
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 2 

 

 

 
 

© 2012 Akinyemi et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Mineralogy and Geochemistry of  

Sub-Bituminous Coal and Its Combustion 

Products from Mpumalanga Province,  

South Africa 

S. A. Akinyemi, W. M. Gitari, A. Akinlua and L. F. Petrik 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50692 

1. Introduction 

Coal forms from the accumulation and physical and chemical alteration of plants remains 

that settle in swampy areas and form peat, which thickens until heat and pressure transform 

it into the coal we use. The coal we use is combustible sedimentary rock composed of 

carbon, hydrogen, oxygen, nitrogen, sulphur, and various trace elements (it has a 

carbonaceous content of more than 50 % by weight and more than 70 % by volume). As 

much as 70 % of the South African estimated coal reserve is located in the Waterberg, 

Witbank, and Highveld coalfields, as well as lesser amounts in the Ermelo, Free State and 

Springbok Flats coalfields. However, the Witbank and Highveld coalfields are approaching 

exhaustion (estimated 9 billion tons of recoverable coal remaining in each), while the coal 

quality or mining conditions in the Waterberg, Free State and Springbok Flats coalfields are 

significant barriers to immediate, conventional exploitation [1]. South Africa is the third 

largest coal producer in the world, and coal accounts for 64 % of South Africa’s primary 

energy supply [2]. Electricity generation accounts for 61 % of the total coal consumption in 

South Africa and more than 90 % of the country’s electricity requirements are provided for 

by coal-fired power plants [2]. South African coals are generally low in sulphur, nitrogen 

and phosphorus, and in the case of the first two the contents are dependent on maceral 

composition and rank [3, 4].  

The inorganic elements in coal can have profound environmental, economic, technological 

and human health impacts [5, 6]. Consequently, knowledge of their concentration is 

necessary when evaluating coals for combustion and conversion and also to evaluate 

potential negative environmental and health impacts resulting from coal use. Trace elements 
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in coal are emitted into flue gas, fly ash or bottom ash of combustion plants. In a flue gas 

stream, trace elements are fixed in ash particles and in by-products such as gypsum and 

sludge if wet flue gas desulphurization unit is equipped. 

Coal fly ash is a solid residue from the combustion processes of pulverised coal for the 

production of electrical power in power generating stations, especially when low-grade 

coal is burnt to generate electricity [7, 8, 9]. The coal burning power stations in the 

Mpumalanga Province, South Africa generates over 36.7 Mt of fly ash annually in which 

only 5 % is currently utilized, the rest being disposed of in the ash dams, landfills, or ponds 

[9, 10]. During combustion, mineral impurities in the coal, such as clay, feldspars, and 

quartz, are fused in suspension and float out of the combustion chamber with exhaust 

gases. As the fused material rises, it cools and solidifies into spherical glassy particles 

called fly ash [11]. The properties of the coal fly ash depend on the physical and chemical 

properties of the parent coal, coal particle size, the burning process and the type of ash 

collector.  

This article presents results obtained from mineralogical and chemical characterization of 

coal and its combustion products from a coal burning power station in the Mpumalanga 

Province, South Africa. The main objective of the study is to understand the role of 

combustion process, chemical interaction of fly ash with ingressed CO2 and percolating rain 

water on the mineralogy and chemical compositions of fly ash. 

2. Methodology/research approach 

2.1. XRF and LA-ICPMS analyses 

Pulverised coal samples and its combustion products were analysed for major element 

using Axios instrument (PANalytical) with a 2.4 kWatt Rh X-ray Tube. Further, the same 

set of samples were analysed for trace element using LA-ICPMS instrumental analysis. 

LA-ICP-MS is a powerful and sensitive analytical technique for multi-elemental analysis. 

The laser was used to vaporize the surface of the solid sample and it was the vapour, and 

any particles, which was then transported by the carrier gas flow to the ICP-MS. The 

detailed procedures for sample preparation for both analytical techniques are reported 

below. 

2.1.1. Fusion bead method for Major element analysis 

 Weigh 1.0000 g ± 0.0009 g of milled sample 

 Place in oven at 110 ºC for 1 hour to determine H2O- 

 Place in oven at 1000 ºC for 1 hour to determine LOI 

 Add 10.0000 g ± 0.0009 g Claisse flux and fuse in M4 Claisse fluxer for 23 minutes. 

 0.2 g of NaCO3 was added to the mix and the sample+flux+NaCO3 was pre-oxidized at 

700 °C before fusion. 

 Flux type: Ultrapure Fused Anhydrous Li-Tetraborate-Li-Metaborate flux (66.67 % 

Li2B4O7 + 32.83 % LiBO2) and a releasing agent Li-Iodide (0.5 % LiI). 
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2.1.2. Pressed pellet method for Trace element analysis 

 Weigh 8 g ± 0.05 g of milled powder 

 Mix thoroughly with 3 drops of Mowiol wax binder 

 Press pellet with pill press to 15 ton pressure 

 Dry in oven at 100 ºC for half an hour before analysing. 

2.2. Loss on ignition determination 

Loss on Ignition (LOI) is a test used in XRF major element analysis which consists of 

strongly heating a sample of the material at a specified temperature, allowing volatile 

substances to escape or oxygen is added, until its mass ceases to change. The L.O.I. is made 

of contributions from the volatile compounds H2O+, OH-, CO2, F-, Cl-, S; in parts also K+ and 

Na+ (if heated for too long); or alternatively added compounds O2 (oxidation, e.g. FeO to 

Fe2O3), later CO2 (CaO to CaCO3). In pyro-processing and the mineral industries such as 

lime, calcined bauxite, refractories or cement manufacture, the loss on ignition of the raw 

material is roughly equivalent to the loss in mass that it will undergo in a kiln, furnace or 

smelter.  

