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1. Introduction 

Rectangular ducts are widely used in heat transfer devices, for instance, in compact heat 

exchangers, gas turbine cooling systems, cooling channels in combustion chambers and 

nuclear reactors. Forced turbulent heat convection in a square or rectangular duct is one of 

the fundamental problems in the thermal science and fluid mechanics. Recently, Qin and 

Fletcher [1] showed that Prandtl's secondary flow of the second kind has a significant effect 

in the transport of heat and momentum, as revealed by the recent Large Eddy Simulation 

(LES) technique. Several experimental and numerical studies have been conducted on 

turbulent flow though of non-circular ducts: Nikuradse [2]; Gessner and Emery [3]; Gessner 

and Po [4]; Melling and Whitelaw [5]; Nakayama et al. [6]; Myon and Kobayashi [7]; Assato 

[8]; Assato and De Lemos [9]; Home et al. [10]; Luo et al. [11]; Ergin et al. [12] Launder and 

Ying [13]; Emery et al. [14]; Hirota et al.[15]; Rokni [16]; Hongxing [17]; Yang and Hwang 

[18]; Park [19];Zhang et al. [20]; Zheng et al. [21]; Su and Da Silva Neto [22]; Saidi and 

Sundén [23]; Rokni [24]; Valencia [25]; Sharatchandra and Rhode [26]; Campo et al. [27]; Rokni 

and Sundén [28]; Yang and Ebadian [29] and others. The Melling and Whitelaw´s [5] 

experimental work shows characteristics of turbulent flow in a rectangular duct where they 

have been used a laser-Doppler anemometer in which report the axial development mean 

velocity, secondary mean velocity, etc. Nakayama et al. [6] show the analysis of the fully 

developed flow field in rectangular and trapezoidal cross-section ducts; finite difference 

method was implemented and the model of Launder and Ying [13] has been used. On the 

other hand, Hirota et al. [15] present an experimental work in turbulent heat transfer in square 

ducts; they show details of turbulent flows and temperature fields. Likewise, Rokni [16] 

carried out a comparison of four different turbulence models for predicting the turbulent 

Reynolds stresses, and three turbulent heat flux models for square ducts. The literature 
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presents various turbulence modeling in which confirm Linear Eddy Viscosity Models 

(LEVM) can give inaccurate predictions for Reynolds normal stresses: it does not have ability 

to predict secondary flows in non-circular ducts due to its isotropic treatment. In spite of that, 

they is one of the most popular model in the engineering due to its simplicity, good numerical 

stability in which can be applied in a wide variety of flows. Thus, the Nonlinear Eddy 

Viscosity Model (NLEVM) represents a progress of the classical LEVM in which this last one 

gives inequality treatment of the Reynolds normal stresses, needs of conditions for calculating 

turbulence-driven secondary flow in non-circular ducts and it has relatively high cost for 

solving the necessary two-equation formulation. The Reynolds Stress Model (RSM), also called 

second order or second moment closure model, is very accurate in the calculation of mean 

flow properties and Reynolds stresses, for simple to more complex flows including wall jets, 

asymmetric channel, non-circular duct and curved flows. However, RSM has some 

disadvantages, such as, very large computing costs. For calculating the turbulent heat fluxes, 

the Simple Eddy Diffusivity (SED) and Generalized Gradient Diffusion Hypothesis (GGDH) 

models have been adopted and investigated. Most of the works presented in the literature 

show results assuming constant temperature on the wall. However, in many engineering 

applications the heat fluxes and surface temperatures are non-constants around the duct, 

therefore becoming important the knowledge of the variation of the conductance around the 

duct, according to Kays and Crawford [30]. According to Garcia´s developments [31], it is 

possible to carry out analysis with non-constant wall temperature boundary conditions. In this 

case, it is necessary to define a value that represents the mean wall temperatures in a given 

cross section, in which he has named TWm. Following this treatment, for the present paper, 

important results have been computed and they are here being presented for rectangular 

cross-section ducts. Fluids such as air and water were analyzed under the influence of non-

constant wall temperature distributions, with consequent presentations of resulted about 

turbulent convective heat exchanges and flow temperature profiles. 

