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1. Introduction 

Due to the rapid development of mobile devices equipped with cameras, the realization of 

what you get is what you see is not a dream anymore. In general, texts in images often draw 

people’s attention due to the following reasons: semantic meanings to objects in the image 

(e.g., the name of the book), information about the environment (e.g., a traffic sign), or 

commercial purpose (e.g., an advertisement). The mass development of mobile device with 

low cost cameras boosts the demand of recognizing characters in nature scenes via mobile 

devices such as smartphones. Employing text detection algorithms along with character 

recognition techniques on mobile devices assists users in understanding or gathering useful 

information around them. A useful mobile application is the translation tool. Using 

handwriting as the input is widely used in current translation tools on smartphones. 

However, capturing images and recognizing texts directly is more intuitive and convenient 

for users. A translation tool with character recognition techniques recognizes texts on the 

road signs or restaurant menus. Such application greatly helps travelers and blinds.  

The mobility advantage inspires users to capture text images using mobile devices rather 

than scanners, especially in outdoors. Optical character recognition (OCR) is a very mature 

technique accomplished by many previous researchers. However, camera-based OCR is a 

more difficult task than traditional OCR using scanners. Scanned images are captured with 

high resolution, even illumination, simple background, high contrast, and no perspective 

distortion. These properties ensure that high recognition rates can be achieved when 

employing OCR. Conversely, images captured by cameras on mobile devices include many 

external or unwanted environmental effects which deeply affect the performance of OCR. 

These images are often captured with low resolution and fluctuations such as noises, 

uneven illuminations or perspective distortions, etc. In that case, low quality images cause 

the camera-based OCR more challenging than traditional OCR. The reason is that the 

extracted character blobs are usually broken or stuck together (also called as “ligature”) in 

low quality images. It is a prerequisite to clearly detect foreground texts before proceeding 
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to later recognition task. To facilitate the processing of camera-based OCR, a good 

preprocessing is highly required.  

This chapter discusses how to segment text images into individual single characters to 

facilitate later OCR kernel processing. Before the character segmentation procedure, several 

works such as text region detection and text-line construction need to be done in advance. 

First, regions in images are classified into text and non-text region (e.g. graphics, 

trademarks, etc.). Second, the text components are grouped to form text-lines via a bottom-

up approach. After text-line construction, typographical structure is analyzed to distinguish 

inverted (upside-down) texts. Finally, a character segmentation method is introduced to 

segment ligatures, which often appear on text images captured by cameras. In the following 

sections, these processes will be described in detail. 

2. Related works 

Instead of discussing the character recognition techniques, this chapter focuses on the new 

challenges imposed by the imperfect capturing conditions mentioned in the first section. 

More specifically, some methods are proposed to detect foreground texts and segment each 

character from an image correctly. In the proposed preprocessing system, there are three 

main procedures: text detection, text-line construction and character segmentation. Before 

that, a brief review of several works done by previous researchers is described in the 

following subsections. 

2.1. Text detection 

The current text detection researches are roughly divided into rule-based and classifier-

based approaches. Rule-based methods [1-5] formulate rules with prior-knowledge to 

distinguish text and non-text blocks. Conditional constraints are often adopted in these 

rules, such as the sizes of connected components, edge information, color information and 

texture information. Adopting edge information is inspired by the observations that texts 

often cluster together and have high contrast to backgrounds. Regions with large enough 

variances and sufficient amount of edge pixels are regarded as the text candidates. Color 

information is utilized with region growing and clustering methods [6, 7]. The rules 

formulated by experienced experts filter texts efficiently but may not be robust. Texts 

themselves can be regarded as textures [8]. In this type of approach, images are transformed 

to frequency domains by using filters such as DCT [9], FFT [10], Wavelet [11], Gabor filter 

[12], etc. to reveal distinct textural properties so that text regions can be separated from 

background regions. 

The classifier-based methods [13-16] utilize the extracted features as the input of specific 

classifiers, such as neural networks or Support Vector Machines (SVM) to classify text and 

non-text components. The classifiers usually need enough samples to be trained well. 