2.3. XRD analysis 

Coal samples and its combustion products were analysed for mineralogical composition 

by X-ray diffraction (XRD). A Philips PANalytical instrument with a pw 3830 X-ray 

generator operated at 40 kV and 25 mA was used. The pulverised samples were oven-

dried at 100 °C for 12 h to remove the adsorbed water. The samples were pressed into 

rectangular aluminium sample holders using an alcohol wiped spatula and then clipped 

into the instrument sample holder. The samples were step-scanned from 5 to 85 degrees 2 

theta scale at intervals of 0.02 and counted for 0.5 sec per step.  

2.4. Scanning Electron Microscopy and Electron Dispersive X-ray Spectroscopy 

(SEM/EDS) 

Microstructural and chemical composition investigations of coal and coal ash were 

carried out by scanning electron microscopy/electron dispersive x-ray spectroscopy 

(SEM/EDS). For SEM/EDS aluminium stubs were coated with carbon glue; when the glue 

was dry, but still sticky; a small amount of powder residue samples was sprinkled onto 

the stub. The excess residue sample powder was tapped off and the glue allowed 

complete drying. The residue samples were then coated with carbon in an evaporation 

coater and were ready for analysis with the SEM. The SEM is an FEI Nova NanoSEM 

(Model: Nova NanoSEM 230); The EDS analyses were determined at 20 Kv and 5 mm 

working distance. The EDS detector is an Oxford X-Max (large area silicon drift detector) 

using the software program INCA-(INCAmicaF+ electronics and INCA Feature particle 

analysis software). 
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2.5. Transmission Electron Microscopy (TEM) 

Pulverized sample (~1-2) g of the coal and coal ash samples was poured into a small conical 

container while little amount of ethanol was added to the sample to serve as medium for 

solution. This solution was then placed inside the centrifuge for few minutes (5 mins), drops of 

the stirred solution was then placed on a labelled 200 μm and 400 μm of copper grid underlain 

by a filter paper with a hot lamp light focused directly on the samples to dry up the earlier 

added ethanol. The resultant mixture was placed inside the air gun channel so as to project the 

beam on it for image analysis at a nanometric scale. The TEM analysis of study was carried out 

on TECHNAI G2 F20 X-TWIN MAT 200Kv field emission transmission electron microscopy. 

2.6. Proximate and ultimate analyses 

Proximate and ultimate analyses were performed on coal samples based on ASTM 

Standards [12]. All runs were repeated to check the instrument’s results repeatability and 

reproducibility. 

3. Results and discussion 

3.1. Mineralogy of coal 

The XRD analytical results show that the pulverized coal used in the combustion process in 

the power station mainly composed of siliceous mineral such as quartz (SiO2), kaolinite 

[Al2(SiO2O5)(OH)4)] and the non-siliceous mineral for instance potassium selenium chloride 

(K2SeCl6)  and little quantities of pyrite (FeS2) (Fig. 1). The mineral suites in the coal samples 

used in the present study are consistent with the previous studies [4, 13, 14, 15, 16, 17). 

Kaolinite is uniformly distributed in the coal samples. This mineral is commonly present in 

coal as two species with different crystallinity, namely a low crystallinity detrital kaolinite 

and a high crystallinity neomorphic kaolinite. These genetic types have been described 

earlier [18, 19]. Kaolinite contains water bound within their lattices.  

 
Figure 1. XRD spectra for the pulverised coal sample used in coal fired power station  
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All of the water is lost during the high-temperature ashing. Pyrite is the main species of 

sulfur oxidation in the coal samples studied. Pyrite occurs as typical syngenetic framboidal, 

euhedral and massive cell filling forms [20]. This mineral shows a highly inhomogeneous 

distribution in the coal samples. Pyrite is probably the most environmentally interesting 

mineral in the run of mine and beneficiation of coals and their generated wastes because of 

its propensity to oxidize during weathering and production of sulphuric acid.  

 

Figure 2. Infrared (FTIR) spectra of coal sample 

Pyrite is transformed to hematite and sulfur dioxide during coal incineration at 815°C [20]. 

Some of the sulfur dioxide may remain combined with calcium in the ash, but much is lost 

[21]. The weathering of pyrite produces acid conditions that may leach trace elements 

associated with the pyrite and other constituents in the coal [22]. Quartz is the most 

common mineral in the coal samples studied. This mineral has mostly detrital genesis [23]. 

The shape of the quartz grains is rounded to semi-rounded, indicating an intensive 

transport before their deposition in the basin. The content of quartz is also high in the coal 

fly ash because this mineral is commonly stable/inert at combustion conditions (Fig. 3). 

3.2. Mineralogy of weathered drilled ash cores 

The mineralogical analysis by depth of the core ash samples was carried out with X- ray 

diffraction technique (XRD). This is to better understand the mineralogical changes (i.e. 

secondary phases) under the real dry disposal conditions. The experimental protocol for this 

section is presented in section 2.3. The results of the XRD analysis of samples of the drilled 

weathered dry disposed fly ash aged  2 week, 1 year and 20-year-old showed quartz (SiO2) and 

mullite (3Al2O3·2SiO2) as main crystalline mineral phases (Fig. 3). Other minor mineral phases 

identified are; hematite (Fe2O3), calcite (CaCO3), lime (CaO), anorthite (CaAl2Si2O8), mica 

(Ca(Mg,Al)3(Al3Si)O10(OH)2) and enstatite (Mg2Si2O6). This is in general agreement with 
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mineralogy reported for other coal fly ashes [24, 25, 26, 27, 28, 29].The eight phases observed in 

every sample are considered to be characteristic phase assemblages for Class F fly ash. The XRD 

results obtained from 2-week-old dry disposed fly ash show similar mineralogical composition to 

the weathered ash except for the absence of calcite and mica. Lime (CaO) presence in coal fly ash 

may be due to the heat transformation of dolomite mineral or decarbonation of calcite entrained 

in feed stock coal [30]. The mullite present in fly ash was formed by the decomposition of 

kaolinite [31], which is entrapped in the parent coal. The gradual reduction in pore water pH is 

due to chemical interaction of fly ash with ingressed CO2 and percolating rain water. Calcite 

formation is attributed to chemical weathering due to over time reduction in pore water pH. 

