
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 5 

 

 

 
 

© 2012 Krull et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Analytical Method Validation for 

Biopharmaceuticals 

Izydor Apostol, Ira Krull and Drew Kelner 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/52561 

1. Introduction 

Method validation has a long and productive history in the pharmaceutical and now, 

biopharmaceutical industries, but it is an evolving discipline which changes with the times. 

Though much has been written about method validation for conventional, small molecule 

(SM) pharmaceuticals, less has appeared providing an overview of its application for 

complex, high molecular weight (MW) biopharmaceuticals (or biotechnology) products. 

This appears to be satisfyingly changing with the times, and this particular chapter has been 

designed to address this area of method validation. We hope to address herein the 

important issues of where do analytical method validation guidelines and directives stand 

today for biopharmaceutical (protein or related) products. Due to the recognized differences 

and complexity of biopharmaceuticals relative to small molecule drugs, regulatory agencies 

have accepted that what is expected of all SM, single molecule entities (even enantiomers), 

cannot be required for complex protein biopharmaceuticals, such as antibodies. While it is 

quite a simple matter, in most instances, to characterize and validate methods for SM drug 

substances, this is not always the case for complex biopharmaceuticals. Biotechnology 

products will always be heterogeneous mixtures of product-related species. 

While the chapter below focuses on the principles and practice of method validation for 

biopharmaceuticals in the biotechnology industry, some comments on the topic of 

“academic method validation,” and if and how that differs from what is required by the 

industry, seem warranted. In general, academics are not required by any regulatory agency 

or governmental body to perform any degree of method validation. However, one instance 

where it might be appropriate to do acceptable (whatever that means) method validation is 

when a reviewer of a grant proposal or manuscript destined for publication demands that 

some validation be performed. At times, Journal/Book Editors may suggest that some 

degree of method validation be performed, but in the final analysis, this requirement is at 
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the discretion of reviewers. It appears that for the most part, little to no method validation is 

performed in academic circumstances, but on occasion, attempts are made to validate 

methods in academic laboratories. However, even there, such efforts do not begin to 

approach what is expected by regulatory agencies for industrial methods used to release a 

product for clinical trials use.  

At times, in the past, Editors have taken the time to list what is expected in future 

submissions related to some degree of method validation. However, it was never obvious or 

clear that a lack of such studies really has ended up in manuscript rejections. Again, to a 

very large degree, this has depended on the rigorousness of the reviewers, resulting in 

somewhat a “luck of the draw” approach. Some may view this as frustrating and 

unfortunate, because in the absence of method validation, there should be no reason to 

accept the method and its applications, prima facie, or its results/data. However, academics 

somehow don’t believe that method validation is required in order to do “good science” or 

publish. This situation has been changing for the better, but it is not quite where it really 

should be today. It will change when all editors, reviewers and manuscript/proposal 

submitters agree on the importance of doing good science by doing thorough and complete 

analytical method validation studies.  Clearly, practitioners in the pharmaceutical and 

biopharmaceutical industries have much to offer to academic scientists in this regard. 

One publication, years ago, appeared to demonstrate in certain, newer capillary 

electrochromatography (CEC) studies, unusually high plate counts and efficiencies. However, 

when others attempted to reproduce such results and data, nobody could come even close to 

what was in that original publication. Eventually, it was admitted that in the original study, 

none of those astounding results were reproducible or even replicable in a single lab. The work 

was never repeatable in their own hands, something that they conveniently forgot to mention 

anywhere in their papers. How could that happen? Well, it happened because neither the 

editors nor reviewers were thorough and rigorous in their demand for analytical method 

validation. They did not ask to see some evidence of repeatability, intermediate precision and 

other performance characteristics, a situation that would not be permissible in the industrial 

world due to regulatory requirements for method validation  

Method validation in the  pharmaceutical and biopharmaceutical industries is designed to 

help ensure patient safety during clinical trials and later when the drug becomes 

commercialized. While this reasoning is not applicable to basic research, and basic research 

in the academic community has at least one self correcting mechanism, peer verification, the 

lack of a requirement to document the performance characteristics of the methods in the 

academic world can, at times, lead to the publication of analytical methodologies, as noted 

above, that may lack scientific integrity. 

2. Method validation for the biotechnology industry  

The development of biotherapeutics is a complex, resource-intensive and time-consuming 

process, with approximately 10 years of effort from target validation to commercialization. 
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This reality, coupled with rapid technological advances and evolving regulatory 

expectations, impacts the ability of biotechnology companies to rapidly progress with 

development of their pipeline candidates. 

Method validation is a critical activity in biopharmaceutical product development which 

often causes confusion and, at times, consternation on the part of analytical development 

teams.  Questions surrounding method validation abound: (1) when should we validate our 

analytical methods? (2) what are the requirements for achieving method validation in a 

manner that is compliant across multiple regulatory jurisdictions around the world? (3) how 

can I implement a validation strategy that fits my company’s business infrastructure and 

provides for seamless method transfer activities to other QC organizations in the company 

as well as contract QC organizations, when required? 

