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1. Introduction

A descriptor system describes a natural representation for physical systems. In general, the
continuous-time descriptor representation consists of differential and algebraic equations,
and the discrete-time descriptor system has difference and algebraic equations. Hence,
the descriptor system is a generalized representation of the state-space system. This
system appears in various physical systems. In fact, descriptor systems can be found in
electrical circuits, moving robots and many other practical systems which are modeled with
additional algebraic constraints. The descriptor system is also referred to as singular system,
implicit system, generalized state-space system, differential-algebraic system, or semistate
system. System analysis and control design of descriptor systems have been extensively
investigated in the past years due to their potential representation ([4], [6], [7], [17], [23]).
An important characteristic of continuous-time descriptor systems is the possible impulse
modes, which are harmful to physical systems and are undesirable in system control. The
discrete-time descriptor system may not have causality, which leads to no solution of the
system states. In [4], [32], such descriptor system behaviors are described and notion of
regularity, non-impulse, causality, and admissibility are given. In [1] and [22], quadratic
stability for continuous-time descriptor systems was considered. Its discrete-time system
counterpart was investigated in [31] and [32].

When we make a mathematical model for a physical system, time-delay is another
phenomenon. We often see time-delay in the process of control algorithms and the
transmission of information. Time-delay often appear in many practical systems and
mathematical formulations such as electrical system, mechanical system, biological system,
and transportation system. Hence, a system with time-delay is also a natural representation,
and its analysis and synthesis are of theoretical and practical importance. In the past
decades, research on continuous-time delay systems has been active. Difficulty that arises in
continuous time-delay systems is that the system is infinite dimensional and a corresponding
controller can be a memory feedback. This class of a controller may minimize a certain
performance index, but it is difficult to implement it to practical systems because it feeds
back past information of the system. To overcome such a difficulty, a memoryless controller
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is used for time-delay systems. In the last decade, sufficient stability conditions for time-delay
systems have been given via linear matrix inequalities (LMIs), and stabilization methods by
memoryless controllers have been investigated by many researchers. Since Li and de Souza
considered robust stability and stabilization problems in [18], less conservative stability
conditions for continuous time-delay systems have been obtained in [14] and [26]. Recently,
He, disturbance attenuation conditions have also been given ([25], [34], [35]). The results
in [10], [27], [33], [36] considered discrete-time systems with time-invariant delays. Gao
and Chen [11], Hara and Yoneyama [12], [13] gave robust stability conditions. Fridman and
Shaked [8] solved a guaranteed cost control problem. Fridman and Shaked [9], Zhang and
Han [37] considered the Hu disturbance attenuation. The results have been extended to a
class of discrete-time descriptor delay systems in [2], [3], [24].

In general, control systems are designed not only for the stability, but also for robustness
with respect to system parameters. In addition, they are designed for the optimization of
multiple control performance measures. Most designed control systems require accurate
controllers. Thus, when a desired controller is implemented, all of the controller coefficients
are required to be the exact values as those to be designed. However, it is not always
possible in practical applications since actuators may be of malfunction, and round-off
errors in numerical computations by calculations are possibly encountered. Therefore, it
is necessary that the designed controller should be able to tolerate some uncertainty in its
control gains. Since controller fragility problem has to be considered when implementing
a designed controller in practical applications, the non-fragile control design problem has
been investigated in [5], [15], [16], [19], [20], [21]. For state-space systems, several recent
research works have been devoted to the design problem of non-fragile robust control ([5],
[19], [20], [21]). Most of these are derived via either Riccati matrix equation approach or linear
matrix inequality (LMI) approach. The design problem of non-fragile robust controllers
of continuous-time descriptor systems was investigated in [15] and [16]. The discrete-time
counterpart was given in [28].

In this chapter, the robust non-fragile control design problem and the robust He, non-fragile
control design problem for uncertain discrete-time descriptor systems are considered. The
controller gain uncertainties and uncertain system parameters under consideration are
supposed to be time-varying but norm-bounded. The problem to be addressed is the control
design problem of state feedback controller, which is subject to norm-bounded uncertainty;,
such that the resulting closed-loop system is regular, causal and robustly admissible with
Heo disturbance attenuation for all admissible uncertainties. Sufficient conditions for the
solvability of the robust He non-fragile control design problem for descriptor systems are
obtained, for the cases with multiplicative controller uncertainties. The results are developed
for a class of uncertain discrete-time descriptor systems with time-delay. Finally, some
numerical examples are shown to illustrate our proposed controller design methods.

2. Descriptor systems

Consider the discrete-time descriptor system

Ex(k+1) = Ax(k) + Bu(k) (1)
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where x(k) € R" is the state and u(k) € R™ is the control. E, A and B are system matrices
with appropriate dimensions. E satisfies rankE = r < n. Unforced descriptor system (1) with
u(k) = 0 is denoted by the pair (E, A).

Definition 2.1. (Dai [4]) (i) The pair (E, A) is said to be regular if det(zE — A) is not identically

zero.

(ii) The pair (E, A) is said to be causal if it is reqular and deg(det(zE — A)) = rank(E).

(iii) Define the generalized spectral radius as p(E, A) = max |A|. The pair (E, A) is
re{det(zE—A)=0}

said to be stable if p(E, A) < 1.