Previous study had proved that calcite precipitation in weathered fly ash is as a result of 

chemical interactions of calcium oxide (lime) rich fly ash with ingressed CO2 [32]..   

 
Figure 3. XRD spectra for the dry disposed ash dumps: (a) 2-week-old (T 87) not irrigated dry ash dump 

(b) 1-year-old (AMB 83) irrigated and quenched with high salient effluents (n = 2) (c) 20-year-old irrigated 

and quenched with fresh water. 

Previous study has shown that the statistical variations in peak height on the same phase of 

ash samples could be used to assess the homogeneity and stability of different mineralogical 

phases [33]. A statistical consideration of the variations in the ashes peak heights for the 

different phases was used here to appraise the mineralogical distribution and chemical 

heterogeneity among the coal fly ash samples. Figures 4-6 presents the summary of the 

mean peak heights of mineral phases determined by XRD analysis of the 1 year, 8 year and 

20-year-old ash core samples drawn from  different depths of the dumps respectively. The 

eight phases observed in every sample are considered to  be characteristic phase 
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assemblages for Class F fly ash. This assemblage presented in Figure 4 consisted of quartz, 

anorthite (residual coal minerals), mullite, calcite, hematite, mica, enstatite and lime. 

In the 1-year-old ash cores, the most prominent mineral phase is quartz having a peak of 

almost double that of the other mineral phases in all the core samples from all depths (0-

31m). The peak height of quartz mineral showed a decreasing trend with increasing depth 

of 1-year-old ash dump (Figure 3). This observed trend showed strong correlation with 

flushing/leaching of SiO2 and Al2O3 in the ash dump [34]. Thus, the quartz mineral peak 

height is indicative of rapid dissolution/weathering of aluminosilicate mineral within 1 year 

of ash dumping. Other mineral phases such ash mullite; calcite, hematite, enstatite, lime, 

anorthite and mica showed similar trend in the 1 year and 20-year-old ash dumps (Figures 4 

and 6). The prominent presence of the quartz peak in the upper depths is due to flushing of 

other soluble matrix in the fly ash and the mineral phase quartz is easily detectable by XRD 

indicating there is relative increase in concentration in the upper depth 

 

Figure 4. Bulk XRD mineral mean peak heights in 1-year-old (AMB 83) Tutuka ash cores (An=anorthite, 

En=enstatite, Ca=calcite, H=hematite, L=lime, M=mullite, Mi=mica, Q=quartz). 

The mineral peak height in the 8-year-old section of the ash dump showed anomalous trend 

which may be ascribed to in-homogenous irrigation with high saline effluent (brine). This 

implied that the 8-year-old section has received much of high saline effluents than 1 year 

and 20-year-old sections of the ash dump. 

The statistical result is shown in Table 1. The relative standard deviation (RSD) in the peak 

heights of 1-year-old drilled core (Figure 4 and Table 1) showed highly significant variations 

which could be classified into 2 groups: 

< 40 %   Quartz 

57-65 %  Anorthite, Enstatite, Mica, Mullite, Hematite, Calcite and Lime 

The relative standard deviation (RSD) of quartz phase (being < 40 %) indicates less in-

homogeneity among the coal fly ash mineral phases. There are however more variation (57-
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65 %) in the peak heights of the following mineral phases, namely anorthite, enstatite, mica, 

mullite, calcite and lime. 

 
Figure 5. Bulk XRD mineral mean peak heights in 8-year-old (AMB 81) Tutuka ash cores (An=anorthite, 

En=enstatite, Ca=calcite, H=hematite, L=lime, M=mullite, Mi=mica, Q=quartz). 

 
Figure 6. Bulk XRD mineral mean peak heights in 20-year-old (AMB 79) Tutuka ash cores 

(An=anorthite, En=enstatite, Ca=calcite, H=hematite, L=lime, M=mullite, Mi=mica, Q=quartz). 

The in-homogeneous distribution of the calcite mineral phase could be attributed to 

continuous weathering occasioned by ingress of CO2. There is a direct relationship between 

the calcite mineral phase peak heights and CaO (weight %). The depletion or enrichment of 

CaO (weight %) in coal fly ash agrees with the peak height of calcite which is an indication 

of the role of lime (CaO) in the formation of calcite (CaCO3). The mica mineral phase also 

exhibited heterogeneous distribution in the drilled weathered cores which could be 

attributable to continuous weathering process. 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1m 2m 4m 6m 8m 14m 15m

P
ea

k 
he

ig
ht

s

Depth

An

En

Ca

H

L

M

Mi

Q



Mineralogy and Geochemistry of Sub-Bituminous Coal and  
Its Combustion Products from Mpumalanga Province, South Africa 55 

 
[An=Anorthite, En=Enstatite, Q=Quartz, Mi=Mica, M=Mullite, Ca=Calcite, H=Hematite, L=Lime]. 