Prior to proceeding to a discussion of method validation, it is important to differentiate 

amongst the categories of analytical methods used in the biopharmaceutical industry for 

product evaluation.  In general, the analytical methods used can be divided into three 

categories: (1) screening methods; (2) release and stability methods; and (3) characterization 

methods.  Screening methods are used to guide discovery research and process 

development.  These methods, which are often carried out in high-throughput format using 

automation due to the large volumes of samples tested, do not typically follow any 

validation guidance, since they are not intended for a QC environment.  Nonetheless, it is 

important to understand the capabilities and limitations of these methods so that the results 

can be appropriately applied to making decisions during process and product development.  

This is generally achieved through experience with the method in the analytical 

development organization.  The second class of methods, release and stability methods, are 

intended for use in a Quality Control environment for product disposition and formal 

stability studies.  In addition, these methods are sometimes used in QC for in-process 

samples in the form of in-process controls, which are used in the overall control strategy to 

ensure product quality (and for which the validation strategy should mirror that used for 

the release and stability methods).  Whether used for release, stability, or in-process control 

applications, these methods are generally validated prior to the validation (conformance) 

lots to demonstrate that they have acceptable performance according to regulatory guidance 

(discussed below). The third class of methods, characterization methods, are used to support 

product characterization studies during reference standard characterization, process 

characterization, comparability studies, and other product characterization activities, and 

data from these studies is often submitted to regulatory agencies.  Industry practice has 

recently evolved to meet regulatory expectations that these methods will be qualified 

according to written company procedures, though no formal written guidance is available, 

and method validation is not expected for these analytical procedures.  

In order to meet current compliance expectations, an analytical method used to support 

GMP activities must be suitable for its intended use, and appropriate experimental work 

must be documented that provides this assurance.  The demonstration of method suitability 

can be divided into two sets of activities: qualification and validation.  When methods are 



 

Analytical Chemistry 118 

new, under development, or subject to process or method changes, this activity is often 

called qualification,  while more formal confirmation of method suitability for commercial 

applications is called validation (Ritter, Advant et al. 2004; Apostol and Kelner 2008; Apostol 

and Kelner 2008).  

The strategy for method validation involves a continuum of activities that begins at the start 

of process and product development and carries through to the marketing application and 

beyond.  Typically, analytical method development begins after the biological target has 

been identified and verified, the protein therapeutic has been defined (primary sequence), 

and the sponsor has made the decision to develop a manufacturing process that will enable 

human clinical trials.  The initial demonstration that the method is suitable for its intended 

purpose for use as a release and stability method is generally carried out in the form of 

method qualification, an activity that generally takes place prior to the release of the 

material for first-in-human (Phase 1) clinical trials.  At the later stage of product 

development, typically prior to the start of pivotal phase III clinical trials, method 

developers perform qualification studies which will enable method validation.  Finally, 

method validation generally takes place prior to the release and stability testing of the 

validation manufacturing lots. 

It should be noted that although method qualification, which evaluates the performance 

characteristics of the method against meaningful target expectations, is a critical 

development activity that establishes the suitability of the method for release of early to 

mid-phase clinical materials, this activity is not, to the best of our knowledge, clearly 

defined in regulatory guidance, which tends to focus on method validation.  It is therefore 

difficult to define the scope of method qualification, though regulatory expectations and 

industry practices have evolved to define method qualification as a means to assure 

acceptable method performance during process and product development, prior to the 

formal validation exercise that occurs before the testing of the validation lots. 

The necessity of method validation has been reinforced by a variety of national and 

international regulations (USP 1994; USP 1999; CDER 2001; ICH 2005) which are subject to 

user interpretation. For example, current GMP regulations, [21 CFR 211.194 (a)] require that 

methods used in testing of the samples meet proper standards of accuracy and repeatability. 

Validation provides assurance that this regulation is met.  USP <1225> defines validation of 

analytical procedures as the process by which it is established by laboratory studies that the 

performance characteristics of the procedure meet the requirements of the intended 

analytical application. ICH guideline Q2R1 defines validation of analytical procedures as the 

demonstration that the method is suitable for its intended purpose.  ICH guidance specifies 

that validation of analytical procedures needs to be included as part of the registration 

package submitted within the EU, Japan and USA. While the biotechnology industry, in a 

manner analogous to the pharmaceutical industry, is heavily regulated, the majority of the 

regulations are targeted at commercial products, leaving a significant gap in available 

regulatory guidance for earlier stages of product development.  While numerous articles 

have been published to provide the scientific principles and exemplify the types of 
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associated activities relevant for method validation (Swartz and Krull 1997; Shabir 2003; 

Ritter, Advant et al. 2004; ICH 2006; Krull and Swartz 2006; Swartz and Krull 2006; Swartz 

and Krull 2009),  the most frequently referenced document, is  the ICH guideline Q2R1, 

“Validation of analytical methods: text and methodology”(ICH 2005),  This document 

covers validation activities targeted at product registration; hence, this guidance is 

specifically applicable to commercial products. Method qualification has emerged as the 

typical means of filling the gap for assessing the suitability of analytical method 

performance at earlier stages of product development.   