Moreover, the parameters of these classifiers often have to be tuned case by case to get the 

best classification results.  
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2.2. Text-line construction 

After finding text components, these components are linked one another to form meaningful 

text-lines (i.e. words and sentences). Text-lines are constructed based on the distance 

between two text blocks with the observation that the row spacing is often larger than the 

character spacing in most documents. In traditional page segmentation, top-down 

approaches such as X-Y Cut [18, 19] and the run-length smearing algorithm (RLSA) [20] are 

widely used to find paragraphs, text-lines, and characters, and then segment them by 

horizontal and vertical projections. However, both methods are infeasible to segment the 

document when the image is skewed. 

From another point of view, when document images are with unknown structures, the 

bottom-up methods are more practical than the top-down methods to construct text-lines. 

Hough transform is a well-known algorithm to find potential alignments in images. 

However, Hough transform is a computationally expensive method. The minimum 

spanning tree methods [21, 22] are employed according to the properties of text clustering 

and typesetting. The extracted minimum spanning trees are not considered the text-line 

structures yet; some criteria are further adopted to delete redundant or add additional edges 

to form complete text-lines. Basu et al. [23] propose a water flow method to construct text-

lines. Hypothetical water flows from both left and right image margins to opposite image 

margins. Areas are wetted after the flood. In their approach, text regions are obstructions 

which block water flows so that the un-wetted areas can be linked to form text-lines. The 

disadvantage of water flow algorithm is that the threshold of the flow filter is empirically 

determined. 

2.3. Character segmentation 

Traditional character segmentation techniques are categorized into projection methods, 

minimal segmentation cost path method, recognition-feedback-based methods, and 

classifier-based methods. Projection methods [3, 24] project the image along the horizontal 

and vertical directions. The locations with no projection values are believed to be the 

locations of spacing. The projection methods are efficient but have difficulties in resolving 

ligatures and broken characters. More specifically, when ligatures occur, the amount of 

spacing is often less than the number of characters. Conversely, the amount of spacing is 

often more than the number of characters when one character breaks into several blobs. 

Hence, confirming segmentation locations using the projection method only is risky in 

camera-based OCR because ligatures and broken characters are very likely to occur. If 

characters are stuck together severely, the segmentation results will be wrong. Another 

situation is the emergence of broken characters. Broken characters result in over-

segmentation due to the occurrence of many locations with no projection values. It is 

infeasible to segment characters by using projection method if images are skewed or contain 

italic fonts. Hence, the projection methods often collaborate with other methods for correct 

segmentation result. The minimal segmentation cost method is to find a segmentation path 
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with minimal cost in images. The weights of foregrounds and backgrounds are pre-

specified. To reduce the complexity of finding the optimal segmentation path, certain 

constraints such as path movement range and divided zones are integrated with dynamic 

programming [25, 26].  

The recognition-feedback-based methods, [27, 29] provide a recovery mechanism for wrong 

segmentations. These methods seek some segmentation points to divide ligatures into 

several segmented blocks. The segmented blocks are then fed into the recognition kernel. If 

the recognition rate of the segmented block is above a certain threshold, the segmentation 

point is considered as legal. Otherwise, the segmented block is illegal and the corresponding 

segmentation point is abandoned. This method is more reliable than the projection methods, 

but the computation cost is also more expensive. Classifier-based methods [30, 31] select 

segmentation points using classifiers trained by correct segmentation samples. The 

drawback of classifier-based method is that classifiers require enough training samples to 

obtain better segmentation results. 

3. Preprocessing 

The main challenge for the preprocessing system is that the captured images are often with 

low resolution. Although cameras on mobile devices are capable of taking higher resolution 

images, the computation cost is still an issue nowadays. The preprocessing system consists 

of three modules: text detection, text-line construction, and character segmentation to 

provide acceptable inputs (i.e. individual character images) for OCR. 

3.1. System flowchart 

The flowchart of the preprocessing system is illustrated in Figure 1. In the text detection 

module, foreground blobs are separated from backgrounds. These foreground blobs are 

classified into text connected components (CC) and non-text CCs using the text-noise filter. 

In the text-line construction module, the text CCs are used to construct rough text-lines first. 

Then the text-line completeness and reading order confirmation are achieved via the 

features of employed typographical structure. In the character segmentation module, each 

text CC is classified as a single character or a ligature. If the text CC is classified as a ligature, 

it is segmented via the proposed segmentation mechanism. 