2. Mathematical formulation 

2.1. Governing equations 

The Reynolds Averaged Navier Stokes (RANS) equation system is composed of: continuity 

equation (1), momentum equation (2), and energy equation (3). 
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For analyses of fully developed turbulent flow and heat transfer, the following hypothesis 

has been adopted: steady state, condition of non-slip on the wall and fluid with constant 

properties. The turbulent Reynolds stress ' '( )i ju u  and the turbulent heat flux ' '( )ju t  

were modeled and solved by algebraic and/or differential expressions. 

2.2. Turbulence models for reynolds stresses 

2.2.1. Nonlinear Eddy Viscosity Model (NLEVM) 

The NLEVM Model to reproduce the tensions of Reynolds, it is necessary to include non-

linear terms in the basic constitutive equations. This is done by attempting to capture the 

sensitivity of the curvatures of the stream lines. This model is based on the initial proposal 

of Speziale [35]. The Reynolds average equations, Equations (1) to (3), are applied for the 

device presents in the Figure 1(a) and (b). 

 
(a) 

 
(b) 

Figure 1. (a) Fully developed turbulent flows in rectangular ducts, (b) Rectangular duct: reference 

system and transversal section. 
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The velocity components U and V represent the secondary flow, and the axial velocity 

component W, the velocity of the main flow. The transport equations in tensorial form for 

the turbulent kinetic energy, κ, and the rate of dissipation , respectively, they are given by:   
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The symbols kP  and t , represent the rate of the turbulent kinetic energy production and 

the turbulent viscosity, respectively, are expressed by:   
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In the present work for NLEVM, the formulations of Low Reynolds Number will be 

assumed for wall treatment. The damping functions 2f  and f  observed in Equations (5) 

and (6) were proposed by Abe et al [36].  These functions and the constant 1c  and 2c  are 

used in equations k  . The subscript P refers to the nodal point near to the wall. Thus PU  

and Pk  are the values of the velocity and kinetic energy in this point, respectively. For the 

constants c , 1c , 2c , k  and   are assumed the values of 0.09; 1.5; 1.9; 1.4 e 1.3; 

respectively. New constitutive relation for the tensions of Reynolds in the NLEVM model 

was assumed in according to the thesis of Assato [8]: 
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 (7) 

This expression shows that the second term of the right side in Equation (7) represents the 

nonlinear relation added the original constitutive relation. This quadratic term represents 

the degree of anisotropy between the normal tensions of Reynolds responsible for 

predicting the secondary flow in non circular ducts. The values of 1NLc  proposed by 

Speziale [35] is equal to 1.68. In this work, 1NLc  will be analyzed and will adopt values for 

the formulation of Low Reynolds Numbers. The normal and shear tensions of Reynolds are 

expressed as:  

 
2 22 2

1 1

1 2 1 2
;

3 3 3 3xx NL t yy NL t

k W W k W W
c c

x y y x
   

 

                                       

 (8) 

 
1 ; ;xy NL t xz t yz t

k W W W W
c

x y x y
     


    

       
 (9) 

The following differences for the normal tensions of Reynolds are presented and used in 

order to predict the anisotropy in turbulent flow at non circular ducts, 
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Therefore, the Equation (6), including the tensions of Reynolds given in Equation (9), the 

turbulence production term is expressed as:   
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2.2.2. Reynolds Stress Model (RSM) 

The most complex turbulence model is the Reynolds Stress Model (RSM), also known as 

second order model. It involves calculations of Reynolds stresses to an individual form, 

' '
i ju u . These Reynolds stresses are used for formulating the differential equations of 

turbulent flow transport. The individual Reynolds stresses are utilized to close the average 

Reynolds equations of the momentum conservation. This model has shown superiority in 

relation to the two equation models (for example, k  ) in simulating of complex flows that 

involve swirl, rotation, etc. The exact transport equations for the Reynolds stresses, ' '
i ju u , 

can be written as: 
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Where the letters represent: (a) Local derivative of the time; (b) ijC Convection; (c) ,T ijD 

Turbulent diffusion; (d) ,L ijD   Molecular diffusion; (e) ijP   Production term of stresses; (f)

ijG   Buoyancy production term; (g) ij   Pressure-stress (redistribution); (h) ij   

Dissipation term; (i) ijF   Production term for the rotation system; (j) jS   Source term. The 

terms of the exact equations presented previously, ijC , ,L ijD , ijP and ijF  do not require 

modeling. However, the terms ,T ijD , ijG , ij  and ij  need to be modeled to close the 

equations. For the present analysis, the model LRR (Launder, et al [37]) is chosen, which 

assumes that the correlation of velocity- pressure is a linear function of anisotropy tensor in 

the phenomenology of the redistribution, ij . For the wall treatment, it is also assumed the 