3. Qualification of characterization methods 

Characterization methods typically involve highly specialized technologies which are labor 

intensive and difficult to perform on a routine basis, which includes, for example, AUC, CD, 

FTIR, DSC, SEC-LS , and NMR. These methods are often used to supplement lot release 

methods to provide orthogonal detection/separation modes and/or to verify structural 

integrity (e.g. primary, secondary, tertiary structure).  This is in contrast to Quality Control 

methods, which typically employ proven technologies to enable in-process controls, lot 

disposition and GMP stability assessment in the GMP laboratory setting, requiring stringent 

assessment of performance characteristics that follow ICH guidelines. Therefore, it is 

important to define an appropriate level of qualification for these complex and non-routine 

characterization methods. Industry practice has evolved multiple means of defining a 

qualification path for characterization methods, including:  

 Ensuring the adherence to written technical procedures 

 Ensuring that the equipment has a documented record of initial equipment 

qualification (IQ/OQ), preventative maintenance (PM), and/or calibration.  

 Ensuring that data are generated by scientists with appropriate technical skills 

documented through training records and/or academic credentials.  

 Ensuring that all experiments are accompanied by proper controls to ensure that the 

method is capable of measuring the intended attributes of the product. Control 

experiments should be designed in such a way that the quantitative aspect of the 

measurement can be clearly demonstrated from the results of the 

experiments.  Properly controlled experiments should be performed to address the 

precision (repeatability) of the measurements.  

Recently Jiang et al. provided an excellent review of the qualification of the biophysical 

methods including AUC, CD, FTIR, DSC, SEC-LS, MFI and LO based methods.  The authors 

describe how qualification of these methods enables better knowledge of the methods and 

objective interpretation of the results. The general considerations described there can be 

applied to other biophysical methods as appropriate as well (Jiang, Li et al. 2012). In most 

cases qualification of biophysical methods is focused on the determination of precision and 

demonstration that the methods are suitable for their intended applications. Successful 

qualification enables the understanding of the method capability and the consistent 

determination of product attributes.  
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4. Qualification and validation of release and stability methods 

Qualification should be performed prior to method implementation in the Quality laboratories 

to ensure the integrity of the data provided on the Certificate of Analysis for clinical lots.   In 

most cases, at early stages of clinical development, only one sample type requires qualification 

because, in general, the drug substance (DS) and drug product (DP), for which specifications are 

established requiring testing in the Quality labs, often have the same composition (formulation).  

If this is not the case, a technical assessment should be made of whether differences in the 

matrix have the potential to impact the qualification results and, if so, a strategy for verifying 

the qualification status of the two sample types, relative to each other, should be devised. For 

example, full qualification of the DS can be followed by a matrix verification for the DP, 

generally in the form of a repeat of the specificity and precision evaluation. 

Method validation is typically completed before process validation in adherence with cGMP 

procedures outlined in ICH Q2R1(ICH 2005) . Method validation for release and stability 

methods can be considered  as the pivotal point in the method lifecycle because it justifies 

the use of the method in commercial settings to guide decisions about product disposition 

and lot stability. In addition, the validation activity provides a defined point of transfer of 

ownership of the methods from the development organization to the commercial 

(operations) organization. Typically, these activities are initiated after the sponsor has made 

a commitment to commercialize the drug candidate (which generally occurs after positive 

feedback from clinical trials). 

ICH Q2R1 specifies that method validation has three components:  assessment of 

performance characteristics, demonstration of robustness and system suitability. It should 

be noted that industry practice dictates that method qualification also evaluates these three 

components, with a noticeable difference, in that while validation has a formal protocol and 

pre-defined acceptance criteria for the performance characteristics, method qualification 

does not. It is a good practice to adopt general target expectations for method qualification 

as a means of evaluating the outcome of exploratory work on performance characteristics. 

The expectation should reflect the desired characteristics for the methods with respect to 

precision, range,  QL, etc.  If the method does not meet these expectations, the method 

should be re-developed and/or optimized. Recently, many companies have adopted the 

practice of developing and qualifying multiproduct methods that can be used for more than 

one product within specific molecular classes, such as monoclonal antibodies.  In such 

instances, verification of performance could be adequate instead of full qualification studies 

once the method has undergone full qualification for the first molecule of the specified class. 

Standard industry practice dictates that methods used to assess drug substance and drug 

product stability should show that they are able to detect changes in quality attributes. This 

can be demonstrated in forced degradation studies on the appropriate sample types using 

conditions known to impact protein quality, such as elevated temperature, pH extremes, 

and incubation with oxidizing agents such as hydrogen peroxide to induce molecular 

changes such as aggregation, deamidation, peptide bond cleavage and protein oxidation. 
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In addition to the stability indicating properties of the method, the assessment of sample 

stability can be considered as a pre-requisite to method validation. Sample stability can be 

divided into two activities – an evaluation of sample storage conditions prior to analysis, 

and assessment of the stability of prepared samples while waiting for analysis. Samples are 

often stored frozen after collection and thawed prior to analysis; in these instances, sample 

integrity should be assessed over a minimum of one freeze-thaw cycle for each sample type 

(preferably more than one cycle in most cases).  Sample stability after preparation and 

before analysis (e.g., time spent in an auto-sampler) should be evaluated to determine the 

maximum duration of an assay (sequence).  Details of sample handling should be included 

in the validation protocol.  