3.2. Text detection 

The first work of the preprocessing system is to find the locations of texts. Text images 

include texts, graphic, backgrounds, and tables. In general, texts are with high contrast to 

the backgrounds. Based on this observation, foregrounds can be separated from 

backgrounds by image binarization. The segmented foregrounds are labeled as connected 

components (CCs) by 8-ways connected component labeling method. However, binarizing 

all images using a fixed threshold is improper because the external lighting conditions of  
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Figure 1. Flowchart of the preprocessing system. 

text images are usually not the same. A two-stage binarization mechanism which adopts the 

well-known Otsu’s method [32] is proposed. In the first stage, foreground blobs are 

extracted using a global threshold which is automatically found by the Otsu’s method. The 

found foreground blobs contain noises, pictures, and texts. To reduce the computational cost 

of the text-line construction module, these blobs are classified into text and non-text CCs 

using a text-noise filter. Only the text CCs are used to construct a rough text-line in the text-

line construction module. Afterwards, Otsu’s method is performed again in a small region 

of each individual text-line area to complete the text CCs. It is helpful for the character 

segmentation module when the contours of text CCs are clearer after the binarization in the 

second stage. 

A statistical approach is adopted to distinguish text CCs from non-text CCs. The widths and 

heights of CCs form two histograms. Figure 2 (a) is an example of the width histogram. 

Every 5 bins of the histogram in Figure 2 (a) are summed up to form the second histogram 

(see Figure 2 (b)). The majority of the second histogram can be acquired and the average 

width is calculated by the width values belong to the major bin. As shown in Figure 2 (b), 

the majority bin is bin #3, which corresponds to the 11th -15th bin of the histogram in Figure 

2(a). Hence, the average width of CCs is 13 in this case. Same procedure can be applied to 

the height histogram to obtain the average height of CCs. CCs sizes of which are larger than 

the ratio of product of average width and average height are labeled as non-text CCs. 
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Figure 2. Example of histogram used for finding the average width of text CCs.(a) Histogram of the 

widths of CCs and (b) histogram which sums up every 5 bins of (a). 

The CCs are normalized to a fixed size before passing the text-noise filter. Then, auto-

regressive (AR) features [42] are extracted from the CCs as the inputs of neural network for 

text-noise classification. The misclassified text CCs in this procedure are recovered using the 

properties of text clusters and text-lines during the text-line construction procedure, which 

will be described in the following subsection. 

3.3. Text-line construction 

The goal of the text-line construction is to find the reading order of a text and construct a 

linked-list of characters. A distance-based method is designed herein to construct text-lines 

according to the following characteristic: the row spacing is often greater than the word 

spacing in most document layouts. Instead of calculating the distance between the central 

points of two text CCs, the distance between two CCs is estimated by the “out-length”. The 

out-length is defined as the length of the segment between the bounding boxes of two text 

CCs (see Figure 3). The advantage of using the out-length measurement is that the out-

length values remain small even the widths of text CCs are large (this usually happens on 

ligatures) as long as they are on the same text-line. Figure 4 illustrate the consideration of 

neighboring CCs for each CC by using the out-length. If we consider the distances between 

the central points of CCs, CC1 and CC2 will be considered as close CCs and the text-line will 

thereby be constructed in a wrong direction. Instead, CC3 is closer to CC2 than CC1 using 

the out-length measurement. Hence, a correct text-line can be constructed. 

A two-stage statistical method is proposed herein to find the reading order of text-lines. In 

the first stage, for each text CC, a neighboring candidate CC which has the smallest out-

length to it is chosen. Then, the angle θ between the horizontal line and the line linking the 

central points of these two neighboring CCs is computed (see Figure 4). A histogram is 

constructed and the angle θm with the majority votes in the histogram is utilized to 

determine the coarse reading order (that is, the orientation) of the document. The coarse 
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reading order estimated in the first stage is temporally assumed as the correct reading order 

to construct the initial text-lines. For each CC, only the smallest and second smallest out-

length values are considered according to the fact that a character in text-lines has two 

neighbors at most. The text-line construction algorithm is stated as follows: 

Step 1. For an unvisited CCi and its neighboring CCj, angle θij which is the angle between 

CCi and CCj are evaluated by the following equation 

    m ij m                     (1) 

where θm is the temporary reading order orientation, and ε is a tolerance threshold. The 

purpose of Eq. (1) is to link several CCs into a text-line along a straight direction. If θij 

satisfies the inequality in Eq. (1), go to Step 2. Otherwise, select another neighboring CCk 

with the second smallest out-length and check the inequality again using angle θik. If θik 

satisfies the inequality in Eq. (1) is satisfied for θik, go to Step 3. If both θij and θik cannot 

satisfy Eq. (1), go to step 4. 

