibit a dose–related pasting pattern and different pasting profiles than 

starch-FG soup formulations. Combined addition of starch-FG results in a synergistic effect 

of starch and FG. Thus, the viscosity increase is much greater than when the two ingredients 

are added individually. The viscoelasticity of the starch-FG systems and soups containing 

them is shown at the frequency of 1 Hz (Fig 7.a, Fig 7b). The viscous or loss modulus shows 

slightly more dependency with the elastic component being frequently independent and 

always over the viscous modulus through the entire frequency range. The main differences 

between starch-FG systems and soups containing them is: a) the higher viscoelasticity 

developed in all the soups with both G’ and G’’ being greater in value than in the pure 

starch/fenugreek mixtures, measured under similar conditions and b) both elastic and 

viscous moduli gradually increase with the substitution of starch by FG for all formulations.  

6.4. Caramel sauces 

Caramel sauces can have tailored sensory, rheological and textural characteristics by using 

potato starch and xanthan gum combinations (Krystyjan et al., 2012). Potato starch and 

xanthan gum are selected among other starch-hydrocolloid combinations taking into 

account transparency and clear appearance for further use in caramel sauces as thickeners. 

Commercial sauce without any stabilisers received the lowest score in sensory evaluation. 

Samples were stored and among other rheological characteristics, storage and loss moduli  
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(a) 5% standard corn starch (P1), gradually replaced with fenugreek at 0.1% (P2), 0.15% (P3), 0.2% (P4), 0.25% (P5), 

0.3% (P6), 0.5% (P7), 0.7% (P8), 0.9% (P9).  

(b) soup formulations with 5% standard corn starch (S1), gradually replaced with fenugreek at 0.1% (S2),  

0.15% (S3), 0.2% (S4), 0.25% (S5) and 0.3% (S6), 0.5% (S7), 0.7% (S8), 0.9% (S9). All measurements were  

carried out at 25 °C (From Matia-Merino & Ravindran, 2009, Food Hydrocolloids, 23(3), pp 1047-1053, with 

permission).   

Figure 6. Storage modulus (G′), loss modulus (G″), and tan δ measured at 1 Hz and 1% strain 

were measured. On the contrary to the assumptions in previous examples, the storage 

moduli of all sauces are much lower than their loss moduli. Sauces have very weak elastic 

and very strong plastic properties. This feature is considered disadvantageous, because the 

sauce can very easily flow down from the surface of the glazed products. An increase in 

xanthan gum amount results in moduli increase, both before and after storage. Controlled 

rheology can be achieved improving caramel sauces performance. 

Concluding: 

 Sauces and soups containing starch and hydrocolloids behave like weak gel-like 

products with good network structure. 

 Caramel sauces containing starch and hydrocolloids are fluid-like with viscous 

character much more pronounced than the elastic one. 
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 Viscocelastic behavior of soups is similar to that of simple hydrocolloid-starch systems. 

However, viscous–like behavior is more pronounced in final soups than in starch-

hydrocolloids’ systems. 

 Thawing under heating of frozen ready to eat starch white sauces results in  

improved rheological characteristics of the final samples. In particular, thawing  

under microwaves leads to better products than those being thawed in a water  

bath. 

7. Conclusions 

In this chapter oscillatory rheological data are presented to highlight the structural changes 

of starch suspensions during heating and further storage. Furthermore, the viscoelastic 

behavior of different starch types with selected hydrocolloids is presented in order to 

understand and control rheology in food processing. Moreover, the rheological behavior of 

starch-hydrocolloid mixtures is described in complex systems, they contain them that aim at 

successful food product development. 

Starches undergo significant changes under heating that are related to structural changes and 

can be determined using small amplitude oscillatory shear (SAOS) tests. In many research 

works these tests are also combined with rapid visco analyser (RVA measurements), viscosity 

values, texture analyses, microscopic observations, DSC thermographs.  

Hydrocolloids alter the viscoelastic character of starch pastes and different mechanisms are 

proposed, some of them based on their interactions with starch polymers. Hydrocolloids are 

found in the continuous phase of the starch pastes changing the effective concentration of 

starch in the final mixtures. They can also immobilize the water available, or they can 

interact with starch polymers. Pastes containing hydrocolloids may be less structured and 

less solid-like than the control pastes. Specific interest presents their role in gelation and 

retrogradation, since they are considered anti-staling agents and can prohibit retrogradation 

effects, specifically those of amylopectin. 

Controlled rheological properies can be achieved by changing hydrocolloid-starch mixtures 

in selected products such as sauces, soups and caramel sauces, e.g. the final quality of native 

starches white sauces can be maintained when appropriate thawing process under fast 

heating (microwaves) is used. 

New kinds of hydrocolloids are going to be used and starch role especially that of native 

starches is re-defined. The interest about such systems is going to increase and research on 

this field will be continued. 