Method validation confirms the performance characteristics demonstrated during method 

qualification and demonstrates the suitability of the method for commercial use. This 

confirmation effort should follow a pre-approved protocol with clear and justifiable 

acceptance criteria. In the context of the analytical lifecycle, the key components of method 

validation are as follows:  

1. The experimental design of method validation should mimic the qualification design, and 

acceptance criteria should be linked to the target expectations used in the qualification 

experiments.  In the absence of such rigor, validation experiments become exploratory 

research and run the risk of undermining the results of the method qualification. 

2. Similarly to the qualification (in most cases), the validation acceptance criteria are set 

based on the type of method and should not differ from target expectations. When 

qualification target expectations are not met during a qualification study, the rationale 

for re-evaluation of the acceptance criteria should be proposed in the qualification 

summary. Setting acceptance criteria for the precision of a method frequently causes 

confusion, anxiety, and inconsistency in practice. For validation studies, requirements 

for a reporting interval  aligned with the specification for precision studies provide 

excellent guidance for setting the acceptance criteria for precision and other 

performance characteristics.  

3. Validation acceptance criteria should only include the objective parameters from the 

qualification to avoid any subjective interpretations, which could impact the outcome of 

the confirmatory validation studies.  For example, frequently during qualification 

studies, scientists expect that the residual from linear regression does not show any bias 

(trend). Since the  community has not adopted a uniform measure of the bias (which is 

frequently based on visual evaluation), it is not advisable to include such a requirement 

in the validation acceptance criteria. 

Validation studies should be executed for sample types that will be routinely tested in GMP 

environments to make decisions about product disposition. This typically includes the 

following sample types: 

 Sample types listed on all release and stability specifications (intermediates, drug 

substance and drug product);   

 Samples associated with process controls and in-process decision points. 
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5. Performance characteristics 

In order to produce a reliable assessment of method performance, all necessary performance 

characteristics should be evaluated in carefully designed experiments. ICH guideline Q2R1 

specifies which performance characteristics should be evaluated for validation. However, 

interpretation of the table for protein products is not straightforward. This is due in part to 

the fact that ICH Q2R1, Q6B and the industry used different nomenclature to describe the 

type of methods. The table below details the performance characteristics that should be 

assessed during qualification, and subsequently during the confirmatory validation 

experiments for protein products. 

 

ICH Q2R1  

method types 

ICH Q6B  

method types 

Industry  

method types

Performance characteristics 

Specificity Linearity Range Precision Accuracy LOD/LOQ 

Testing for 

impurities 

Quantity Titer √ √ √ √ √ * 

Purity and 

impurities 

Purity √ √ √ √ √ √ 
Immuno √ √ √ √ √ √ 
DNA √ √ √ √ √ √ 
Peptide map √   √  √ 
Gels √ √ √ √ √ √ 
Process 

Reagents 
√ √ √ √ √  

Assay Potency Potency √ √ √ √ √ √ 
Identification Identity ID √      

* In some cases may be required by USP <1225>. 

Table 1. Performance Characteristics that need to be Evaluated During Qualification/Validation by 

Method Type 

6. Precision 

Precision has typically been considered as the most important performance characteristic of 

the method, because it gives customers/clients of the analytical data direct information on 

the significance or uncertainly of results. Typically, method precision is established from 

replicate analyses of the same sample.  However, methods for predicting precision have 

recently been published that allow the assessment of  precision based on a single 

chromatogram (Apostol, Kelner et al. 2012).  

Method precision defines  the capability  of the method expressed in its reporting interval 

(Holme and Peck 1998). Agut et al.  (Agut, Segalini et al. 2006) examined different rules and 

their application to the reporting interval of results and specifications. The best known and 

simplest rule to implement is that stated in the AMST standard E-29-02. The rule states that 

the results of analytical measurements should be rounded to not less than 1/20 of the 

determined standard deviation (ASTM 2005).  

For example, bioassays with a standard deviation of 11.8 should adopt a reporting interval 

larger than 0.59. However, this 0.59 reporting interval is impractical in day-to-day applications 
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due to the inability of bioassays to provide precision that would justify such a reporting 

interval. Therefore, bioassays with a standard deviation of 11.8 would result in a reporting 

interval of 1. Similarly, an HPLC assay with a standard deviation of 1.3 for the main peak 

would result in a reporting interval of 0.1. Reporting intervals for impurities (minor peaks) 

need to be consistent with reporting intervals for the main peak. In general, STD of equal or 

less than 2 (in units reported by the method)  is required to ensure a reporting interval of one 

decimal place. The argument can be raised that for low level, minor analytes (for example, the 

dimer in SEC present at 1%), the requirement for STD to be at or below 2% is too generous. 

This will result in an RSD of 200% for the peak. In such an instance, this would indicate that 

the minor peak is well below the detection level, because theoretically the RSD at the  LOD 

level should not exceed 33% (Long and Winefordner 1983; Hayashi and Matsuda 1995)  

The table below proposes the nearest reporting intervals based on standard deviations 

obtained during qualification for protein products. 

 

Standard Deviation 

(in reported units) 

Nearest Reporting 

Interval 

≤2.0 0.1 

≤20 1 

Table 2. Recommended Nearest Reporting Results Based on Standard Deviation 

Method precision is closely linked to the concentration of the analyte. The best-known 

relationship between analyte concentration and RSD is the Horwitz equation (Horwitz 1982; 

Horwitz and Albert 1997; Horwitz and Albert 1997) 

1-0.5 )C( logRSD = 2   

where, C is the concentration of the analyte in mg/g.  