Step 2. Link CCi to CCj. Go to step 1 and check the next text candidate. 

Step 3. Link CCi to CCk. Go to step 1 and check the next text candidate. 

Step 4. CCi cannot be connected with any CC at this stage. Find another unvisited CCp and 

go to step 1. If all CCs have been visited, terminate the algorithm. 

 

Figure 3. Illustration of out-length and slant angle between two CCs. 

 

Figure 4. Illustration that CC3 is closer to CC2 than CC1 by using out-length, but CC1 is closer than 

CC3 estimated by using the distance between the central points of the CCs. 

Figure 5 (a) depicts the link between all CCs and their corresponding nearest CCs using the 

out-length measurement. Figure 5 (b) illustrates the link of the second nearest CCs. The 

coarse orientation θm of text-lines in Figure 5 is horizontal. After performing the algorithm, 

most CCs are linked to form some text-lines, as shown in Figure 5 (c). Some estimated text-

lines in Figure 5 (c) are not accurate enough. These inaccurate text-lines will be refined in the 

next stage. 
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Figure 5. Illustration of the coarse text-line construction in the first stage. (a) Links of the nearest 

neighbors (b) links of the second nearest neighbor (c) results of performing the text-line construction 

algorithm. 

In the second stage, the extracted text-lines are further refined using typographical 

structures and the geometry information of CCs in text-lines. Typographical structures [34] 

have been designed since the era of typewriter and are still preserved in the printed fonts 

today. Figure 6 illustrates the four lines (called Typo-lines) which bound all printed English 

characters in three areas. The four lines are named as the top line, upper line, baseline, and 

bottom line. The three areas within the four lines are called the upper, central, and lower 

zones. The printed alphanumeric characters and punctuation marks locate in particular 

positions according to the design of typographical structure. For instance, capital letters only 

appear in the upper zone and central zone. The printed alphanumeric characters and 

punctuation marks are classified into seven categories, called Typo-classes, according to 

their locations in the Typo-lines. The seven Typo-classes are listed below: 

(a)

(b)

(c)
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1. Full: the character occupies three zones, such as j, left parenthesis, right parenthesis, and 

so on. 

2. High: the character is located in both upper and central zones, such as capital letters, 

numerals, b, d, and so on. 

3. Short: the character is only located in the central zone, such as a, c, e, and so on. 

4. Deep: the character appears in central zone and lower zone. Only the four lowercase 

letters g, p, q, and y belong to this Typo-class. 

5. Subscript: the punctuation mark is closer to the baseline, such as comma, period, and so 

on. 

6. Superscript: the punctuation is closer to the upper line, such as quotation marks, double 

quotation marks, and so on. 

7. Unknown: the class is given when the Typo-class cannot be confirmed due to the lack of 

certain Typo-lines. 

 

Figure 6. Typographical structure 

To determine the typographical structure, a Typo-line extraction algorithm which integrates 

k-means and least mean square error (LMSE) algorithm is proposed. First, the y coordinates 

of the top edges of all CCs which belong to the same text-line are classified into two clusters 

using the k-means algorithm. Second, the LMSE algorithm is applied to each cluster to 

determine the corresponding Typo-lines (top line and upper line). The baseline and bottom 

line can also be extracted using the same procedure. Figure 7 depicts the extracted text-line 

in the first stage and the Typo-lines which are obtained in the second stage. 

 

Figure 7. Initial text-line and extracted Typo-lines 

The LMSE algorithm for finding Typo-lines is described as follows. The line formulation to 

represent a Typo-line is 
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 ( )y f x a bx    (2) 

Then the least square error E can be formulated as 

   22
( )i i i i

i i

E y f x y a bx                  (3) 

The least square error is minimal when E is zero. The first derivative is applied on E: 
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Equation (4) can be extended as follow: 
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Finally, the two unknowns a and b can be solved by 
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The orientation of texts is refined by taking the mean of the upper line and baseline. 

However, both the correct text CCs or upside-down text CCs generate a horizontal text-line. 