Author details 

Ioanna G. Mandala  

Agricultural University Athens, Dept. Food Science and Technology, 

Greece  



 
Viscoelastic Properties of Starch and Non-Starch Thickeners in Simple Mixtures or Model Food 233 

8. References 

Adebowale, K. O., & Lawal, O. S. (2003). Functional properties and retrogradation  

behaviour of native and chemically modified starch of mucuna bean (Mucuna 

pruriens). Journal of the Science of Food and Agriculture, 83, pp. 1541–1546. 

Achayuthakan P. & Suphantharika M. (2008). Pasting and rheological properties of waxy 

corn starch as affected by guar and xanthan gum. Carbohydrate Polymers, 71, pp.  

9-17 

Arocas A., Sanz T. & Fiszman S.M. (2009). Influence of corn starch type in the rheological 

properties of a white sauce after heating and freezing. Food Hydrocolloids, 23, pp. 901-

907 

Acoras A., Sanz T., Hernando M.-I. & Fiszman S.M. (2011). Influence of corn starch type in 

the rheological properties of a white sauce after heating and freezing. Food 

Hydrocolloids, 23, pp. 901-907 

Ahmed J., Ramaswamy H. S., Ayad A. & Alli I. (2008). Thermal and dynamic rheology of 

insoluble starch from basmati rice. Food Hydrocolloids 22, pp. 278-287 

An, H.J., Yang H.S., Liu Z.D. & Zhang Z.Z. (2008). Effects of heating modes and sources on 

nanostructure of gelatinized starch molecules using atomic force microscopy. LWT-

Food Science &Technology 41, pp. 1466-1471 

Alloncle M. & Doublier J.-L. (1991). Viscoeleastic properties of maize starch/hydrocolloid 

pastes and gels. Food Hydrololloids, 5(5), pp. 455-467 

Atwell, W. A., Hood, L. F., Lineback, d. R., Varriano-marston, E., & Zobel, H. F. (1988). The 

terminology and methodology associated with basic starch phenomena. Cereal Foods 

World, 33, pp. 306–311. 

BeMiller J.N. (2011). Pasting, paste, and gel properties of starch-hydrocolloid combinations. 

Carbohydrate Polymers 86, pp.  386-423 

Bilbao-Sainz C., Burtler M., Weaver T. & Bent J. (2007). Wheat and starch gelatinization 

undermicrowave irradiation and conduction heating. Carbohydrate Polymers 69, pp 

224-232 

Biliaderis C., Juliano B. (1993). Thermal and mechanical properties of concentrated rice 

starch gels of varying composition. Food Chemistry  48, pp. 243–250 

Bowler P., Williams M.R. &AngoldR.E. (1980). A hypothesis for the morphological changes 

which occur on heating lenticular wheat starches in water. Starch/Stärke, 34, pp.  

149 

Chaisawang M. & Suphantharika M. (2006). Pasting and rheological properties if native and 

anionic tapioca starches as modified by guar gum and xanthan gum. Food 

Hydrocolloids 20 (5), pp. 641-649 

Dickinson E. 1992. Rheology In: An introduction to food colloids, Oxford University Press, pp 

59-62.   

Doublier J.-L. & Cuvelier G. (2006). Gums and Hydrocolloids: functional aspects in Carbohydrates 

in food, ed. A.-C. Eliasson, CRC: Taylor &Francis, London 



 
Viscoelasticity – From Theory to Biological Applications 234 

Duxbury D.D. (1989).  Modified starch functionalities—no chemicals or enzymes. Food 

Processing, 50 , pp. 35–37 

Ferry J.D. (1980). Viscoelastic properties of polymers (3rd ed.). J. Wiley and Sons, New York 

Funami T., Kataoka Y., Omoto T., Goto Y., Asai I. & Nishinari K. (2005). Food hydrocolloids 

control the gelatinization and retrogradation behavior of starch. 2a: Function of guar 

gum with different molecular weights on the gelatinization behavior of corn starch. 

Food Hydrocolloids 19, pp. 15-24 

Funami, T., Kataoka, Y., Noda, S., Hiroe, M., Ishihara, S., Asai, I., Takahashi R.& Nishimari 

K. (2008). Functions of fenugreek gum with various molecular weights on  

the gelatinization and retrogradation behaviors of corn starch-1: Characterizations  

of fenugreek gum and investigations of corn starch/fenugreek gum composite system  

at a relatively high starch concentration; 15w/v%. Food Hydrocolloids, 22,  pp. 763–  

776. 

Funami T. (2011). Next target for food hydrocolloid studies: Texture design of foods using 

hydrocolloid technology. Food Hydrocolloids, 25(8), pp. 1904-191 

Gamonpillas C., Pongjaruvat W., Fuonfuchat A., Methacanon P., Seetapan N. & 

Thamjedsada N. (2011). Physicochemical and rheological characteristics of commercial 

chilli sauces as thickened by modified starch or modified starch/xanthan mixture. 