Based on the Horwitz equation, the precision of the measurement, expressed as RSD, 

doubles for each decrease of analyte concentration of two orders of magnitude. 

The Horwitz relationship can provide good guidance for method precision targets during 

method development and qualification. Intermediate precision  obtained  during  these 

studies should meet the variability derived from the Horwitz equation for each individual 

analyte.  If, during execution of the qualification experiments, the precision of the 

measurements exceeds values derived from the Horwitz equation, this may indicate that the 

assay may need to be redeveloped, or that the technology utilized in the assay may not be 

fully suitable for the intended application. 

Typically, proteins are available for analysis as solutions, with concentrations ranging 

widely from 1 g/ml (e.g., a growth factor) to 100 mg/ml or higher (e.g., a monoclonal 

antibody).  In such cases, expectations for the RSD of measurements of the main protein 

analyte in these solutions, based on the Horwitz relationship (e.g., using protein 

concentration method),  will be 16 and 2.8 %, respectively.  
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As mentioned earlier, the precision of the method is referred to as uncertainty.  The 

uncertainty of results is a parameter that describes a range within which the measured value 

is expected to lie (Miller and Miller 2000). Intuitively, we associate this parameter with 

precision. Therefore, method precision has been viewed as the most important performance 

characteristic. Typically, method precision has been assessed from replicate analyses of the 

same sample.  The work of Hayashi and Matsuda on FUMAI theory (Hayashi, Rutan et al. 

1993; Hayashi and Matsuda 1994; Hayashi and Matsuda 1994; Hayashi and Matsuda 1995; 

Hayashi, Matsuda et al. 2002; Hayashi, Matsuda et al. 2004) demonstrated that the precision 

of chromatographic methods can be predicted from noise and the height and width of the 

signal (peak). However, due to the complexity associated with the required Fourier 

transformation of chromatograms and the parameterization of the power spectrum called 

for in implementation of this theoretical construct to the determination of precision, the 

FUMAI theory approach has not been widely applied.  

Apostol et al. (Apostol, Kelner et al. 2012) proposed a new approach to assessing the 

uncertainty of purity analyses that uses a more holistic approach that is called Uncertainty 

Based on Current Information (UBCI). The model allows for real-time assessment of all 

performance characteristics using the results of the specific separation of interest. A 

fundamental, underlying principle of this approach recognizes that the execution of a purity 

method is always associated with specific circumstances; therefore, uncertainty about the 

generated results needs to account for both the operational conditions of the method and the 

hardware. The authors demonstrated that noise levels, instrument and software settings can 

be linked directly to all method performance characteristics. Such simplification makes it 

easy to implement this procedure in a daily operation, and can provide a valuable live 

assessment of uncertainty instead of extrapolating uncertainty from historical 

qualification/validation studies. 

The UBCI model approximates the maximal uncertainty of the measurement associated 

with the actual conditions of analysis (test). The obtained precision corresponds to the 

uncertainty under the most unfavorable conditions, including the highest variability of 

injection, maximal numeric integration error, expected variability of the peak width, and 

the most unfavorable contribution of the noise. UBCI shows that the uncertainty of results 

is not only a function of the method (composition of the mobile phase, gradient, flow rate, 

temperature), but also is influenced by the hardware associated with the execution of the 

method (pump pulsation, detector range, status of the lamp, etc.), and the software 

settings used to acquire the output in the form of chromatograms. Information about 

these parameters can be extracted from individual chromatograms; therefore, the 

assessment of method performance characteristics (uncertainty) can be performed real-

time, which can be considered as a ‘live validation’ associated with each individual test 

result.  

It is important to note that historical qualification/validation approaches do not take this 

fundamental principle into account, such that performance drift may occur over time due to 

hardware differences and even due to differences in analyst skill levels, such that the 
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uncertainty of results obtained early in the product lifecycle may not be fully applicable to 

results obtained later.  Application of historical validation data always begs a question about 

the relevance of these data to the current experimental situation, and sometimes requires 

investigation, which can delay the approval of results. The UBCI approach, therefore, has 

the capability of providing not only simplicity, but also a greater level of assessment of the 

data validity relative to current practices.  

7. Accuracy  

The determination of accuracy for protein purity methods presents significant challenges. 

Since it is difficult to establish orthogonal methods for proteins to measure the same quality 

attribute, it is hard to assess the truthfulness of the accuracy measurements. For example, 

although SEC-HPLC results can be verified by analytical ultra centrifugation (AUC) 

techniques, these techniques are based on very different first principles, and may not 

provide comparable results (Carpenter, Randolph et al. 2010; Svitel, Gabrielson et al. 2011). 

Therefore, in most cases, the accuracy of purity methods for proteins is inferred when other 

performance characteristics meet expectations, which is consistent with the principles of 

ICH Q2R1(ICH 2005).  

8. Linearity and range 

Linearity and range are typically assessed in a complex experiment demonstrating a linear 

change of peak area with analyte concentration. Since most of the methods use UV 

detection, such linearity experiments can be considered as re-confirmation of the Beer-

Lambert law for the particular hardware configuration.  