To solve this problem, the coarse reading order is also further confirmed in this stage. The 

confirmation is accomplished by analyzing the Typo-classes of the characters. The characters 

of Full and Short types remain the same when the image is rotated 180 degrees, but the High 

and Deep types do not. An observation is that all lowercase letters consist of 13 Short types, 8 

High types, 4 Deep types and 1 Full type. The reading order can be confirmed by a cue that 

the appearance rates of the High and Deep type characters are significantly different when 

the texts are upside-down. Baker and Piper [35] calculated the appearance rates of 100362 

lowercase letters in newspapers and novels. The appearance rates of the Typo-classes are 

listed in Table 1. The reading order is correct if the appearance rate of the High type is 
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significantly larger than that of the Deep type. Hence, if the documents are captured with a 

slanted angle, the images can be de-skewed according to the slope of Typo-lines. 

 

Typo-Class Appearance rate 

Full 0.2 

High 35 

Short 59.1 

Deep 6 

Table 1. Appearance rate of Typo-class 

The details of reading order confirmation process is summarized as follows: 

1. If the extracted text-line is not horizontal, rotate the image to horizontal according to the 

orientation of the estimated text-line. 

2. Extract Typo-lines and verify whether the number of the High type characters is larger 

than that of the Deep type characters or not. If the number of the High type characters is 

greater than that of the Deep type characters, the reading order orientation is correct. 

Otherwise, rotate the image by 180 degree and inverse the order of text CCs in the text-

line. 

In the aforementioned text-noise filter, the text CCs may be wrongly classified as noises due 

to the low quality of images. These mis-classified text CCs are often located around or inside 

the text-lines (e.g. the dots or commas). Sometimes these missing text CCs result in breaking 

the text-lines (see Figure 15). To solve this problem, the bounding boxes of all estimated text-

lines are slightly extended to seek possible merge. If two text-lines are overlapped after an 

extension, they are merged into a single text-line. Moreover, if the mis-classified text CCs 

fall in the bounding box of the text-lines, they are reconsidered as the text CCs and linked to 

the existed text CCs in the text-lines. The bounding boxes of the text-lines are extended by 

twice of the average width of characters to recover the mis-classified CCs nearby. By 

utilizing the characteristics of the typographical structure, the text CCs that are mis-

classified as noises by the text-noise filter can be recovered. 

3.4. Character segmentation 

In traditional character segmentation, the ligatures often result from the specific character 

sequences with the specific font. For example, the character sequences “ti” with the font 

“Times new roman” are usually considered as the character “d”. In terms of the images 

captured by cameras, the characters are touched severely due to the blurred character 

boundaries. In this section, a character segmentation mechanism with the ligature filter is 

introduced. The text CCs are classified as a single character or ligature using the devised 

filter. The proposed filter consists of two stages. In the first stage, seven intrinsic features of 

CCs are obtained after using the projection method on text CCs. The vertical/horizontal 

projection is obtained by calculating the amount of foreground pixels in the 
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vertical/horizontal direction respectively. Denote that the vertical projection and horizontal 

projection are Pv and Ph respectively. The intrinsic features are described as follows: 

 c1: the height-width ratio of the CC. 

 c2: the index of the maximum value of Pv with respect to the left boundary of the CC. 

 c3: the index of the maximum value of Ph with respect to the upper boundary of the CC. 

 c4: maximum value of Pv divided by the height of CC. 

 c5: maximum value of Ph divided by the width of CC. 

 c6: find the maximum value of Pv’ divided by the height of CC where Pv’ is the 

histogram which averages Pv every 5 bins. 

 c7: find the maximum value of Ph’ divided by the height of CC where Ph’ is the 

histogram which averages Ph every 5 bins. 

The feature set C={c1,c2,c3,c4,c5,c6,c7} is trained by two SVMs to classify CCs as a single 

character or a ligature. The feature set {c1, c2, c3, c4, c5} is used as the input for the first SVM, 

and {c1, c6, c7} is used for the second one. Some High type characters such as “ti” and “fl” are 

usually misclassified as “d” and “H” respectively. To cope with this problem, if the CC is 

considered as a single character by the first SVM and the Typo-class of the CC is High type 

as well, the CC is further verified by the second SVM. The positive and negative image 

samples for SVM training include 7 common types of font (Arial, Arial Narrow, Courier 

New, Time New Roman, Mingliu, PMingliu, and KaiU) and 4 different font sizes (32, 48, 52, 

and 72). The positive samples consist of single alphanumerical characters and punctuations. 

The negative samples are composed of two connected alphanumerical characters. The 

illustration of negative image samples is shown in Figure 8. 