Journal of Food Engineering 105, pp. 233-240 

Heyman B., Depypere F., Delbaere C. & Dewettinck K. (2010). Effects of non-starch 

hydrocolloids on the physicochemical properties and stability of a commercial 

béchamel sauce. Journal of Food Engineering 99 ,pp. 115-120 

Hoover R. (2001). Composition, molecular structure, and physicochemical properties of 

tuber and root starches: a review. Carbohydrate Polymers 45, pp. 253-267 

Kaur, L., Singh, N., & Singh, J. (2004). Factors influencing the properties of 

hydroxypropylated potato starches. Carbohydrate Polymers, 55, pp.  211–223 

Kaur, L., Singh, J., & Singh, N. (2006). Effect of cross-linking on some properties of potato 

starches. Journal of the Science of Food and Agriculture 86, pp. 1945–1954 

Kim C. & Yoo B. (2006). Rheological properties of rice starch-xanthan gum mixtures.  Journal 

of Food Engineering 75, pp. 120-128 

Krystyjan M., Sikora M., Asamczyk G. & Tomasik P. (2012). Caramel sauces thickened with 

combinations of potato starch andxanthan gum. Journal ofFoodEngineering 112, pp 22-

28 

Lee M.H., Baek M.H., Cha D.S., Park H.J. & Lim, S.T. (2002). Freeze-thaw stabilization  

of sweet potato starch gel be polysaccharide gums. Food Hydrocolloids, 16, pp. 345- 

352 

Mandala I. & Palogou E. (2003). Effect of Preparation Conditions and Starch/Xanthan 

Concentration on Gelation Process of Potato Starch Systems. International Journal of 

Food Properties  6, pp. 311-328  



 
Viscoelastic Properties of Starch and Non-Starch Thickeners in Simple Mixtures or Model Food 235 

Mandala I. G., Michon C. & Launay B. (2004a). Phase and rheological behaviors of 

xanthan/amylose and xanthan/starch mixed systems. Carbohydrate Polymers 58, pp. 

285–292 

Mandala I.G., Savvas T.P., Kostaropoulos A.E. (2004b). Xanthan and locust bean gum 

influence on the rheology and structure of a white model-sauce. Journal of Food 

Engineering 64(3), pp. 335-342 

Mc Clemments D.J. (2006). Non-covalent interactions between proteins and polysaccharides. 

Biotechnology Advances 24(6), pp. 621-625 

Matia-Merino L. &  Ravindran G. (2009). Starch–fenugreek (Trigonella foenum-graecum L.) 

polysaccharide interactions in pure and soup systems, Food Hydrocolloids, 23(3), pp. 

1047-1053  

Rosell C.M., YokoyamaW. & Shoemaker C. (2011). Rheology of different hydrocolloids-rice 

starch blends. Effect of successive heating-cooling cycles. Carbohydrate Polymers 84, 

pp. 373-382 

Ross-Murphy S.B. (1984). Rheological methods, Biophysical Methods in Food Research. vol.5 

(H.W.-S. Chan, ed.) SCI Critical Reports on Applied Chemistry, Blackwell, Oxford, pp. 

137-139 

Singh, J., & Singh, N. (2001). Studies on the morphological, thermal andrheological 

properties of starch from some Indian potato cultivars. Food Chemistry, 75, pp. 67– 

77 

Singh N., Singh J., Kaur L., Singh S. N. & Singh G. B. (2003). Morphological, thermal and 

rheological properties of starches from different botanical sources. Food Chemistry 81 

(2), pp.  219-231 

Singh, N., Chawla, D., & Singh, J. (2004). Influence of acetic anhydride on physicochemical, 

morphological and thermal properties of corn and potato starch. Food Chemistry, 86, 

pp. 601–608. 

Singh N., Nakaura Y., Inouchi N. & Nishinari K. (2007a). Fine structure, thermal and 

viscoelastic properties of starches separated from Indica rice Cultivars. Starch/Stärke, 

59, pp. 10-20 

Singh J., Kaur L. & McCarthy O.J. (2007b). Factors influencing the physic-chemical, 

morphological, thermal and rheological properties of some chemically modified 

starches for food applications- A review. Food Hydrocolloids 21, pp. 1-22 

Stanley D.W., Stone A.P. & Tung M.A. (1996). Mechanical properties of food. In Handbook of 

Food Analysis, Volume I, Ch.4. L.M.L. Nollet (ed.), New York: Marcel Dekker, Inc., 93-

136 

Techawipharat J., Suphantharika M., BeMiller J. N. (2008). Effects of cellulose derivatives 

and carrageenans on the pasting, paste, andgel properties ofrice starches. Carbohydrate 

Polymers 73, pp. 417-426 

Tsai, M. L., Li, C. F., & Lii, C. Y. (1997). Effects of granular structure on the pasting behavior 

of starches. Cereal Chemistry, 74, 750–757. 



 
Viscoelasticity – From Theory to Biological Applications 236 

Wang Y., Wang L.-J., Li D., Ozkan N., Chen X. D. & Mao Z.-H. (2008). Effect of flaxseed gum 

addition on rheological properties of native maize starch. Journal of Food Engineering 

89, pp. 87-92 

Whistler R.L. &  BeMiller J. N. (1997). Carbohydrate Chemistry for Food Scientists. St. Paul, 

MN: Eagan Press ,pp. 117-164 