(iv) The pair (E, A) is said to be admissible if it is reqular, causal and stable.
Lemma 2.2. (Dai [4]) (i) The descriptor system

Ex(k+1) = Ax(k)
where
= 4= ([g0] [4 %))

is regular and causal if and only if Ay is invertible.
(ii) The pair (E, A) is admissible if and only if Ay is nonsingular and p(A; — AyA; ' Az) < 1.

Unlike the standard state-space system, a descriptor system may not be regular and causal.

These unique characteristics lead to no solution of the system (1), and thus should be taken
care of.

Next, we consider the uncertain descriptor system
Ex(k+1) = (A+ AA)x(k) + Bu(k) (2)
where an uncertain matrix is of the form
AA = HF (k)G 3)
where F(k) € R/*J is an unknown time-varying matrix satisfying F (k)F(k) < I and H and

G are constant matrices of appropriate dimensions.

3. Non-fragile control

This section provides system analysis and control design for uncertain descriptor systems.
First, the non-fragile controller is discussed in Section 3.1, and then the system analysis of
the closed-loop system with a non-fragile controller is investigated in Section 3.2. Finally,
Section 3.3 proposes non-fragile control design methods.

31
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3.1. Form of controller and preliminary results

The ideal form of a feedback controller is given by
u(k) = Kx(k)

where K is a feedback gain to be determined. In practical situations where malfunction in the
actuator and uncertain calculation of control gain may occur, the actual controller is assumed
to be of the form

u(k) = [I+ ad(k)] Kx(k) 4)

where a®(k)K shows uncertainty in the control gain. ®(k) is an unknown time-varying
matrix satisfying

o (k) <1, (@)

and « is a known positive constant which indicates the measure of non-fragility against
controller gain variation. Applying the controller (4) to the system (2), we have the
closed-loop system

Ex(k+1) = (A+ BK+ H.F:(k)Gc)x(k) (6)

where

He = [H «B], F.(k) = diag[F(k) ®(K)], Ge = {IG(] .

Definition 3.1. The system (6) is said to be robustly admissible if it is admissible for all admissible
uncertainties (3) and (5).

The problem is to find a controller (4) which makes the system (2) robustly admissible. In the

following, we consider the robust admissibility of the closed-loop system (6). The following
lemmas are useful to prove our results.

Lemma 3.2. (Xie [29]) Given matrices Q = QT, H, G and R = RT > 0 with appropriate
dimensions.

Q+HF(k)G +GTFT(k)HT <0

for all F(k) satisfying FT (k)F(k) < R if and only if there exists a scalar ¢ > 0 such that

1
Q+ EHHT +eGTRG < 0.
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Lemma 3.3. (Xu & Lam [32]) (i) The descriptor system (1) is admissible if and only if there exist
matrices P > 0 and Q such that

ATPA —ETPE + ATSQT + QsTA < 0 )

where S € R "= is any matrix with full column rank and satisfies ETS = 0.
(ii) The descriptor system (1) is admissible if and only if there exists a matrix P such that

ETPE >0,
ATPA —ETPE < 0.

Lemma 3.4. (Xie and de Souza [30]) Given matrices X, Y > 0 and Z with appropriate dimensions,
we have

xXTz+7zTx+xXTyx > -zTy 17,

3.2. Robust admissibility analysis

The following two theorems give a necessary and sufficient condition for the closed-loop
system (6) to be robustly admissible.

Theorem 3.5. Given K, the descriptor system (6) is robustly admissible if and only if there exist
matrices P > 0, Q and scalar € > 0 such that

<Q5T(A +BK) + (A + BK)TSQT) (A+BK)"P QS"H aQS™B

—ETPE +¢(GTG + KTK)
P(A + BK) —-P PH aPB | <0 (8)
HTsQT HTP —el 0
aBTSQT aBTP 0 —el

where S € R ("= is any matrix with full column rank and satisfies ETS = 0.

Proof: (Sufficiency) Suppose that there exist matrices P > 0, Q and scalar ¢ > 0 such that the
condition (8) holds. Then, by Schur complement formula, we have

QST(A+ BK) + (A+ BK)TSsQT — ETPE (A + BK)TP
P(A + BK) —P
T T
+e1 {Qlf HIjC} [HIsQT HIP] +¢ [% ] [G: 0] <.
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Now, using Lemma 3.2, we have

[ QST(A + BK + H.F.(k)G,)
<+(A + BK + HF.(k)Ge)TSQT — ETPE) (A +BK+ HeFe(K)Ge) 'P
i P(A + BK + H.F,(k)G.) -p
_ [QST(A + BK) + (A+ BK)TsQT — ETPE (A + BK)TP]
1 P(A + BK) -P
T T
- {QgHHC} (k) [Ge 0] + [% (k) [HI'SQT HI'P]
< [QST(A+BK) +(A+ BK)"'SQ" — ETPE (A + BK)"P]
-1 P(A + BK) —P
T T
e ! {QlfHij} [HISQT HI'P] +¢ {Cﬂ (G 0].

It follows from (9) that

QST (A + BK + H.®(k)G,)
<+(A + BK + H.®(k)G.)TsQT — ETPE> (A+BK+ Hc®(k)Ge)"P <o
P(A+ BK + H:®(k)G,) _p

This implies by Schur complement formula and Lemma 3.3(i) that the descriptor system (6)
is robustly admissible.