 

Figure 8. Illustration of negative samples of SVM database. 

Text CCs which cannot pass both SVM classifiers are considered to be possible ligatures. 

These CCs will enter the second stage. In the second stage, the periphery features are 

extracted from the CCs. The periphery features are composed of 32 character contour values 

fi, where i = 1, 2,…, 32 as shown in Figure 9. In Figure 10, the closer the peripheral feature to 

the central position, the larger weight it is assigned. fi is defined as follow: 
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where the weight Wimod8 can be obtained by referring to Figure 10. If 0 < i < 9 or 16 < i <25, li is 

the character width. Otherwise, li is the character height. Pi is the distance between the 

boundary to the contour, i.e. the length of the blue band in Figure 9, where 0 < i < 9 is the 

length of the boundary to the left contour, and so on. The 32 periphery features and an 

additional feature, the height-width ratio of CC, are concatenated to form a feature vector 

F={ f1,f2,…,f33}. 

 

Figure 9. Illustration of 32 periphery features 

 

Figure 10. Illustration of weights of periphery features 

The feature vector F is compared with the feature vector T, which is obtained from the 

templates. Suppose there are n templates need to be compared. For each periphery feature fi, 

the score dij is defined as follow: 
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two scores PVj and NVj are obtained by 
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Then, the final similarity PVmax and NVmin are obtained by finding the maximum value of PVj 

and the minimum value of NVj for j=1,…,n respectively. If PVmax is larger than a threshold 

and NVmin is smaller than another threshold as well, the CC is considered as a single 

character. Otherwise, the CC is considered as a ligature. 

If the CCs are regarded as ligatures by the ligature filter, the CCs will enter to the character 

segmentation mechanism. The character segmentation mechanism consists of three  

steps: 

1. Search the cut point candidates. 

2. Segment ligatures using dynamic programming. 

3. Verify the segmentation result. 

Three features are utilized in searching possible cut points in a ligature: the vertical 

projection, the vertical profile, and the gray level vertical projection. Figure 11 (c) shows the 

vertical projection obtained from the image in Figure 11 (b). The vertical profile, also called 

the Caliper distance [31], is the distance between the top contour pixel and the bottom 

contour pixel in each bin. For example, shown in Figure 11 (e) is the vertical profile obtained 

from the image in Figure 11 (d). 

 

 
 

Figure 11. Illustration of vertical projection and vertical profile (a) Original character image, (b) 

accumulation of pixels in obtaining vertical projection, (c) the vertical projection of (b), (d) accumulation 

of pixels in vertical profile, and (e) the vertical profile of (d). 

Define G as the set of the gray level projection of CC. That is, G = {g(0), g(1),…,g(w-1)} where 

w is the width of CC. The gray level projection g(x) is formulated as follows: 

 
0

( ) ( , ) 255
h

y

g x I x y


                          (10) 

where I(x,y) is the gray level value at pixel (x,y) and h is the height of the image. Figure 12 

illustrates the process in obtaining the gray level projection in a gray level image. Figure 12 

(b) depicts the projection result using Eq. (10). Figure 12 (c) is the final result after 

normalizing the gray level projection g(x). 

(a) (b) (c) (d) (e)
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Figure 12. Illustration of gray level projection (a) Original image, (b) the gray level projection, and (c) 

the normalized gray level projection. 

Denote the histograms of the three features mentioned above are V. The following equation 

is used to evaluate the validity of being a cut point at location x: 

 
( ) 2 ( ) ( )

( ) , 1,...,
( ) 1

V lp V x V rp
p x x w

V x

 
 


                (11) 

where V(lp) is the first peak in the left of x, V(rp) is the first peak in the right of x, and V(x) is 

the value of x. The larger value of p(x), the higher possibility x is a cut point. A selection rule 

is designed according to the following two criteria. The first criterion is that the number of 

cut points increases when the width-height ratio of CC increases. Hence, more points with 

larger values of p(x) have a higher tendency to be chosen as cut points. The second criterion 

is that the cut points near an already selected cut point should be ignored to reduce 

computation cost due to the restriction of minimum stroke width of a character. Figure 13 

depicts the selection of cut point candidates. Given a ligature image shown in Figure 13(a), 

the cut point between ‘n’ and ‘o’ cannot be found by using the vertical projection only (see 

Figure 13 (f)). However, it can be successfully found by utilizing the vertical profile or Gray 

level projection as shown in Figure 13 (g) and (f).  