9. Specificity 

The specificity of analytical methods is typically assessed by examining system interference 

with the detection and quantification of analytes. Part of this evaluation is the determination 

of protein recovery from the column (Rossi, Pacholec et al. 1986; Eberlein 1995). The 

recovery determination requires the knowledge of the extinction coefficient for the protein, 

which can be calculated from its amino acid composition (Pace, Vajdos et al. 1995) or 

determined experimentally.  It should be noted that the extinction coefficient of a protein 

may change as a function of pH (Eberlein 1995; Kendrick, Chang et al. 1997). Therefore, 

direct comparison of the recovery in the neutral pH, size exclusion method with the 

recovery in an acidic reversed-phase separation may not be valid due to differences in the 

operating pHs of the methods. The difference may not necessarily reflect the actual 

recovery, but rather shows pH dependent changes of spectroscopic properties of the protein. 

With such an approach, the specificity of the method can be assessed in every assay, and 

reflects dynamically the change in status of consumables (columns and mobile phases) and 

hardware. 
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10. LOD and LOQ  

Assessment of limit of detection/limit of quantitation (LOD/LOQ) is required for most 

analytical methods developed to monitor product quality attributes. In the latest version of 

ICH Q2R1, the terms Detection Limit (LD) and Quantitation Limit ( QL) are used instead of  

LOD and LOQ,  respectively. ICH defines LOD (DL) as the minimum level of analyte which 

can be readily detected, while LOQ (QL) has been defined as the minimum level of analyte 

which can be quantified with acceptable accuracy and precision. Practical application of 

LOD is related to the decision about integration of chromatograms, electropherograms or 

spectra, while LOQ is related to the decision on whether to report the results of tests on 

official documents, such as the Certificate of Analysis (CoA) for the lot.   

ICH Q2R1 suggests three different approaches: visual inspection, signal-to-noise-ratio, or 

variability of the slope of the calibration curve (statistical approach). Vial and Jardy,  and 

Apostol et al., evaluated different approaches for determining LOD/LOQ and concluded 

that they generate similar results (Vial and Jardy 1999; Apostol, Miller et al. 2009). It is 

prudent to verify LOD/LOQ values obtained by different calculations. If those values are not 

within the same order of magnitude, then the integrity of the source data should be 

investigated.  

The statistical approach is most commonly practiced, and is associated with the use of well 

known equations: 

LOD = 3.3 x SD/S

LOQ = 10 x SD/S
  

SD = standard deviation of response 

S = slope of calibration curve (sensitivity) 

The SD can be easily obtained from linear regression of the data used to create the 

calibration curves. The most common way to present calibration data for the purpose of 

linear regression is to graph the expected analyte concentration (spiked, blended) vs. the 

recorded response (UV, Fl, OD etc). This type of plot is characteristic of analytical methods 

for which the response is a linear function of the concentration (e.g.  UV detection that 

follows the Beer-Lambert law).  In cases where the measured response does not follow a 

linear dependency with respect to concentration (e.g., multi-parameter fit response of 

immunoassays), the response should be transformed to a linear format, such as semi-

logarithmic plots, so that the equations above can be utilized.   

The slope used in these equations is equivalent to instrument sensitivity for the specific 

analyte, reinforcing the fact that LOD/LOQ are expressed in units of analyte concentration 

(e.g. mg/ml) or amount (e.g., mg). Since the LOD and LOQ are functions of  instrument 

sensitivity, these values, when defined this way, are not universal properties of the method 

transferable from instrument to instrument, or from analyte to analyte.  
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Considering LOD from the perspective of the decision to include or disregard a peak for 

integration purposes, stresses the importance of signal-to-noise ratio as a key parameter 

governing peak detection. Defining LOD as 3.3 x noise creates a detection limit, which can 

serve as a universal property of methods applicable to all analytes and different instruments 

(because sensitivity factor has been disregarded in this form of the equation). LOD 

expressed in this format is a dynamic property due to the dependency on the type of 

instrument, status of the instrument, and quality of the consumables.  LOD determined this 

way will be expressed in units of peak height, e.g. mV or mAU. 

The decision about reporting a specific analyte on the CoA is typically linked to 

specifications. After the decision about integration has been made for all analytes resolved 

(defined) by the method, the results are recorded in the database (e.g. LIMS). When all 

analytical tests are completed, the manufacturer creates the CoA by extracting the relevant 

information from the database. Only a subset of the results, which are defined by 

specifications, will be listed on the CoA. The specifications will depend on the extent of peak 

characterization and the clinical significance of the various peaks (Apostol, Schofield et al. 

2008). Therefore, the list will change (evolve) with the stage of drug development. In such a 

context, LOQ should be considered as the analyte specific value expressed in units of 

protein concentration, a calculation for which instrument sensitivity cannot be disregarded 

(in contrast to LOD estimation). This indicates that a potential exists for diverse approaches 

to the practice of determining the LOD and LOQ. 

Application of LOD/LOQ to purity methods presents specific challenges that deserve 

additional consideration.  The reporting unit for purity methods is percent (%) purity, a 

unit that is not compatible with the unit in which LOD or LOQ are typically expressed 

(units of concentration or amount). The signal created by the analyte may vary with the 

load, while the relative percentage of the analyte does not change. This creates a 

situation where the analyte of interest can be hidden within the noise or, alternatively, 

can be significantly above the noise for the same sample analyzed at two different load 

levels within the range allowed by the method.  This  has been addressed by the concept 

of “dynamic LOQ” by combining  statistical and S/N approaches (Apostol, Miller et al. 