(Necessity) Assume that the descriptor system (6) is robustly admissible. Then, it follows
from Definition 3.1 and Lemma 3.3 that there exist matrices P > 0, Q and scalar ¢ > 0 such
that (7) with A replaced by A + BK + H.®(k)G. holds. Thus, for all admissible F(k) and
®(k), the following inequality holds:

QST (A + BK + HcF:(k)Gc) T
<+<A + BK+ H®(K)G.)15QT — ETpg) (AT BKH HE(G)TP
P(A + BK + HcF:(k)G¢) —P

That is,

QST(A+ BK) + (A+BK)TsQT — ETPE (A + BK)TP
P(A + BK) —P

+ {Qlfgjc} ®(k) [Ge 0] + {%T} ®(k) [HTSQT HTP] < 0

is satisfied for all admissible F(k) and ®(k). It follows from Lemma 3.2 that
QST(A+ BK) + (A+BK)TsQT — ETPE (A + BK)TP
P(A + BK) P

1 [QSTH, Gl
+e! {QPHC C} [HIsQT HIP] +¢ { OC] (G 0] <0,

which leads to the condition (8) by Schur complement formula. This completes the proof.
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Similarly, using Lemma 3.3(ii), we obtain the following result.

Theorem 3.6. Given K, the descriptor system (6) is robustly admissible if and only if there exist
matrix P and scalar € > 0 such that

ETPE >0, (10)

—ETPE +¢(GTG+K'K) (A+BK)TP 0 0

P(A + BK —p PH aPB
( 0 ) HTP  —el o | <0 (11)
0 aBTP 0 —el

3.3. Robust control design

In the previous section, we have obtained robust admissibility conditions of the closed-loop
system (6). Based on those conditions, we now seek how to calculate a feedback gain K in
the controller (4).

Theorem 3.7. There exists a controller (4) that makes the descriptor system (2) robustly admissible
if there exist matrices P > 0, Q and scalar ¢ > 0 such that

Ir=p'—¢'HH >0, (12)
QSTA+ ATSQT —ETPE+eGTG+ e 1QSTH.HISQT +@'T '@ - YA~ ¥l <0 (13)
where S € R"™("=7) is any matrix with full column rank and satisfies ETS = 0, and
Y =QSTB+@'r 1B,
A = BIT71B +¢I,
©=A+e'HHI'SQT.

In this case, a feedback gain in the controller (4) is given
K=-A"19T, (14)
Proof: (Sufficiency) The closed-loop system (6) with the feedback gain (14) is given by
Ex(k+1) = (A—BA“'TT + H.F. (k)G )x(k).

where G, = [GT —‘I’Afl] T. Then, by some mathematical manipulation and (13), it can be
verified that

35
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QST(A —BA¥T) 4+ (A - BA~"WT)TSQT — ETPE +eGIG, + e 'QSTH.HI SQT
+(A—-BAYT + e 1H.HI'SQT)TT-1(A -~ BA™'¥T + e 1H.HI'sQT)

= QSTA+ ATSQT — ETPE+ (A+e 'H.HI'SQT)TT-1(A+ e 'H.HI'SQT)
+eGTG — QSTBA™ T — (A + e 'H.HI SQT)TT-1BA~1¥T —wA~1BTSQT
~YA'BIT V(A + e 'HHISQT) + YA BT IBAITT 4+ e¥ A 1ATTYWT
+e1QSTH.HI'sQT

= QSTA+ ATSQT —ETPE+ (A+ e 'H.HI'SQ)TT-Y (A + e 'H.H!sQT)
+eGTG — [QST + (A+ e 'H.HI sQT)TT- 1 BA—1¥T
YA BT [SQT + T YA+ e 'H.HISQT)] + YA1¥T 4+ e 1QSTH . HI sQT

= QSTA+ ATSQT —ETPE +eGTG + e 1QSTH.HI SQT + ©'T~ '@ - ¥YA~'¥T <.

By Schur complement formula, we obtain

QST(A—BA1¥T) + (A —BA1¥T)T5QT _
( <—ETPE + SGT)G JE s‘FAlAl‘{’)T (A—BATNYT)TP QSTH,
P(A—BA~1¥T) —P PH,
HI'SQT HIP —el

< 0.

Hence, by Theorem 3.5 we can show that the closed-loop system (6) is robustly admissible.
(Necessity) Assume there exists a feedback control of the form (4) which makes the descriptor
system (1) robustly admissible. Then, it follows from Theorem 3.5 that there exists a scalar
e > 0 such that

QST(A+ BK) + (A+BK)TSQT — ETPE +¢G!'G, (A + BK)TP QSTH,
P(A + BK) —P PH, | <O.
HI'sQT HIP —el

It follows from Schur complement formula that
QSTA+ ATSQT —ETPE+ ¢ 'QSTH.HI'SQT + ©'T !0+ KT¥T + ¥K + KT AK < 0.
By Lemma 3.4, we have

KT 1 K + KTAK > — YA 19T,

Therefore, we obtain the conditions (12) and (13), and the feedback gain K is calculated as in
(14).

Similarly, we can prove the following theorem by using Theorem 3.6.

Theorem 3.8. There exists a controller (4) that makes the descriptor system (1) robustly admissible
if there exist matrix P and scalar € > 0 such that (10), (12), and

—ETPE +eGTG+ ATr1A — ATT-1BA-1BIT-1A <0 (15)

where T', A are given in Theorem 3.7. In this case, the feedback gain in the controller (4) is given as
in (14).
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4. H, non-fragile control

In this section, we consider the robust admissibility with He disturbance attenuation. Heo
disturbance attenuation problem plays an important role in control systems. Section 4.1
discusses the analysis of He, disturbance attenuation, and Section 4.2 gives design methods
of the He, non-fragile controllers.