If there are n cut point candidates, there will be 2^n combinations of selecting cut points, and 

only one combination of all possibilities segments the ligature image correctly. It is too 

difficult to find the correct combination without an efficient pruning mechanism. The 

periphery features of a character image are utilized again as the inputs of SVM to output a 

confidence value for evaluating the quality of the segmentation result. A combination of the 

cut points which has the highest confidence value is considered as the final segmentation 

result. The maximum confidence value can be efficiently computed using Dynamic 

Programming (DP). Suppose the number of cut point candidates plus the left and right 

boundary of the ligature image is n, 0 i i k j n     , where i, j, k, n, a, b are integers, and i, 

i+k, j are the indices of cut points. The boundary conditions of DP are described as 

 
0 ,

( , )
{( ( , ) ( , ) ) / ( ), ( , )} ,

if i j
m i j

Max m i i k a m i k j b a b m i j if i j

         
  (12) 

(a) (b) (c)
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where m(i , j) is the confident value of the image between cut points i and j. a and b are the 

number of segmented characters in the image between i and i+k, i+k and j, respectively. 

Figure 14 is an example of explaining the character segmentation procedure. Figure 14 (a) 

shows the image of a business card. The personal information in the business card is erased 

to protect personal privacy. Figure 14 (b) is the text-detection result. Each red rectangle in 

Figure 14 (b) indicates one CC. CCs identified as ligatures are further segmented by the 

character segmentation process. Take the ligature CC, “Support”, as an example (see Figure 

14 (c)). In this example, m(i,j) is the confident value ranged from 0 to 4 given by SVM. There 

are 2 values in each block of the DP table in Figure 14 (d). The upper value is the confident 

value of the character image between row i and column j, whereas the lower value indicates 

the selected cut point index in the character image between row i and column j. If the 

confident value of the whole image between row i and column j is larger than the average 

confident value of the image divided into 2 parts between (i, i+k) and (i+k, j), then the cut 

point index will be set to -1. The final segmentation combination of the CC (0, 1) (1, 3) (3, 4) 

(4, 5) (5, 6) (6, 8) (8, 9) derived by DP is obtained (see the upper left corner of Figure 14 (c)). 

As shown in Figure 14 (e), the final segmentation result can then be obtained with each blue 

rectangle indicating one segmented character. 

 

Figure 13. Illustration of cut point candidate searching (a) Binary image, (b) vertical projection, (c) 

vertical profile, (d) gray level image, (e) gray level projection, (f)-(h) results are obtained by performing 

Eq. (8) on (b)(c)(e), and (i)-(k) results after cut points selection. 

In the character segmentation procedure, it is inevitable to encounter the over-segmentation 

problem. To remedy this, the procedure verifies the segmentation result by merely using the 

Typo-class information. For example, character ‘m’ is usually segmented into two parts, 

recognized as ‘r n’ or ‘n 7’, which is unreasonable because the typo class of ‘m’ is Short and 

the typo classes of ‘n 7’ are Short and High. Table 2 tabulates the designed check table for 

verification with each element representing one unreasonable situation. If a character is 

segmented into the specific combination as listed in Table 2, the segmentation of the 

character is ignored to preserve the original character by not performing the segmentation 

task on it. 
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Figure 14. Example of cut points selection using DP. (a)Origin image, (b)result of text detection and 

connected component labeling (c)possible cut points in a CC “Support” (d) the corresponding DP table 

of (c) (e)final character segmentation result. 

 

Text 
Segmentation 

combination 
Type Text 

Segmentation 

combination 
Type 

M r,n、n,7、n,1 3 C C,: 1 

N r,1、r,7 3 c c,: 3 

W v,v 3 B I,3 1 

W V,V 1 D I,3 1 

H I,7、t,1、t,7 1    

Table 2. Check table for verifying the segmentation result. 

4. Experiments 

In the experiments, text images captured from fifty business cards by a two- million-pixel 

webcam with resolution 1600×1200 are collected as testing images. Testing images includes 

the business cards with simple binary backgrounds and complex color backgrounds. There 
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are 9,550 characters and 419 touched characters (1,050 single characters in the touched 

characters) for a total of 10,600 characters in the testing images. The experiments 

demonstrate the visual results of reading order confirmation, ligature filter, and character 

segmentation. 