Table 1. Summary of the statistical analysis of the peak heights of various mineral phases in Tutuka fly 

ashes (1 year, 8 year and 20-year-old dry disposed cores) 

Mullite showed variations (57-65 %) in the peak heights which might be due to the 

conversion of clays that contain < 60 % of Al2O3. The mullite peak heights depend on the 

amount of SiO2 and Al2O3 in the mineral phase (Figure 4 and Table 1). Anorthite is a rare 

compositional variety of plagioclase feldspar (calcium rich end-member of plagioclase). 

Anorthite has been found in other fly ashes obtained from coals in which Ca is present in 

inherent minerals together with other minerals with which calcium reacts.  

Anorthite showed variations (57-65 %) in peak height which could be due to chemical 

interactions of CaO, SiO2 and Al2O3 in the mineral phase of coal fly ash samples. Enstatite is 

a magnesium silicate mineral. Enstatite shows variations (57-65 %) in peak heights due to 

prevailing chemical interactions of SiO2 and MgO in the mineral phase of coal fly ash 

samples. Hematite (Fe2O3) is a heat transformation product of pyrite in feed coal and 

accordingly hematite was revealed by XRD in the ash core samples. Previous studies had 

shown that pyrite (FeS2) was present in the feed coal as a fine-grained mineral [35]. Hematite 

(Fe2O3) phase showed variations (≈ 57 - 87 %) in peak heights distribution among the fly ash 

samples. This trend is an indication of the instability of the Fe containing mineral phases in 

the ash core samples of 1-year-old ash at the dry disposed fly ash dump site. The relative 

standard deviation (RSD) in the peak heights of the 8-year-old ash (Figure 5 and Table 1) 

showed low variations which could be classified into 3 groups: 

< 3 %      Anorthite, Enstatite, Quartz, Mica, Mulite,  

< 10 %      Calcite and Hematite 

< 25 %         Lime 

The relative standard deviation (RSD) of anorthite, enstatite, quartz, mica and mullite 

(being < 3 %) indicates homogeneity among these coal fly ash mineral phases in this core. 

There was however more variation (< 25 %) in the mean peak heights of lime (CaO) in the 

8-year-old ash samples. The in-homogeneous distribution of calcite and hematite mineral 

An En Ca H L M Mi Q

Mean 12776.3 13262.8 13614 13474.9 13128.2 13969 13310.4 33003.8

Stdev. 8198.9 8153.39 7813 7797.4 8057.18 7966.25 7759.5 12837.9

RSD % 64.17 61.48 57.39 57.87 61.37 57.03 58.30 38.90

An En Ca H L M Mi Q

Mean 200.00 9261.54 1815.38 4453.85 10923.08 11692.31 3276.92 8600.00

Stdev. 0.00 83.56 170.28 381.53 2646.67 264.46 42.13 161.72

RSD % 0.00 0.90 9.38 8.57 24.23 2.26 1.29 1.88

An En Ca H L M Mi Q

Mean 14955.4 10933.9 9302.0 10754.1 10291.0 10630.0 10513.0 37438.0

Stdev. 4862.3 5729.2 6515.9 5985.0 6284.1 6487.6 5980.7 9230.3

RSD % 32.5 52.4 70.0 55.7 61.1 61.0 56.9 24.7

8 year old ash core samples

1 year old core ash samples

20 year old ash core samples
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phase (< 10 %) could be attributed to continuous differential weathering occasioned by 

chemical interaction of fly ash with atmosphere, ingressed carbon dioxide and percolating 

rain water.  

The relative standard deviation (RSD) in the peak heights of the 20-year-old ash (Figure 6 

and Table 1) showed moderate variations which could be classified into 3 groups: 

< 35 %      Anorthite 

< 60 %      Enstatite, Mica and Hematite 

≤ 70 %      Lime, Mullite and Calcite 

There is obvious similarity in the variation of mineral peak height of 20 year and 1-year-

old drilled cores (Figures 4 & 6) which is attributed to in-homogeneity due to textural 

differences in 1 year and 20-year-old drilled ash cores [34]. Less variation in the mineral 

phase peak heights is observed with the age of the ashes due to 

dissolution/precipitation of secondary phases (stability of mineral phases) with time. 

The decrease or increase in the mean peak height of some minerals in the 3 drilled ash 

cores suggest variation in the steady state conditions at the interface of mineral particles 

due to reduction in the ash pore water pH [34]. The RSD in the mineral peak heights 

showed correlation with already significant change in chemistry of the 3 drilled ash 

core samples. This showed that significant flushing/leaching of major components of fly 

ash had taken place within 1 year of ash dumping due to continuous irrigation with 

high saline effluents [34].   

Bulk chemical composition as determined by XRF analysis of all the coal fly ash samples 

also revealed major presence of MgO in fly ash which could result in the formation of 

enstatite (Mg2Si2O6) upon concomitant depletion of quartz. Mullite and quartz were the 

species identified, quartz being the only original unaltered coal mineral phase present [36]. 

Mullite and hematite are products of the thermal transformation of some minerals present in 

the coal during combustion. Mullite (3Al2O32SiO2) is a product of aluminosilicate 

transformation. It has been reported that mullite in fly ash is formed through the 

decomposition of kaolinite, Al2Si2O5 (OH)4 [31, 35], which is entrapped in the parent coal. 