4.1. Robust H, disturbance attenuation for uncertain systems

First, we consider the robust He disturbance attenuation <y for the following uncertain
descriptor system

Ex(k+1) = (A4 AA)x(k) + Biw(k) + Bou(k),

2(k) = Cx(k) + Du(k) (16)

where w(k) € R™ is the disturbances and z(k) € R? is the controlled output. A, By, By, C
and D are system matrices with appropriate dimensions. Uncertain matrix AA is assumed
to be of the form (3).

The controller is assumed to be of the form (4). Applying the controller (4) to the system
(16), we have the closed-loop system

Ex(k+1) = (A+ ByK + HE(K)Go)x(k) + Byw(K),

2(K) = (C + DK + aD®(k)K)x(k) (17)
where
He = [H aBy), F.(k) = diag[F(k) ®(k)], Ge = Lﬁ] .
Define the cost function
= 2 (T (K)z(K) — 7207 (w(K). (18)

The problem is to find a controller (4) which makes the system (16) with w(k) = 0 robustly
admissible, and makes it satisfy | < 0 in (18). If there exists such a controller, it is said to
be an He non-fragile controller and the closed-loop system is said to be robustly admissible
with He, disturbance attenuation 7.

The following is a well-known result for the admissibility with He disturbance attenuation
7 of linear descriptor systems.

Lemma 4.1. (Xu & Lam [32]) Consider the system

Ex(k+1) = Ax(k) +BW<(’<), (19)

z(k) = Cx(k) + Dw(k)

37
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where A, B, C and D are matrices of appropriate dimensions.
(i) Given a scalar v > 0. The descriptor system (19) is robustly admissible with He, disturbance
attenuation <y if and only if there exist matrices P > 0, Q such that

ATPA—ETPE+CTCc ATPB+CTD ] N [AT

T T
BTPA+DTC  BTPB+DTD — 2] BT] SQ"+QS" [AB] <0 (20)

where S € R (") is any matrix with full column rank and satisfies ETS = 0.
(ii) Given a scalar v > 0. The descriptor system (19) is robustly admissible with Heo disturbance
attenuation <y if and only if there exist matrix P such that

ETPE >0, (21)
ATPA—ETPE+CTCc  ATPB+CTD

BTPA+DTC  BTPB+DTD—21| = 22)

The following theorem provides a necessary and sufficient condition for the robust
admissibility with He, disturbance attenuation of (17).

Theorem 4.2. Given <y and K, the descriptor system (17) is robustly admissible with He disturbance
attenuation vy if and only if there exist matrices P > 0, Q = [Q{ QT and scalars e1 > 0,e5 > 0
such that

i 134 ALSQY +18TBy ALP (C+ DK)T Q1STH. 0
QST Ag + BfsQT Iy, BIP 0 Q,STH. 0
PAk PB; —-P 0 PH. 0
C+ DK 0 0 1 0 ap| <0 @3
HIsQT HIsQT HIP 0 —eI 0
i 0 0 0 aDT 0 —el

where Ax = A+ ByK, S € R""=7) is any matrix with full column rank and satisfies ETS = 0,
and

Iy = Q1STAx — ETPE + ALSQT +e1Gl Gc + e2K'K,
Il = —’)’21 + QzSTBl + B{SQ;

Proof: (Sufficiency) Suppose that there exist matrices P > 0, Q = [QlT QZT ]T and scalars
g1 > 0, 2 > 0 such that the condition (23) holds. Then, by Schur complement formula, we
have

Q_ + €I1H1H{ + slégél + 8511:121‘_1; + Szcgcz < 0. (24)

where
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Q1STAx — ETPE+ ALsQl  ALsQl'+Q,8™B;  AlP (C+DK)T

o— QSTAk+BISQT  —2I+Q,STBi +BJSQI BIP 0
PAk PB; —P 0 ’
C+ DK 0 0 —1I

Ay = [H]sQf HIsQ} HIPo]",
H,=[000aDT]",
Gr=[G.000],
G, =[K000].

Now, using Lemma 3.2, we have

A1y A1y Az (C+ DK+ DO(k)K)T

AT, Ay BIP 0

Al PB; —P 0
C+DK+D®kK 0 0 —1I

= Q+ HF:.(k)Gy + GIFT(k)A] + Hy® (k)G + GIT@T (k) AT
< Q_ + €I1H1H; + slélTél + SglﬂzHg + SZC;GZ
where
A1 = Q1ST(A + BoK + HcF.(k)Ge) + (A + BoK + H.F.(k)G.)TSQT — ETPE,
A1y = (A+ BoK + HcFe(k)Ge)TSQT + 0157By,

A1z = (A+ ByK+ HeF.(k)G)TP,
Ay = —7*1 + Q2STB; + BT SQL.

It follows from (24) that

A1y A1y Az (C+ DK+ DP(k)K)T
T T
A Ay BIP 0 o
AT, PB; —P 0
C+DK+Do(K)K 0 0 o

This implies by Schur complement formula and Lemma 4.1(i) that the descriptor system (17)
is robustly admissible with He, disturbance attenuation 1.