Low Reynolds numbers and periodic conditions in according to Rokni [16]. This model had 

been simulated in the commercial code Fluent 6.3. 
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2.3 Turbulence models for turbulent heat flux 

2.3.1. Simple Eddy Diffusivity (SED) 

This method is based on the Boussinesq viscosity model. The turbulent diffusivity for the 

energy equation can be expressed as: t
t

t

  , where the turbulent Prandtl number, t  

for the SED model assumes a value constant in the entire region. For the air, t  it assumes a 

value equal to 0.89. The turbulent heat flux is given by, 

 
ft
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T j

T
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
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
  (13) 

2.3.2. Generalized Gradient Diffusion Hypothesis (GGDH) 

Daly and Harlow [38] present the following formulation to the turbulent heat flux: 
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 (14) 

The constant tC , assumes the value of 0.3. The main advantage of this model is in 

considering the anisotropic behavior of the fluid heat transport in ducts.  

2.3.3. Dimensionless energy equation for SED and GGDH models 

For a given cross section of area “A”, it is possible to define a mean velocity “Ub” and a bulk 

temperature “Tb”, expressed as: 
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Kays and Crawford [30] developed a formulation to rectangular cross section ducts. They 

considered the boundary conditions with prescribed uniform wall temperatures at the cross 

section, and at the duct length. According to Garcia [31], it is possible to carry out an 

analysis with non-uniform wall temperature boundary conditions. In this case, it is 

necessary to define a value that represents the mean wall temperatures in a given cross 

section, “TWm”, given as: 



 
Forced Turbulent Heat Convection in a Rectangular Duct with Non-Uniform Wall Temperature 157 

 

       1 2 3 40 0 0 0

1 1 1 1
. 0, . . ,0 . . , . . , .

2( )

L D L D

Wm

T y dy T x dx T D y dy T x L dx
L D L D

T
L D

 
   

 


   
 (17) 

It is possible to develop a formula similar to Kays and Crawford [30], and a new expression 

for the turbulent energy equation can be presented as: 
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The following considerations are applied to obtain the variables in dimensionless form: 
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Replacing the Equations (13) or (14), (19)-(21) in Equation (18), dimensionless energy 

equations for SED and GGDH are obtained, respectively, expressed as:  
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The fluid temperature field “Tf” can be replaced by “Tb” and the Equation (21) can be 

expressed as: 
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and 
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From Equation (21), the Equation (26) is obtained, and applying this in Equation (16), the 

bulk temperature is obtained and expressed in Equation (27): 
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Replacing Equation (27) in Equation (24), and using Equations (19) and (20), the 

dimensionless bulk temperature is given as: 
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It is possible to compute the heat transfer rate per unit length on the wall surface, “ q’ ”, as 

shown in Equation (29) in function of “TWm”, “Tb”, and the average heat convection 

coefficient, “ h ”. From fluid enthalpy derivative gradient [dhb = cp.dTb], the heat transfer rate 

per unit length in the fluid, “ q’f  ”, can be expressed by Equation (30). 
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Equation (30) can be integrated to two cross sections (inlet, z1, and outlet, z2), thus, the 

following expression is obtained, 
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From Equation (31), the bulk temperature longitudinal (z-axis) variation “Tb” is obtained. It 

is done by “cutting” the duct into a lot of segments and applying the numerical method to 

find “Tb” at each finite cross section. For a given bulk temperature at the duct inlet section 

(Tb1), after solving the equation system, duct outlet bulk temperature (Tb2) is calculated from 

Equation (31). The Dimensionless boundary conditions are given by the following 

equations: 
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When considering uniform wall temperature, the Equations (32) and (33) are equal to zero, 

and for these particular conditions, it is possible to notice that these boundary conditions are 

not functions of “ bdT dz ”. That simplification becomes equal to the one studied by Patankar 

[32]. Equations (24)-(26) , as well as the boundary conditions from Equations (32) and (33), 

form a set of differential equations, in which “” and “dTb/dz” parameters are unknown. 

When that equation system is solved, it is possible to obtain “Tf”. 