Figure 15 illustrates the experimental result on the process of correcting the reading order. 

The image is captured in an incorrect reading order (see Figure 15(a)). Text CCs are 

extracted using binarization and connected component labeling (see Figure 14(b)). Figure 

14(c) shows the result of text-line construction. Texts in the left side of Figure 14(d) show the 

estimated orientation of text-lines. The major angle is the θm which is described in section 

3.3. The right side of Figure 14(d) is the result using the introduced reading order 

confirmation algorithm. 

 

Figure 15. Illustration that reading order confirmation. (a) Source image, (b) performing connected 

component method in binary image (a), (c) connected component linking, (d) reading order estimation, 

and (e) image rotation result. 

In the second experiment, fifty images of business card are considered as testing images for 

evaluating the accuracy rate of the ligature filter. The accuracy rate is defined as the number 

of correct filtered CCs divided by number of total CCs. The average accuracy rate of the 

proposed ligature filter is 92.14%. Figure 16 shows two examples of the results of ligature 

filter. CCs with numbers above indicate that they are not ligatures. 
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Figure 16. Results of ligature filter (a),(c) cut source image and (b),(d) the corresponding filtering result. 

(a)

(b)

(c)

(d)
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In the third experiment, same 50 images are used for analyzing the performance of the character 

segmentation procedure. The accuracy rate of character segmentation is defined as the number 

of correct segmented ligatures divided by the number of all ligatures. In our experiments, the 

overall accuracy rate of character segmentation is 98.57%. Figure 17 is a worse case of the 

character segmentation. The uneven illumination and blur result in severe ligatures after text 

detection module. It is difficult to find good cut points to segment these ligatures precisely. 

 

Figure 17. Bad result of character segmentation. Uneven illumination and blur appear severely in 

image. (a) Original image, (b) binarized image, and (c) character segmentation and recognition result. 

The character recognition method proposed in [36] is implemented to evaluate the overall 

performance of the preprocessing system. The recognition rate of characters is 94.90%.  

Recognizing blurred and ligatures caused by illumination variation and out of focus is 

challenging. However, the proposed preprocessing system can overcome these difficulties 

and achieve a high recognition rate. 

(a)

(b)

(c)
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5. Conclusions 

A preprocessing system dedicated to text images captured by cameras is introduced in  

this chapter. The preprocessing plays a crucial role in dominating the success of later character 

recognition because text images captured by cameras are usually accompanied with severe 

uneven illuminations. Three modules in the preprocessing system are introduced in detail: A  

text detection module, a text-line construction module, and a character segmentation module. 

Experimental results demonstrate the feasibility and validity of each module of the preprocessing 

system. The characteristics of the preprocessing system are summarized as follows: 

1. A text-noise filter which filters out non-text CCs efficiently. A two-stage binarization is used 

for detecting texts in images and sharpening the contour of CCs. Text and non-text CCs 

are classified by the devised text-noise filter. 

2. Reading order determination by typographical structures. When text-lines are constructed, 

the reading order of the text-lines is still unknown because there are two possible 

reading orientations of a text-line. A reading order confirmation scheme is proposed by 

analyzing the typographical structures. 

3. A ligature filter with character segmentation mechanism for improving the efficiency of 

character segmentation. The intrinsic features and periphery features are used for 

classifying ligatures and individual characters. The character segmentation mechanism 

is only used for ligatures so that the efficiency of the character segmentation module 

can be improved.  

Built upon this work, some works can be accomplished in the future: 

1. Detect texts in the complex background. The proposed text detection method is appropriate 

for document images but has defects on complex background. To induce color 

information of text images and clustering method to the text detection module may be a 

good try because texts in the same text-line usually have similar colors. 

2. Detect and recognize texts on irregular surface. The introduced modules are effective for 

recognizing texts on document images. However, texts often locate on non-plane 

surface such as a cylinder. It will be helpful to recognizing these texts correctly. 

3. Merge broken characters. Both broken characters and ligatures cannot be recognized well 

by OCR. The introduced method solves the ligature problem but do not coping with the 

broken character problem. A preprocessing system is more complete than that of this 

work by involving some mechanisms to merge broken characters. 

4. Correct Perspective distortion. Document images without the margin are hard to correct 

perspective distortion. Other information needs to be considered for performing affine 

transformation in a distorted document image. 
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