(Necessity) Assume that the descriptor system (17) is robustly admissible with He
disturbance attenuation <. Then, it follows from Lemma 4.1 that there exist matrices P > 0, Q
and scalars €1 > 0, €, > 0 such that (20) with A replaced by A + BK + H.F.(k)G, and C by
C + DK + a®(k)K holds. Thus, for all admissible F(k) and ®(k), the following inequality
holds:

A1y A1y A1z (C+ DK+ DO(k)K)T

T T
AT, Ay BIP 0 “o.
Al PB; —P 0

C+DK+D®(KK 0 0 1

39
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That is,
Q+ H F.(k)Gy + GIFI (k) A + Hy® (k)G + GIdT (k)HT <0
is satisfied for all admissible F(k) and ®(k). It follows from Lemma 3.2 that
Q+e'HiAT + 1G] Gy + 5 ' HoHT +6,G1 Gy <0,
which leads to the condition (23). This completes the proof.

Based on Lemma 4.1(ii), we have the following theorem. The proof is similar to that of
Theorem 4.2, and is thus omitted.

Theorem 4.3. Given -y and K, the descriptor system (17) is robustly admissible with He disturbance
attenuation vy if and only if there exist matrix P and scalars e1 > 0,2 > 0 such that (21), and

[—ETPE+61GlG. +eKTK 0 (A+BK)TP (C+DK)T 0 0
0 — BIP 0 0 0
P(A + ByK) PB; —P 0 PH. 0
C+ DK 0 0 1 0 «p | <0 @
0 0 HIP 0 —eI 0
i 0 0 0 aDT 0 —el]

4.2. Ho, non-fragile control design for uncertain systems

Now, we are at the position to propose design methods of He non-fragile controller for
uncertain descriptor systems.

Theorem 4.4. There exists a controller (4) that makes the descriptor system (16) robustly admissible
with Heo disturbance attenuation <y if there exist matrices P > 0, Q = [QlT Qg 1T and scalars
€1 >0, ep > 0 such that

Ir=p'—¢'HH >0, (26)

Z =1-¢'%*DDT >, (27)

W =% — Q2S"B; — B{ SQf — e;'QSTH.HI SQT —@fr~'eg > o, (28)
Q1STA+ ATSQT — ETPE +¢1GTG +¢;'Qi1STH-HI SQT

+CTzlc+yw iyl rolrte, —-vA ¥l <0 (29)

where S € R"™"=1) is any matrix with full column rank and satisfies ETS = 0, and

Y= (ST +OLT 1By +CTZ7 1D + YW 1(QpST + ©5T1)By,

A =BIT™ 1B, + DTZ7ID + (e + &2) + BT (SQY + T71@5) W1 (Q2ST + ©LT1)B,,
@4 = A+e;'HHISQT,

@p = By + ¢, 'H:HISQJ,

Y = ATSQT + (18T + ©L T 1)©s.
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In this case, a feedback gain in the controller (4) is given by

K=—-A"1¢T, (30)

Proof: (Sufficiency) The closed-loop system (17) with the feedback gain (30) is given by

Ex(k+1) = (A—ByA~"WT + H.F.(k)G.)x (k) + Byw(k),

z(k) = (C— DATYYT — aD® (k) A~ ¥T)x (k) (31)

where G, = [GT —‘i’A‘l] T. Then, by some mathematical manipulation, we have

Q1ST(A — ByA T + (A — BpA YW TSQT 4+ GG + o YA IA YT
1 c
= Q1STA — Q1STBy AT + ATSQT —YA~IBISQT +¢GTG
+(e1 + &) YATIATIYT,

(C—DA~¥HTz-1(C - DAT¥T)
=CTz-1c—¥YA 1Dz 1Cc-CTZz 1DA 19T t YA~ 1Dz 1DA1¥T,

(A= By AT + e "H.HISQT)TT 1 (A — BpA YT + ¢ ' H-HI SQT)
=0T 10, — YA IBIT 104 — O, T 1B A YT + YAIBIT 1B, A71YT,

[(A—BA"YT)TSQT + (01T + (A — BoA™ YT + e ' H.HI SQT) T H@g|w !
X[(A = BoA~Y¥T)TSQT + (Q1ST + (A — BpA~ YT + sjl_chHCTSQif)TF_l)G)B)]T
=YW YT —YA-1BI(SQY + T l@p)TWw=1yT —YW1(SQ} +T1@g) ' BoA~1¥T
+¥AIBI(SQT + T l@p)W1(SQT + T @) TBoA YT,

Thus, it can be verified with (29) that

Q1ST(A — BoA™YT) + (A= BpA W) TSQT +61GI Ge + o ¥ A IATTYT
+(C—DAWN)TZ=1(C — DA'T) — ETPE +¢,1Q1STH.HI SQT
+(A =B AT + e, ' HHI SQN)TT 1 (A — BpA~ 1T + ¢ ' H.HT SQT)
+[(A =B AT TSQT + (Q1ST + (A — BpA™ YT + e, ' HHI SQT) TT—h@p| w1
x[(A=ByAT¥T)TSQT + (Q1ST + (A — BoA™WT + e ' H.HISQT)TT-1)@5)]T
= Q1STA+ ATSQT +6:GTG — ETPE+¢;'Q1STH.HISQT + CTz-1C + @1 T 104
+YW YT —¥A-1Y¥T < 0.
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By Schur complement formula, we

—ETPE 4+ &1GI G,
+er YA IA 19T
QST Ax + BIsQT (
PAk
Ak
HI'sQl
0

r (leTAK + ALsQf

obtain

—921 + Q,8TB,

+BIsQt
PB,
0
HISQT
0

-P 0
0 I

HIP 0
0 aDT

) ALsQT +Q;8"B; ALP C] Q1STH.