2.3.4. Additional equations 

Additional equations were utilized for the calculation of the factor of friction Moody, f ; 

coefficient of friction Fanning, fC ; Prandtl law; local Nusselt number for the Low Reynolds 

formulation (Rokni [16]), xpNu  and Correlation of Gnielinsky, respectively. Thus, the 

additional equations are given by the following equations:   
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 (38) 

3. Numerical implementation 

After applying the method of finite differences to the algebraic equations, to obtain the 

temperature fields, the following five steps indicate the developed methodology in the 

numerical solution. (Garcia [31]): 

Step 1. To define the function value of the non uniform temperatures in the walls of the 

duct  1 2 3 4(0, ), ( ,0), ( , ), ( , )WmT f T y T x T D y T x L , This function can be expressed by a 

Fourier expansion;  

Step 2. To obtain velocity field and estimated values for “ bU ”“TWm” and “dTb/dz”; 

Step 3. Equations for the boundary conditions are evaluated (Equations 32 and 33); 

Step 4. Dimensionless energy equation (Temperature field, “Ø”) the Equation (23) is 

solved and “Øb” is computed according to Equation (28), until convergence is obtained 

(Øb < tolerance). This is the end of the first iterative loop; 

Step 5. A value for “dTb/dz” is computed in accordance with Equation (25). Boundary 

conditions are updated (step 3) to obtain a solution for the new temperature field (step 

4), until convergence is obtained (dTb/dz < tolerance). This is the end of the second 

iterative loop; 

For all steps, “tolerance of 10-7” is the value to be accomplished by the convergence criteria, 

which is applicable to “Øb” (dimensionless bulk temperature), “dTb /dz" and “Ø” 

(dimensionless temperature field). 

4. Results and discussion 

4.1. Fluid flow and heat transfer field  

The Figure 2(a) shows the utilized grid (120X120) in the numerical simulation for the 

formulations of Low Reynolds, the Figure 2(b) it represents the secondary flow contours and 

comparisons of the velocity profile (NLEVM, Assato [8]) with the experimental work of the 

Melling and Whitelaw [5] for fluid water and Re=42000.  

The predicted distributions of the friction coefficient (NLEVM and RSM) and Nusselt 

number (SED and GGDH) dependence on Reynolds number for fully developed flow and 

heat transfer in a square duct is shown in Figure 3(a) and 3(b), respectively.  

Figure 4(a): comparisons of the Results (RSM-SED) numerical with the experimental for 

temperature profile (wall constant temperature) ( ) / ( )Wm f Wm CT T T T  with fluid air and 

Re=65000 (Hirota [15]) are shown, the figure 4(b) shows the variation of the temperature 
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profile with non-uniform wall Temperature: south=400K, north=373K, east=393K, 

west=353K; presented as Case I.  

 

 

Figure 2. (a) Grid 120X120 for numerical simulation (b) Secondary flow contours and comparisons of 

the axial mean velocity with Melling and Whitelaw [5] for water utilizing NLEVM Model. 
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Figure 3. (a) Friction coefficient for fully developed flow, (b) Nusselt  number dependence on Reynolds 

number for fully developed flow 

Already the Figure 5(a) shows:  The variation of the temperature profile with non-uniform 

wall temperature, represented by means of functions sine (Case II), south=(350-20Sin(ζ))K, 

north=(400-50Sin(ζ))K, east=(330+20Sin(ζ))K, west=(350+50Sin(ζ))K. where ζ is function of 

the radians (0-/2) and i,j (points number of the grid in the direction x and y, respectively). 

The Figure 5(b) shows the behavior of the “Tb” and “DTb/dz” for different square cross 

sections in the direction of the main flow, according to Equation (31). 

(a) (b)
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Figure 4. (a) Results (RSM-SED) numerical and (Hirota et al [15]) experimental for mean temperature 

(uniform wall temperature) (b) Fluid temperature with non-uniform wall Temperature (Case I). 
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Figure 5. (a) Fluid temperature with non-uniform wall temperature (Case II) (b) Behavior “Tb” for 

different square cross sections and cases in the direction of the main flow. 

The Figures 6 (a) and (b), shown the temperature distribution for a rectangular duct aspect 

ratio (1:2) represented by means of a function sine (Case II). A third case denominated Case 

III is represented by: south=
máx

nx-1
405 10 

nx 1

 
  
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K; west=
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 K. Some results for rectangular ducts are 

shown in the Table 1. 