For UK fly ashes mullite is reported to form preferentially from kaolinite, whereas illite 

contributes towards the glass phase [35]. Calcite (CaCO3) was found in all coal fly ash core 

samples. Calcite precipitation in weathered fly ash is as a result of chemical interactions of 

calcium oxide (lime) rich fly ash with ingressed CO2 [32] during weathering. The high 

concentration of calcium oxide as evidenced by XRF analysis [34] of the core samples 

suggests possible secondary formation of anorthite (CaAl2Si2O8), calcite, and lime in the fly 

ash dump [28]. Anorthite is a calcium mineral not present in coals. The formation of 

anorthite requires the mixing of separate calcium and aluminosilicate mineral domains. 

Thus, as calcium aluminosilicates are not found in fly ashes, their presence in coal-fired 

boiler deposits has been used to probe the mechanism of deposit formation. Studies of a 

range of coal fired boiler deposits, having different temperature histories, together with 

complementary investigations on mineral mixtures and coal ashes, have demonstrated that 
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anorthite is formed via solid-state reactions and not by recrystallization from a 

homogeneous melt [38].  

3.3. FTIR spectral analysis of the coal sample 

FTIR was used to identify the mineral matter components removed and to monitor any 

changes in the functional groups resulting due to microbial treatment in the raw and 

bioleached coals. Figure 2 shows the FTIR spectra obtained for raw and bioleached coals. All 

peaks between 3600 cm- I to 413 cm- 1 were enlarged separately. 

The high mineral content of the coals necessitated the analysis of the mineral matter more 

closely. Distinct peaks at the regions of 1000, 529 and 413 cm-1 are ascribed to kaolinite [39, 

40]. In kaolinite (1:1 layer silicate), one of the silicate anions is replaced by a sheet of 

hydroxyl groups, and the layer units are linked by hydrogen bonds between the hydroxyl 

surface of the layer and the oxygen surface of the next layer. The high frequency OH- 

vibrations occur at the region of 3600 cm-1. In dioctahedral silicates, the degree of 

substitution of aluminium (A1) for silicon (Si) is lower than in trioctahedral silicates [41]. A 

perpendicular Si-O vibration causes absorption at 413 to 529 cm-1. The Si-O-Si stretching 

vibrations give two bands at 1594 and 2174 cm-1 Si-O bending vibrations contribute to the 

strong absorption at 413 and 529 crn-1. 

The presence of quartz in the coal sample possibly gives rise to the IR spectrum with 

absorption frequency at 746 and 684 cm-1 [42, 43, 44]. The potassium selenium chlorides also 

absorb at 1625 and 1450 cm-1. The small shoulder at 1450 cm-1 could be attributed to 

potassium selenium chlorides. The spectra indicated that the coal sample used in the present 

study had little iron sulphide. The iron sulphide (pyrite) is generally the most important of 

the iron-bearing minerals in coals (basic absorption frequency 413 crn-1). Previous study 

established that the presence of quartz in the 2-week-old ash gives rise to IR spectrum with 

absorption frequency at 433-427, 770-764, and 991-996 cm-1. Although, the presence of 

mullite is responsible for the series of bands around 540-532 and 1,413-1,000 cm-1 [45]. 

3.4. Microscopic study of coal and coal ash 

SEM can provide size and morphology information of particles at submicron scale [46]. 

The size and morphological characteristics of coal and coal ash particles examined by 

SEM are exemplified in Fig. 7. SEM observations show that the coal and coal ash particles 

The coal ash (Fig. 7c, d) consists mostly of spherical shaped and aggregate that contains 

varying sizes and amount of particles. Conversely, the coal sample consisted of irregular 

shaped pyrite crystal coated with kaolinite (Fig 7a, b). TEM is the most powerful and 

appropriate technique for investigating the characteristics of nanoscale particles [46]. The 

morphology of coal and coal ash were identified using TEM. Transmission electron 

microscopy (TEM) is the most powerful and appropriate technique for investigating the 

characteristics of nanoscale particles [46]. The morphology of coal and coal ash were 

identified using TEM. The TEM images show that the coal and coal ash are made up of  
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Figure 7. Scanning electron microscopy (SEM) of coal (a, b) and coal ash (c, d). Change the color of the 

letters so they are visible against the background of the photos 

 

 
Figure 8. Transmission electron microscopy (TEM) of coal (a, b) and coal ash (c, d) 

 

A
B
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particles greater than 200μm.  TEM images of coal ash sample showed nearly spherical 

shaped haematite structure (Fig. 8d), and cluster texture agglomeration of ultrafine particles 

(Fig. 8c). On the other hand, the TEM images shows that coal sample consist irregular 

shaped Fe-rich particles (i.e. pyrite) encrusted with Al, Si-rich particles (i.e. kaolinite)  

(Fig. 8 a, b). The metallifeorus particles such as Fe-rich particles, Al-rich particles and  

Si-rich particles are not uniformly distributed in the heterogeneous microstructure of coal 

ash [47, 48]. 

3.5. Geochemistry 

Table 2 reports the chemical composition of coal and ash samples. The elements found in 

coals are commonly classified as major (> 1 wt. %), minor (1-0.1 wt. %) or trace (< 0.1 wt. %) 

elements. These elements may occur in both organic and inorganic constituents of coal and 

each element has dominant associations and affinities with different phases in coal [49]. The 

most abundant major components in both coal and ash samples are Si followed by Al, Fe 

and Ca. The least abundant components in the pulverised coal and fresh ash are Ti, Mg, Na, 

K, P, Cr and Mn. The bulk chemical composition and classification systems of coal fly ash 

always include data for LOI. The LOI and volatile (H2O) components are relatively enriched 

in the pulverised coal sample. This combustion process thermally converts kaolinite to 

mullite as indicated in the Figures 1 & 2. This type of fly ash is principally composed of 

small (10 mm or less) glassy aluminosilicate spheres. The latter are formed by the rapid 

cooling of the molten mineral matter in the pulverized coal used in the power station boilers 

[50]. The ratio of Si/Al in the coal ash is ≥ 2 and thus can also be classified as silico-aluminate 

fly ash [51].  