)BlTP 0 Q,STH,

PH,
0
—811
0

0

0
aD
0
—821_

<0.

where Ax = A — BpA™'¥T and Cx = C — DA1¥T. Hence, by Theorem 4.2 we can show
that the closed-loop system (17) is robustly admissible with He disturbance attenuation .

(Necessity) Assume there exists a feedback control of the form (4) which makes the descriptor
system (16) robustly admissible with He disturbance attenuation 7. Then, it follows from
Theorem 4.2 that there exist scalars ¢ > 0 and €, > 0 such that

Iy,
QST Ak + BIsQT 1y BIP
PAk PB; -P
C+ DK 0 0
HIsQf HI'sQT HIP
i 0 0 0
where
Il =
sz = —’)/21 + QQSTBl + B{SQ;

0
0
—I
0
aDT

ATSQY +18TBy ALP (C+ DK)T QSTH,

QZSTHC
PH.
0
—811
0

0
0
0
aD
0

—821_

Q1STAx + ALSQT — ETPE + £1GI G, + €,K™K,

<0

It follows from Schur complement formula that we obtain the conditions (26), (27), (28), and

Q1STA+ ATSQT — ETPE 4+ ¢1GTG + ¢, 'QSTH.H SQT + CTz=1C + YW—1YT
+@Ir1e4 + KT¥T + YK+ KTAK < 0.

By Lemma 3.4, we have

KT 1 K+ KTAK > — YA 19T,

Therefore, we finally obtain the condition (29), and the feedback gain K as in (30).

Based on Theorem 4.3, we can deduce the following theorem.
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Theorem 4.5. There exists a controller (4) that makes the descriptor system (16) robustly admissible
with Heo disturbance attenuation <y if there exist matrix P and scalars e1 > 0, €y > 0 such that (21),
(26), (27) and

W =+*1-BIT"'B; >0, (32
—ETPE+e,GTG+CTzICc+ ATT IByW IBIT 1A+ ATT 1A —¥A1¥T <0 (33)

where

Y =ATT"1B,+CTZ7 1D + ATT-'B;W~1BIT1B,,
A=BIT"'By+ DTZ7I1D + (e1 + &5)I + BIT"1ByW~1BIT~1B,.

In this case, a feedback gain in the controller (4) is given as in (30).

5. Time-delay systems

This section investigates the robust admissibility of uncertain descriptor delay systems and
provides a non-fragile control design method for such systems. Section 5.1 gives a robust
admissibility condition for uncertain descriptor delay systems, and Section 5.2 proposes
non-fragile control design methods.

5.1. Robust admissibility for uncertain systems

Consider the following descriptor system with time-delay and uncertainties:

Ex(k+1) = (A+AA)x(k)+ (Ag+ AA;z)x(k —d) + Bu(k) (34)

where x(k) € R" is the state and u(k) € R™ is the control. A, A; and B are system matrices
with appropriate dimensions. d is a constant delay and may be unknown. Uncertain matrices
are given by

[AA AA4] = HF (k) [G Gy]

where F(k) € R/ is an unknown time-varying matrix satisfying FT(k)F(k) < I and H,
G and G, are constant matrices of appropriate dimensions. Unforced nominal descriptor
system (34) with u(k) = 0 and AA = AA; = 0 is denoted by the triplet (E, A, Ay).

Definition 5.1. (i) The triplet (E, A, Ay) is said to be regular i det(z*t'E — z¢ A — Ay) is not

identically zero.

(ii) The triplet (E, A, Ay) is said to be causal if it is reqular and deg(z"%det(zE — A —z7Ay)) =

nd + rank(E).

(iii) Define the generalized spectral radius as p(E, A, Agz) = max |A|. The
z|Ae{det(z11E—z4 A— A4)=0}

triplet (E, A, Ay) is said to be stable if p(E, A, Ay) < 1.

(iv) The triplet (E, A, Ay) is said to be admissible if it is reqular, causal and stable.

43



44 Advances in Discrete Time Systems

Applying the controller (4) to the system (34), we have the closed-loop system
Ex(k+1) = (A+ BK+ HcF.(k)G¢)x(k) + (Ay + HF(k)Gy)x(k — d) (35)

where

He = [H «B), F.(k) = diag[F(k) ®(K)], Ge = Lﬁ] .
First, we consider the robust admissibility of the closed-loop system (35). In order to show a
robust admissibility condition, we need the following theorem.

Theorem 5.2. (Xu & Lam [32]) (i) The descriptor delay system (34) with u(k) = 0 and AA =
AA, = 0is admissible if and only if there exist matrices P > 0, Q > 0, X such that

ATPA—ETPE+Q ATPA, ] [AT
0 +

T r [AT !
ATPA ATPA, aT| X+ X8 <0 (36)

where S € R ("= is any matrix with full column rank and satisfies ETS = 0.