In the doctoral thesis Garcia (1996) was analyzed the laminar flow coupled to the 

conduction and radiation in rectangular ducts and concluded that as increases the aspect 

ratio, the Nusselt number found in the coupling, differs from that found for ducts with 
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0 0.2 0.4 0.6 0.8 1

Experimental

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0

Numerical Prediction

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.95

0.90

0.85

0.80

0.75

0.70

0.65



 
Forced Turbulent Heat Convection in a Rectangular Duct with Non-Uniform Wall Temperature 163 

constant temperature imposed around the perimeter of the section. which shows that could 

be making a mistake to consider the literature results without calculating the energy 

equation. 

 

 

 
 

Figure 6. (a) Retangular duct aspect ratio (1:2) case II, Re=65000 with Tb=300 K, utilizing the SED model 

(b) Retangular duct aspect ratio (1:2) with constant temperature in the perimeter Twm=373 K, Re=65000 

with Tb=300 K, utilizing the SED model. 

In the present study, the variations of the average Nusselt number for a square duct and 

different cases analyzed (uniform and non uniform temperature in the perimeter) are 

minimal.  Already in the case of rectangular duct with an aspect ratio (1:2), the variations 

should be taken into account as shown in Table 1.     

 

Cases Analyzed Reynolds number 

(Re) 

Nusselt number 

calculated  (Nu) 

Correlation Dittus 

Boelter (Nu). 

Temperature 

Constant 

65000 145, 910 142,89 

Case II 65000 139, 682 - 

Case III 65000 145, 059 - 

Temperature 

Constant 

28853 79, 101 77,1 

Case III 28853 76, 769 - 

Table 1. Numerical results obtained through RSM-SED model [34], for the averaged Nusselt number in 

a rectangular duct with aspect ratio (1:2). 

5. Conclusions 

The results shown what for the friction factor and Nusselt number in a wide range of the 

Reynolds number with uniform wall temperature have a reasonable approach with the 

(a) (b)



 
An Overview of Heat Transfer Phenomena 164 

experimental works and correlation of the literature, (Figure 3(a), (b)). The Figures 4(b) and 

5(a) shown new results investigated in present study, which is observed  a distortion of the 

temperatures field and as consequence a variation of the Nusselt number caused mainly by 

the distribution of the non-uniform wall temperature (Case I and II, with fluid air and 

Re=65000, respectively). Most applications can be approximated by the functions sine and 

cosine in the wall, but we are able to resolve by means of the methodology presented, any 

peripheral heat flux variation that can be expressed by a Fourier expansion (Kays and 

Crawford [30]). The Figure 5(b) shows the comparisons of the behavior of the curves “Tb” 

and “DTb/dz” in the direction of the main flow for Case II and Case uniform wall 

temperature. The variations of the average Nusselt number for a square duct and different 

cases analyzed (uniform and non uniform temperature in the perimeter) are minimal.  

Already in the case of duct with an aspect ratio (1:2) the variations should be taken into 

account. These results can be helpful in the project of thermal devices as in heat transfer and 

secondary flows in cavities, seals, channel of gas turbines and others.  

Nomenclature 

ijC  convection 

cp specific heat at constant pressure 

D duct height 

Dh hydraulic diameter,  4. 2. .h eD A P L D L D    

,L ijD   molecular diffusion  

,T ijD  Turbulent diffusion 

dP/dz pressure gradient at z direction (longitudinal axis) 

f, Cf factor of Moody´s friction, and Fanning´s friction coefficient, respectively. 

ijF   Term production for the rotation system 

ijG   buoyancy production Term 

kf fluid thermal conductivity 

L duct width 

Nu Nusselt number 

Pe perimeter 

ijP   production Term of tensions 

Pk turbulence production term 

Re Reynolds number 

jS   Source term 

T temperature 

Tb internal flow bulk temperature 

TWm wall mean temperature 

T1, T2, T3 and T4 temperature distributions at duct wall (bottom, right side, top and left side) 

Ub internal flow bulk velocity 

U, V and W  average velocity in the direction x, y and z; respectively 

y+    dimensionless wall distance 
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Greek Symbols 

α thermal diffusivity, α = kf / (ρ. cp) 

ij   Term of dissipation 

  distance normal to the wall 

  dimensionless temperature distribution 

ij   Term of pressure-tension (redistribution) 

μ dynamic viscosity 

μt turbulent viscosity 

 density 

t  turbulent  Prandtl  number 
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