3.5.1. Major elements 

Usually elements in coal occur either associated with the inorganic constituents (minerals) 

or with organic constituents [52]. The enrichment factor (EF) of the inorganic elements was 

calculated based on the method previously proposed by [53] (Table 2).  Major elements such 

as Fe, Ca, Mg, Mn and Ti were as expected in coal samples but significantly enriched in the 

coal ash. Although, P, Na and K are slightly enriched in the coal ash samples used in this 

study. Enriched values in the ash were observed for environmentally significance trace 

elements.  

3.5.2. Trace elements 

The distribution of trace elements in coals used for electrical generation is of increasing 

importance in the assessment of environmental impacts from coal-fired power plants [54]. 

Trace elements such as U, Cr, Th, V, Ni, Cu, Zn, Rb, Sr, Mo and Sn are slightly enriched in 

the coal ash (Table 2). 

The slight enrichment of these trace elements in the coal ash is attributed to the combustion 

process. Simultaneously, trace elements (such as Hf, Ta, Pb, Cr, Zr and Nb) showed 
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significant enrichment in the coal ash. On the contrary, W, As, Cs and Ba are considerably 

enriched in the coal samples used in the present study.  In summary, most of the determined 

trace elements were comparatively enriched in the coal ash when compared with the parent 

material (coal). Therefore, the trace elements relative enrichment in coal ash is attributed to 

the combustion process in the Tutuka power station. 

 
* EF = [(X) / (Ti) Ash / (X) / (Ti) Coal], where X means element (Ogugbuaja and James, 1995) 

Table 2. Major and trace elements in the coal sample and coal ash from Tutuka Power Station (n = 3) 

(LLD = Low level detection) 

3.5.3. Rare Earth Elements (REE) 

Rare earth elements (REEs) contents in the coal used in the present study are summarized in 

Table 3. It shows that the bulk of REEs are found in high levels in coal ash when compared 

with the typical concentration in coal. Rare earth elements (REEs) such as La, Ce, Pr, Nd, 

Sm, Eu and Gd are slightly enriched in the coal ash. On the contrary, Lu, Y, Dy, Tb, Yb, Tm, 

Er and Ho are considerably enriched in the coal ash used in the present study. Enrichment 

of REEs in the coal ash disagreed with the previously held views [55, 56]. Consequently, the 

obvious enrichment of REEs in the coal ash used in the present study is attributed to the 

combustion conditions. Rare earth elements in coal appear to consist of a primary fraction 

which is associated with syngenetic mineral matter [57]. Another portion of the REE can be 

externally derived or mobilized when primary mineral matter is destroyed or modified. 

3.6. Genetic features relations of coal and coal ash based on chemical 

composition  

Minerals in coal are both detrital and authigenic in nature and their distribution in the 

inorganic matter are variable. Authigenic minerals in coal are mainly sulfides, carbonates 

and sulfates of Fe, Mg and Ca [58]. The chemical composition in this detrital authigenic 

index (DAI) also symbolizes the different index mineral (IM) in coal. For example, the 

Element LLD Coal Coal ash EF Element LLD Coal Coal ash EF

Si 79200.0 238700.0 0.94 As 231.08 47.67 0.064

Al 60400.0 126400.0 0.65 V 0.06 54.77 117.41 0.67

Fe 2600.0 37000.0 4.43 Cr 1.26 53.77 187.64 1.09

Ca 1300.0 41700.0 9.98 Co 0.02 24.25 17.53 0.22

Mg 600.0 5900.0 3.06 Ni 0.22 18.94 57.92 0.95

Mn 100.0 400.0 1.24 Cu 0.68 39.96 46.30 0.36

K 5100.0 6700.0 0.41 Zn 0.31 38.80 53.99 0.43

Na 500.0 600.0 1.06E-05 Rb 0.04 30.28 37.21 0.38

P 1200.00 2000.0 0.52 Sr 0.00 614.01 1270.70 0.644

Ti 4200.00 13500.0 1.00 Zr 0.01 99.09 392.21 1.23

U 0.002 3.82 10.25 0.84 Nb 0.01 10.35 35.45 1.07

Hf 0.01 2.84 10.77 1.18 Mo 0.00 3.24 6.31 0.12

Ta 0.004 0.82 2.65 1.01 Sn 0.07 4.07 8.95 0.68

W 0.00 119.17 6.99 0.02 Cs 0.01 6.16 5.92 0.30

Th 0.003 14.40 36.39 0.79 Ba 0.06 1200.18 1062.15 0.28

Pb 0.02 8.49 38.50 1.41

Concentration (ppm)
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oxides of Si, Al, K+, Na+, and Ti represent minerals and phases such as quartz, feldspars, 

clay and mica minerals (excluding some kaolinite and illite), volcanic glass, Al 

oxyhydroxide, and rutile-anatase-brookite, which commonly have dominant detrital 

genesis in coal. On the other hand, the oxides of Fe, Ca, Mg, S, P, and Mn represent 

minerals such as Fe-Mn sulphides; Ca-Fe-Mg sulphates, Ca-Mg-Fe-Mn carbonates and Ca-

Fe phosphates, which commonly have dominant origin in coal [59]. Based on the ratio of 

detrital and authigenic minerals (DAI) some genetic information for the formation of fly 

ash could be deduced [51]. 