(ii) The descriptor delay system (34) with u(k) = 0 and AA = AA; = 0 is admissible if and only if
there exist matrices P, Q > 0 such that

ETPE >0, (37)
ATPA-ETPE+Q ATPA,

<0. 38
Al'PA ATPA; - Q (38)

Robust admissibility conditions for uncertain descriptor delay system (35) are given in the
following theorems.

Theorem 5.3. Given y and K, the descriptor system (35) is robustly admissible if there exist matrices
P>0, Q>0 X=[XI' XIT and scalars e; > 0,5 > 0 such that

'<X18TAK —ETPE+Q

L ATSXT 4 6,GTG. > AlsxI +x,8TA;  ALP X1STH:. X4STH
K=“*1 ¢

X,ST Ag + ATSXT —Q+XoSTAg 1\ yrp oot X,8TH
22 Ak +ATSXT 4 e,GIG,) “db 72 e 22 <0 (39
PAk PA, ~P PH. PH
HIsXT HIsXT HI'P —el 0
i HTSX{ HTSX] HTP 0 —epl |

where Ax = A+ BK and S € R("=") is any matrix with full column rank and satisfies ETS = 0.
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Proof: Suppose that there exist matrices P > 0, Q > 0, X = [X] XI]T and scalars e >
0, €2 > 0 such that the condition (39) holds. Then, by Schur complement formula, we have

X1STAx —ETPE+ ALSXT +Q  ALsxT +x;8TA;  ALP
X,STAg + ATSXT —Q+ XpSTA; + ATSXT AlP
PAk PA4 —P
[X1STH, Gl
+e ' | Xo8TH. | [HISXT HISXT HIP] +¢1 | 0 ] [G: 0 0] (40)
| PH, 0
[X1STH 0
+e, ' | Xo8TH| [HTSXT HTSXT HTP| + 2 GdT] (0G4 0] <o.
PH 0
Now, using Lemma 3.2, we have
Ay A1p (A + HcFe(k)G)TP
Al A (Ag+ HF(k)Gy)TP
| P(Ag + HF.(k)Ge) P(Ag + HF(k)Gy) —P
(X1STAx — ETPE+ AFSXT +Q  ALSXI +X:8TA;  ALP
= XoST Ak + ATSXT —Q+ XoSTA; + ATsXT AlP
I PAk PA4 —P
[X,STH,] Gl
+ | XoSTH. | Fe(k) [Ge00] + | 0 | EX (k) [HIsxT HISsxI HIP]
| PH, | 0
[X1STH,] 0
+ | XoSTH. | F(k) [0 G4 0] + |GL| FT(k) [HIsxT HIsxI HIP]
| PH, | 0
X1STAx —ETPE+ ALSXT +Q  ALSXT +X;8TA;  ALP
< X,STAg + ATSXT —Q+ XoSTA; + ATsXT AlP
PAk PA4 —p
[X1STH,] T
1 | XpSTH, ToxT pToxT T o
+€7 PH. (HIsx] HISX] HIP]+¢& | 0 | [G:00]
0
L 0 - - -
[X1STH,] ol
1 | XoSTHe | [yTayT pTaxT HT T
te | Thp [H!SX{ HISX] HIP] + e %d [0 G, 0]
0 L .

where

A1 = X4ST(A+ BK+ HcF.(k)Ge) 4+ (A + BK + HcFe(k)Ge)TSXT — ETPE+ Q,
Ay = (Ak + HeFe(k)Ge)TSXT + X1ST(Ag + HF (k) Gy),
Ay = —Q+ XpST(Ay+ HF(k)Gy) + (A; + HE(k)Gy) TSXT.
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It follows from (40) that

A1 A1p (Ax + H:F:(k)G:)TP
AT, Ay (Ag+ HF(k)Gy)TP | <O.

This implies by Schur complement formula and Theorem 5.2(i) that the descriptor system
(35) is robustly admissible.

Similarly, we can prove the following theorem by using Theorem 5.2(ii).

Theorem 5.4. Given vy and K, the descriptor system (35) is robustly admissible if there exist matrices
P >0, Q> 0and scalars e1 > 0,e> > 0 such that (37), and

—ETPE+ Q +&GlG. 0 AP 0 0
0 —Q+eGIGy AIP 0 0
PAg PA, —P PH, PH | <0 (41)
0 0 HIP —e1I 0
0 0 HTP 0 —gl

where Ax = A + BK.

5.2. Control design for time-delay systems

Now, we are ready to propose control design methods for uncertain descriptor delay systems.
The following theorems propose design methods of a non-fragile controller that makes the
system (34) robustly admissible.

Theorem 5.5. There exists a controller (4) that makes the descriptor system (34) robustly admissible
if there exist matrices P >0, Q >0, X = [XlT Xg]T and scalars 1 > 0, €2 > 0 such that

I'=P ' —¢'HH! —e;'HHT >0, (42)

W=Q—XSTA; — ATSXT — &,GI G, — ©hr'@p
~X,S8T (e ' HH! +e5 ' HHT)SX] >0, (43)

X1STA+ ATSX] —ETPE + Q+:GTG + X1 ST (e ' HHY + e, '"HHT)SXT
+OIr o, + YW IyT —vA 19T <0 (44)

where S € R"™"=7) is any matrix with full column rank and satisfies ETS = 0, and

Y= (XST+0, I B+ YW 1(sx] +@Lr-1)s,

A =BT 1B+¢& 1+ BT (SX] +T1O@p)W 1 (XST + @5 1)B,
Y = ATsXT + (X;ST + @1 T 1)op,

@4 = A+ (e]'HHI +¢, 'HHT)SXT,

®p = Ay + (e; '"HH! +e; ' HHT)SX]T.
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In this case, a feedback gain in the controller (4) is given by