2009).   

 -1LOQ = 10 x S/N x P   

N = level of peak-to-peak noise 

S = peak height for the analyte of interest 

P = purity level  for the analyte of interest 

The above equation expresses LOQ as a function of signal-to-noise ratio and the observed 

purity of the analyte. Both parameters can change from test-to-test, due to equipment 

variability and sample purity variability. Therefore this equation should be viewed as the 

dynamic (live) assessment of LOQ. 
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11. System suitability 

System suitability is intended to demonstrate that all constituents of the analytical system, 

including hardware, software, consumables, controls, and samples, are functioning as 

required to assure the integrity of the test results. System suitability testing is an integral 

part of any analytical method, as specified by ICH Q2R1.  However, guidance is vague and 

reference is often made to Pharmacopeias for additional information. The USP, EP and JP 

contain guidance for a broad scope of HPLC assays, including assays of the active substance 

or related substances assays, assays quantified by standards (external or internal) or by 

normalization procedures, and quantitative or limit tests. While each type of assay is 

described in the compendia, the specific system suitability parameters to be applied for each 

type of assay, is not included with the description. Thus, some interpretation is required. 

The interpretation of how to best meet the requirements of the various compendia while still 

maintaining operational efficiency is a significant challenge for industry.  

Existing guidance for system suitability was developed for pharmaceutical compounds and 

may not be directly applicable for proteins which, due to their structural complexity and 

inherent heterogeneity, require additional considerations beyond those typically required 

for small molecules. For example, appraisal of resolution by measuring the number of 

theoretical plates (commonly done for small molecules), may not be the best way to assess 

the system readiness to resolve charge isoforms of a protein on an ion exchange column. 

This may be due to the relatively poor resolution of protein peaks resulting from inherent 

product microheterogeneity, when compared to the resolution typically seen with small 

molecules.  However, this methodology (the number of theoretical plates) may be a very 

good indicator to measure the system performance for size exclusion chromatography 

(SEC), which does not typically resolve product isoforms resulting from microheterogeneity. 

To appropriately establish system suitability, we need to consider both the parameter that 

will be assessed and the numerical or logical value(s), generally articulated as acceptance 

criteria, associated with each parameter. System suitability parameters are the operating 

parameters that are the critical identifiers of an analytical method’s performance. System 

suitability should be demonstrated throughout an assay by the analysis of appropriate 

controls at appropriate intervals. It is a good practice to establish the system suitability 

parameters during method development, and to demonstrate during qualification that these 

parameters adequately evaluate the operational readiness of the system with regard to such 

factors as resolution, reproducibility, calibration and overall assay performance. Prior to 

validation, the system suitability parameters and acceptance criteria should be reviewed in 

order to verify that the previously selected parameters are still meaningful, and to establish 

limits of those parameters, such that meaningful system suitability for validation is firmly 

established.  

One important issue that merits consideration is that the setting of appropriate system 

suitability parameters is a major contribution to operational performance in a Quality 

environment, as measured by metrics such as invalid assay rates.  A key concept is that the 
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purpose of system suitability is to ensure appropriate system performance (including 

standards and controls), not to try to differentiate individual sample results from historical 

trends (e.g., determining equivalence of results from run-to-run). In practice, setting system 

suitability parameters that are inappropriately stringent can result in the rejection of assay 

results with acceptable precision and accuracy.  It is highly advisable to ensure the 

participation of Quality Engineers and/or other staff members with appropriate statistical 

expertise when setting system suitability parameters. 

12. Method robustness 

ICH Q2R1 prescribes that the evaluation of robustness should be considered during the 

development phase. The robustness studies should demonstrate that the output of an 

analytical procedure is unaffected by small but deliberate variations in method parameters.   

Robustness studies are key elements of the analytical method progression and are connected 

to the corresponding qualification studies.  

Method robustness experiments cannot start before the final conditions of the method are 

established. It is a good practice to identify operational parameters for the method and to 

divide them in the order of importance into subcategories according to their relative 

importance, which are exemplified below:   

1. “Essential” category: includes method parameters that are critical to the method output 

and therefore require evaluation; 

2. “Less important” category: includes method parameters that are not as critical as those 

in the “Essential” category, but may still affect the method output. These parameters 

should be evaluated at the scientist’s discretion; 

3. “Depends on Method” category: includes parameters that may affect the method 

output differently for different methods, such that these parameters should be treated 

differently for each method; 

4. “Not useful” category: includes method parameters that are known to have no impact 

on the method output, such that these parameters need not be evaluated for 

robustness. 