 

 
* EF = [(X) / (Ti) Ash / (X) / (Ti) Coal], where X means element (Ogugbuaja and James, 1995) 

Table 3. Rare Earth Elements (REE) in the coal sample and coal ash from Tutuka Power Station (n =3) 

(LLD = Low level detection) 

The main trend (Table 4) indicates that the coal used in the present study is a higher-ash 

coals which is enriched in elements associated with probable detrital minerals. Detrital 

minerals such as quartz, kaolinite, illite, acid plagioclases, muscovite, rutile, apatite and Fe 

and A1 oxyhydroxides are commonly stable minerals during coalification. Their proportions 

in coal may remain almost unchanged, while their total amount depends predominantly on 

the supply of clastic material into the peat swamp [23]. 

From Table 4, the proportion of detrital minerals is higher in coal sample used in the present 

study. It has been pointed out that the proportion of detrital minerals in coal increases [60]. 

The ratio of SiO2/Al2O3 in the coal ash is ≥ 2 and thus can also be classified as silico-

aluminate fly ash [51]. The bulk chemical composition and classification systems of coal fly 

ash always include data for LOI. 

Element LLD Coal Coal ash EF

La 0.002 39.90 91.36 0.71

Ce 0.004 91.61 182.42 0.62

Pr 0.002 9.46 19.72 0.65

Nd 0.016 30.84 71.76 0.72

Sm 0.009 5.30 14.38 0.84

Ho 0.003 0.67 2.35 1.09

Er 0.004 1.89 6.65 1.09

Tm 0.002 0.27 0.95 1.08

Yb 0.000 1.81 6.5 1.11

Eu 0.004 0.89 2.68 0.94

Gd 0.012 4.15 12.62 0.95

Tb 0.002 0.57 1.91 1.04

Dy 0.007 3.31 11.91 1.12

Y 0.01 17.50 64.87 1.15

Sc 0.12 9.66 26.50 0.85

Lu 0.002 0.25 0.93 1.15

Concentration (ppm)
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DAI: ((SiO2+Al2O3+K2O+Na2O+TiO2) / (Fe2O3+CaO+MgO+SO3+P2O5+MnO)). 

Table 4. Genetic features of coal and coal ash based on chemical composition 

[61] classified fly ash based on the intersection of the sum of their major oxides: sialic: 

SiO2+Al2O3+TiO2; calcic: CaO+MgO+NaO2+K2O; and ferric: Fe2O3+MnO+P2O5+SO3 in a 

ternary diagram. Based on the chemical composition of coal ash, about seven intermediate 

fly ash subgroups exists, such as sialic, ferrosialic, calsialic, ferrocalsialic, ferric, calcic and 

ferrocalcic [51] fly ash.  The 1-year-old ash core samples were both sialic and ferrocalsialic in 

chemical composition (i.e. essentially Fe, Ca, Al and Si). Although, the 2 week and 20-year-

old dry disposed ash core samples were sialic in chemical composition (i.e. essentially 

dominated by Al and Si) (Fig. 8). These trends show that in the 1-year-old drilled cores, 

there is already a significant change in chemistry of ash core due to rapid weathering or due 

to irrigation with high saline effluents. The coal fly ash transforms into a more clay-like 

material due to long-term mineralogical changes occasioned by the weathering process. 

3.7. Proximate analysis and coal quality 

The result obtained from proximate and ultimate analyses of pulverised coal sample is given 

in Table 5. The moisture and ash contents on dry and wet basis of pulverised coal sample 

(0.8 %; 94.43 %; 93.67 %) respectively. These values are higher than the Polish coals (0.58 %; 

4.79 %) but the American coal (1.07 %; 5.77 %) was significantly higher in the moisture 

content. Some Nigerian coal deposits such as Lafia-Obi (2.91 %; 8.7 %) and Chikila coals 

(5.82 %; 14.9 %) also have considerably higher moisture content [62]. The relatively low 

moisture content in the pulverised coal sample represents a significant improvement in 

coal’s quality because moisture affects the calorific value and the concentration of other 

constituents [63]. Nevertheless, the ash content of American coal, Lafia-Obi and Chikila 

coals are relatively lower than the ash content on dry basis of the pulverised coal used in 

this study. Similarly the low ash content is an improvement on the coking quality, low ash 

content is an essential requirement for coke making coals [63]. 

Therefore the pulverised coal used in this study may be expected not to have good coking 

qualities. An ash content of less than 10 % is recommended for a good coking coal (Bustin et 

al., 1985). Industrial experience indicates that a 1 wt. % increase of ash in the coke reduces 

metal production by 2 or 3 wt. % [65]. 

Sample Name SiO2 Al2O3 Fe2O3 CaO MgO MnO SiO2/Al2O3 K2O/Na2O (MgO+CaO)/(K2O+Na2O) DAI

SAC 16.94 11.41 0.37 0.18 0.12 0.01 1.48 4.46 0.40 24.53

FA 51.05 23.88 5.29 5.84 1.26 0.05 2.14 5.37 7.39 5.97

Sample Name Cr2O3 TiO2 K2O Na2O P2O5 LOI SO3 Sum CaO/MgO

SAC 0.01 0.44 0.62 0.14 0.28 67.92 0.25 98.67 1.44

FA 0.03 1.40 0.81 0.15 0.45 8.51 0.05 98.76 4.63

Major elements (%)
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The volatile matter on dry and wet basis of pulverised coal sample is (5.6; 6.3) respectively 

(Table 5). The volatile matter of the pulverised coal sample used in this study is considerable 

lower than the American coal (31.36 %), Polish coal (32.61 %), Lafia-Obi (29.37 %) and Chikila 

(44.27 %) [66, 62]. Volatile matter, apart from its use in coal ranking, is one of the most 

important parameters used in determining their suitable applications [67]. Volatile matter 

does not form part of the coal; it is usually evolved as tar during carbonization. High-volatile 

bituminous coal due to its high volatile matter content generates high pressure during 

carbonization which is detrimental to the coke oven walls ([68, 69]. The above-mentioned 

data indicated that the coal used in the present study can be classified as medium volatile 

bituminous coal according to ASTM specification [70]. 