K=-A"19T, (45)

Proof: The closed-loop system (35) with the feedback gain (45) is given by
Ex(k+1) = (A —BA YT + H.F.(k)G)x (k) + (Ag + HE(k)Gy)x(k — d) (46)
where G, = [GT —‘I’Afl] T. Then, by some mathematical manipulation, we have

X1ST(A—BAYT) + (A—BA'YT)TsXT +&,GI G,
= X1STA — X3 STBATIYT + ATSXT —¥YAIBISXT +61GTG +eg¥YATIATIYT,

[A—BAYYT + (e, '"H.HT +e; ' HHT)SXT]Tr !
x[A—BATYYT + (e 'H.HT + 65 ' HHT)SXT]
=0iI 10, — YA 1BIT 0, — @I 1 BAT1YT + YATIBIT1BAIYT,

[(A—BA YD) TSXT + (X1ST + (A= BA™WT + ¢, 'H.HI SXT)TT 1 @p|W!
x[(A—BATY¥)TSXT + (X187 + (A — BAT'WT + e, 'H.HI SXT)TT1)@p)]"
=YW YT —¥YA-IBT(SXT + T 1@p)TW YT —YW-1(sXT + T-1@p)TBA1¥T
+¥ATIBT(sxT + 17 lep)W-1(sxT + T71@p)TBA-1¥T.

Thus, it can be verified with (44) that

X1ST(A—BA™YYT) + (A — BA'WYT)TSXT + .Gl G. — ETPE+Q
+X1ST (e, 'H.HT + 65 '"HHT)SXT + [A — BA'YT + (e, 'H.H! + ¢, '"HHT)SXT]T
xT A —BAYYT + (e, '"H.HI + ;' HHT)SXT]
+[(A—=BATYT)TSXT + (X;ST + (A — BA™YT + ¢ ' H.HI SX)TT-H)@p|w~!
x[(A—BATYYT)TSXT + (X187 + (A — BATWT + e, 'H.HI SXT)TT1)@p)]”
= X1STA+ ATSXT +&,GTG — ETPE + Q + X1 ST (e, 'H.H! + ;' HHT)SXT
+OIIr o4+ YW YT —¥YA~1¥T <.

By Schur complement formula, we obtain

[(X1STAx —ETPE+Q
+ALSXT +61GIG.

XoSTAg + ATsXT (

> AbsxT + x48TA;  ALP X;STH. X;STH

o T
Q+ X257 Ay ) ATP X,STH, X,STH

+AJSX] +e,Gl G, <0
PAk PA, -P PH. PH
HIsXT HIsXT HIP —el 0

HTsx] HTsxT HTP 0 —epl |
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where Agx = A — BA~'¥T. Hence, by Theorem 5.3 we can show that the closed-loop system
(35) is robustly admissible.

The following theorem can similarly be obtained from Theorem 5.4.

Theorem 5.6. There exists a controller (4) that makes the descriptor system (34) robustly admissible
if there exist matrices P > 0, Q > 0 and scalars 1 > 0, e > 0 such that (37), (42),

W=Q-eGlG;— AT 1A; >0, (47
—ETPE+Q+&GTG+ATT 1A+ ATT 1AW AIT 1A —¥ATYT <0 (48)

where I is given in (42), and

Y =ATT 1B+ ATT 1AW 1AIT 1B,
A =BT 1B+el+BIT1A,W-1AIT-!B.

In this case, a feedback gain in the controller (4) is given as in (45).

6. Numerical examples

In order to illustrate our control design methods, we consider the following two examples.
The first one shows a non-fragile controller design method for an uncertain system, and the
second gives the same class of a controller design method for a time-delay counterpart.

Consider an uncertain system:

{(1) 8} x(k+1) = <{(1) 0%2} + [882] F(k) [0.2 0}) x(k) + [8;} u(k).

Assuming the measure of non-fragility « = 0.3, we apply Theorem 3.7 or 3.8, which gives a
non-fragile control gain K in (4):

K = [~4.0650 —0.8131] .

Next, we consider a uncertain time-delay system

ool =041 = (|o 03] + o06] P01 [010)) x(t
+ [0%1 85} x(k—3) + [8;] u(k).

Assuming the measure of non-fragility « = 0.35, we apply Theorem 5.5 or 5.6, which gives a
non-fragile control gain K in (4):

K = [—0.6349 —1.9048] .
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7. Conclusions

In this chapter, we investigated non-fragile control system analysis and design for uncertain
discrete-time descriptor systems when the controller has some uncertainty in gain matrix.
The controller is assumed to have multiplicative uncertainty in gain matrix. First, the robust
admissibility of uncertain descriptor systems was discussed and the non-fragile control
design methods were proposed. Then, theory was developed to the robust admissibility
with He disturbance attenuation. Necessary and Sufficient conditions for the robust
admissibility with He disturbance attenuation were obtained. Based on such conditions, the
Heo non-fragile controller design methods were proposed. Next, uncertain descriptor systems
with delay were considered. Based on system analysis of such systems, the non-fragile
control design methods were proposed. Numerical examples were finally given to illustrate
our controller design methods.
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