It is highly impractical to evaluate the impact of all possible parameters on the output of the 

method. Therefore, robustness studies could be limited to the demonstration that the 

reported assay values are not affected by small variations of “essential” operational 

parameters. It is a good practice to prospectively establish a general design (outline) for such 

studies. Typically, in these types of studies a reference standard and/or other appropriate 

samples are analyzed at the nominal load.  The studies may be carried out using the one-

factor-at-a-time approach or a Design of Experiment (DOE) approach. The selection of assay 

parameters can vary according to the method type and capabilities of the factorial design, if 

applicable.  It is essential to study the impact of all essential factors, and it is important to 

establish prospectively “target expectations” for acceptable changes in the output, to ensure 

that these robustness studies do not repeat the development work.  The maximum allowable 



 

Analytical Chemistry 130 

change in the output of the analytical method can be linked to the target expectations for the 

precision of the  method, which are derived from the Horwitz equation (Horwitz 1982; 

Horwitz and Albert 1997; Horwitz and Albert 1997). Recently a number of software 

packages have become available to assist with the design and data analysis (Turpin, 

Lukulay et al. 2009; Jones and Sall 2011; Karmarkar, Garber et al. 2011). 

13. Challenges associated with validated methods 

Remediation of validated analytical methods is typically triggered by the need to improve 

existing methods used for disposition of commercial products.  The improvement may be 

required due to an unacceptable rate of method failures in the GMP environment, lengthy 

run times, obsolete instruments or consumables, the changing regulatory environment for 

specifications or stability testing, or for other business reasons.   

We anticipate that technological advances will continue to drive analytical methods 

toward increasing throughput. In this context, it appears that many release methods are 

destined for change as soon as the product has been approved for commercial use 

(Apostol and Kelner 2008; Apostol and Kelner 2008). This is due to the fact that it takes 

more than 10 years to commercialize a biotechnology drug, resulting in significant aging 

of the methods developed at the conception of the project. Therefore, the industry and 

regulators will need to continuously adjust strategies to address the issue of old vs. new 

methods, particularly with respect to how these advances impact product specifications 

(Apostol, Schofield et al. 2008). Frequently, old methods have to be replaced by methods 

using newer technologies, creating a significant challenge for the industry in providing 

demonstration of method equivalency and a corresponding level of validation for the 

methods. 

14. Concluding remarks 

When we consider the critical role that analytical method development, qualification and 

validation play in the biopharmaceutical industry, the importance of a well designed 

strategy for the myriad analytical activities involved in the development and commercial 

production of biotechnology products becomes evident.   

The method qualification activities provide a strong scientific foundation during which the 

performance characteristics of the method can be assessed relative to pre-established target 

expectations.  This strong scientific foundation is key to long-term high performance in a 

Quality environment, following the method validation, which serves as a critical pivotal 

point in the product development lifecycle.  As noted previously, the method validation 

often serves as the point at which the Quality organization assumes full ownership of 

analytical activities. If done properly, these activities contribute to operational excellence, as 

evidenced by low method failure rates, a key expectation that must be met to guarantee 

organizational success.  Without the strong scientific foundation provided by successful 

method development and qualification, it is unlikely that operational excellence in the 
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Quality environment can be achieved. As analytical technologies continue to evolve, both 

the biotechnology industry and the regulatory authorities will need to continuously develop 

concepts and strategies to address how new technologies impact the way in which the 

Quality by Design principles inherent in the analytical lifecycle approach are applied to the 

development of biopharmaceutical products. The basic concepts are described in ICH 

guidelines Q8, Q9 and Q10 (ICH 2005; ICH 2008).  

The ICH Q2 guideline requires that an analytical method be validated for commercial 

pharmaceutical and bio-pharmaceutical applications. Frequently, validation is done only 

once in the method’s lifetime.  This is particularly of concern when the future testing is 

performed on an instrument with different technical characteristics, in different geographic 

locations within the company and/or at contract laboratories around the world, using 

different consumables, different analysts, etc. This concern is exacerbated by the 

requirement for modern pharmaceutical and biopharmaceutical companies to seek 

regulatory approval in multiple jurisdictions, where the instrumentation, consumables, and 

scientific staff experience at the testing location may be very different than that present in 

the place where the drug was developed. These considerations raise questions about the 

value of the current format of the validation studies conducted by the industry. Moreover, it 

is not clear how the validation data obtained using existing methodologies should or even 

could be used toward the assessment of the uncertainty of the future results, given the many 

factors that contribute to the uncertainty. 

Perhaps the time is right for the industry to consider the use of a combination of sound 

science and reasonable risk assessment to change the current practice of the retrospective 

use of method validation to the new paradigm of live validation of purity methods based on 

the current information embedded in the chromatogram. Laboratories that work in a GMP 

environment are required to produce extensive documentation to show that the methods are 

suitable. Pharmaceutical and biopharmaceutical companies thoroughly adhere to these 

requirements, inundating industry with an avalanche of validation work that has 

questionable value toward the future assessment of uncertainty. The predication of 

uncertainty provides an alternative that has the potential to reduce the work required to 

demonstrate method suitability and, in turn, provide greater assurance of the validity of the 

results from the specific analysis in real time. 

The establishment of qualification target expectations can be considered as a form of Quality 

by Design (QbD), since this methodology establishes quality expectations for the method in 

advance of the completion of method development.  Also, the analytical lifecycle described 

here covers all aspects of method progression, starting with method development, the 

establishment of system suitability parameters, and qualification and robustness activities, 

culminating in method validation, which confirms that the method is of suitable quality for 

testing in Quality laboratories.  The entire analytical lifecycle framework can be considered 

as a QbD process, consistent with evolving regulatory expectations for pharmaceutical and 

biopharmaceutical process and product development.   
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