The elemental composition and elemental ratios of the coal sample used in this study are 

listed in Table 5. The obtained values for C, N and H contents are within the range observed 

for various types of coal [66, 62]. The C/N ratios of coal sample used in this study are higher 

than those reported for two south Brazilian coals [71]. On the other hand, similar values of 

H/C ratios observed in the present study have been obtained from two south Brazilian coals 

[71]. The fixed carbon of coal sample used in this study is 45.75 %. This is relatively higher 

than fixed carbons obtained from Chikila (40.83 %) coal. On the contrary, it is considerably 

lower than the fixed carbons in the Lafia-Obi (61.93 %), American (62.87 %) and Polish (62.60 

%) coals [66, 62]. The carbon content of a coal is essential in coke making because it is the 

mass that forms the actual coke [72]. Therefore based on the fixed carbon the coal used in 

this study may be expected not to have good coking qualities.  

  
Figure 9. Ternary oxide plots for classification of the ash dumps: (a) 2-week-old (T 87) not irrigated dry 

ash dump (b) 1-year-old (AMB 83) irrigated and quenched with high salient effluents (n = 2) (c) 20-year-

old irrigated and quenched with fresh water.  
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Note: OM % = C %*1.7. 

Table 5. Proximate and ultimate analyses of South African coal sample (n = 3) 

The organic matter content calculated (OM %) was calculated from the carbon content by 

multiplying with a value of 1.7 (Table 3). The derived organic matter content of the coal 

sample used in the present study is comparatively higher than Lafia-Obi coal (Jauro et al., 

2008; Nasirudeen and Jauro, 2011). 

4. Conclusions and summary 

The XRD spectra showed that the coal sample mainly composed of siliceous mineral (such 

as quartz and kaolinite) and the non-siliceous mineral (such as potassium selenium chloride) 

and little quantities of pyrite. The results of the XRD analysis of samples of the drilled 

weathered dry disposed fly ash aged  2 week, 1 year and 20-year-old showed quartz and 

mullite as main crystalline mineral phases. Other minor mineral phases identified are; 

hematite, calcite, lime, anorthite, mica and enstatite.  

The IR spectrum revealed the presence of quartz, kaolinite, potassium selenium chloride 

and pyrite in coal sample. SEM image of coal ash reveals spherical shaped and aggregate 

that contains varying sizes and quantity of particles. Conversely, the coal sample consists of 

irregular shaped pyrite crystal coated with kaolinite. TEM images of coal ash sample show 

nearly spherical shaped haematite structure and cluster texture agglomeration of ultrafine 

particles. Conversely, the TEM images of coal sample show irregular shaped Fe-rich 

particles (i.e. pyrite) encrusted with Al, Si-rich particles (i.e. kaolinite). 

The main trend in the major oxides indicates that the coal used in the present study is a 

higher-ash coals which is enriched in elements associated with probable detrital minerals. 

The 1-year-old ash core samples were both sialic and ferrocalsialic in chemical composition 

(i.e. essentially Fe, Ca, Al and Si). Although, the 2 week and 20-year-old dry disposed ash 

core samples were sialic in chemical composition (i.e. essentially dominated by Al and Si).  

Major elements such as Fe, Ca, Mg, Mn and Ti were as expected in coal samples but 

significantly enriched in the coal ash. Although, P, Na and K are slightly enriched in the coal 

ash samples used in this study.  

Trace elements such as U, Cr, Th, V, Ni, Cu, Zn, Rb, Sr, Mo and Sn are slightly enriched in 

the coal ash. This slight enrichment of these trace elements in the coal ash is attributed to the 

combustion process. Nevertheless, trace elements (such as Hf, Ta, Pb, Cr, Zr and Nb) 

Sample
% 

Moisture

% Ash  (dry 

basis)

% Ash   (wet 

basis)

Volatile matter 

(dry)

Volatile matter 

(wet)

SAC 0.8 94.43 93.67 5.6 6.3

Sample N % C % H % C/N H/C OM %

SAC 1.16 45.75 3.50 39.55 0.08 77.78

Proximate analysis of coal sample

Ultimate analysis of  coal sample
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showed significant enrichment in the coal ash. On the contrary, W, As, Cs and Ba are 

considerably enriched in the coal samples used in the present study.  

Rare earth elements (REEs) such as La, Ce, Pr, Nd, Sm, Eu and Gd are slightly enriched in 

the coal ash. On the contrary, Lu, Y, Dy, Tb, Yb, Tm, Er and Ho are considerably enriched in 

the coal ash used in the present study.  

The proximate analysis revealed that the moisture content, ash content and volatile organic 

matter of pulverised coal used in this study is relatively low in values compare to the 

American coal, Polish coal, Lafia-Obi and Chikila coals. The ultimate analysis showed that 

the fixed carbon of coal sample used in this study is relatively higher than fixed carbons 

obtained from Chikila coal. On the contrary, it is comparatively lower than the fixed carbons 

in the Lafia-Obi, American and Polish coals 

In conclusion, factors such as the nature of combustion process, type of coal and chemical 

interaction of fly ash with the ingressed CO2 and percolating rain water would ultimately 

determine the mineralogy and chemical composition of coal combustion products. 
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