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1. Introduction 

Casting process is desired because it is very versatile, flexible, and economical and happens 

to be the shortest and fastest way to transform raw material into finished product. Squeeze 

casting belongs to permanent mould casting method which offers considerable saving in 

cost for large production quantities when the size of the casting is not large. Squeeze casting 

has the advantage of producing good surface finish, close dimensional tolerance and the 

absence of sand inclusions on the cast surfaces of the products as opined by Das and 

Chatterjee, (1981). 

The solidification process of the molten aluminium metal in the steel mould takes a complex 

form, (Hosford and Caddell, 1993) and (Potter and Easterling, 1993). During solidification all 

mechanisms of heat transfer are involved and the solidifying metal undergoes state and 

phase changes. The final structure and properties of the cast product obtained depend on 

the casting parameters applied i.e. applied pressures, die pre-heat temperature, delay time 

and period of applied pressure on the solidifying metal, (Potter and Easterling, 1993), 

(Bolton, 1989) and (Callister, 1997). The prediction of temperature distribution and 

solidification rate in metal casting is very important in modern foundry technologies. This 

helps to control the fundamental parameters such as the occurrence of defects, as well as, 

the influence on final properties of cast products and the mould wall / cast metal interface 

contact surface. 

Heat transfer coefficients during squeeze cast of commercial aluminium were determined 

using the solidification temperature versus time curves obtained for varying applied 

pressures during squeeze casting process. The steel mould / cast aluminium metal interface 

temperatures versus times curve obtained through polynomial curves fitting and 
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extrapolation was compared with the numerically obtained temperatures versus times 

curve. Interfacial heat transfer coefficients were determined experimentally from measured 

values of heating and cooling temperatures of steel mould and cast metal and compared 

with the numerically obtained values and found to be fairly close in values.  

Aluminium is a product with unique properties, making it a natural partner for the building 

and other manufacturing industries. The commercially pure aluminium metal used for this 

research work finds extensive use in the building, manufacturing and process industries, 

both as a material of construction and household goods. Products of squeeze casting are of 

improved mechanical properties and could be given heat treatment. Heat dissipation from 

the squeeze cast specimen is fast thus producing products of fine grains as compared to the 

slow cooling of sand casting, which produces large grains. Products obtained through 

squeeze casting are with improved mechanical properties. 

2. Squeeze casting procedure 

A metered quantity of molten metal was poured into the steel mould cavity at a supper-heat 

temperature of between 40-60 0C fast but avoiding turbulence. The upper die was then 

released to close the mould cavity with and without applying any load on the upper die. 

Thermocouples were inserted into the drilled holes made in the die, which were used to 

monitor both the die and cast metal temperatures. The terminals of the thermocouples were 

connected to the chart recorder/plotter (set at the highest speed of 10mm/s and voltage 100mV) 

through the cold junction apparatus, maintained at 0 0C throughout the measuring period. 

3. Assumptions made 

i. Heat transfer in the molten metal cast zone is due to both conduction and convection  

while conduction heat transfer occurs in the steel mould, it is convection at the outer 

surface of the steel mould. 

ii. The thickness of the cast specimen is much smaller than the diameter (radial 

dimension), thus giving one dimensional heat transfer process. 

iii. Considering the symmetrical nature of the cast specimen, solidification process was 

assumed symmetrical and only lower half of the specimen’s thickness was analysed see 

figure 1. 

iv. The bottom of the squeeze casting rig was and the heat losses to the atmosphere was 

small and neglected. 

v. Heat losses through conduction and convection to the atmosphere at the punch were 

neglected, as a result of short time of pressure application. 

vi. The process of analyses in the cast specimen starts only when the steel mould cavity 

had been filled with the required quantity of liquid molten metal (i.e. heat transfer 

processes during pouring of molten aluminium into the steel mould are not 

considered). 

vii. Density of the molten and solidified aluminium metal was assumed to be the same and 

independent of temperature. 
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viii. Thermal conductivity and specific heat of aluminium metal were dependent on the cast 

temperatures. 

4. Heat transfer governing equations  

4.1. Without pressure application on the cast metal 

A measured quantity of molten aluminium metal was poured into the steel mould cavity. 

The process of solidification begins from the steel mould/cast metal interface and continues 

inwards into the cast metal. As this process continues, there was an increase in the thickness 

of the solidified layer and a decrease in the liquid molten metal portion. For the situation 

when no pressure was applied on the solidified molten metal, the governing heat transfer 

equations in one dimension are given by equation (1). 

 
2

2

1T T T
C K

t r rr


   
  

   
 (1) 

From figure 1, equation (1) is defined within the region with; 

i. Steel mould, 

 stL r L Q    

ii. Solidified molten, 

 
r

j
SL X r L    

  0660S MMT T C   (2) 

iii. Liquid molten metal, 
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T
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r





 (3) 

 0r   (4) 

  0720L PT T C   (5) 

iv. At the phase change boundary condition; 
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dX TT
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 
 (6) 
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where, 

 j
rr L X   (7) 

 

Figure 1. Schematic representation of solidification front in one dimension (radial direction) 

4.2. Casting with pressure application on the solidified molten metal 

As the cast aluminium metal solidifies, pressure is applied on the specimen, observing lapse 

or delay time, tl, while varying the values of pressure applied. The time between the end of 

pouring of molten metal and pressure application known as lapse time, is recorded. This is 

necessary such that the cast specimen will not stick to the upper punch or cause the cast 

metal to tear with pressure application. Due to the applied pressure, an internal energy ∆q is 

generated within the solidified molten metal, (see figure 2). 

Inserting the internal energy into the heat transfer equation (1) for solidified molten metal, it 

becomes equation (8), 
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where, 

 
P fq q q     (9) 

∆q -internal energy generated by applied pressure, 

∆qP -energy due to plastic strain within the solidified molten metal material, 

∆qf -frictional energy generated during pressure application, 

 
f fP fmq q q     (10) 

∆qfP  -frictional energy due to punch / solidified molten metal interface, 

∆qfm -frictional energy due to steel mould cylindrical surface / solidified molten metal 

interface. 

 

Figure 2. Cast specimen under pressure 
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5. Formulation of heat transfer equations 

Finite difference expressions for the nodal temperatures are obtained by either energy 

balance within an elemental volume around the node or by substitutions into the governing 

partial differential equations. Partial time derivative of temperature contained in the 

equations can be written in terms of a moving gradient as in White (1991) at a velocity of 

dx/dt. In the heat transfer equation, temperature is defined as a function of distance, r with 

time, t and represented in equation (11). 

  ,T T r t    (11) 

5.1. In the steel mould 
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2
st st st st

st
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 
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 (12) 

where, 

 0stdr

dt
  (13) 

 st
st

st st

K

C
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
  (14) 

st -thermal diffusivity of steel mould material. 

5.2. In the solidified molten metal 
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 (15) 

where, 

 S
S

S S

K

C



  (16) 

S -thermal diffusivity of solidified molten metal material. 

5.3. In the liquid molten metal 
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dt dt r r rN M r




   
  

  
 (17) 

where, 
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L

L
L L

K

C



  (18) 

L  -thermal diffusivity of liquid molten metal material. 

6. Nodal divisions 

The steel mould, the solidified metal and the molten metal regions were discretized 

separately. Each of these regions was divided into a fixed number of gridal points as in 

figure 1. 

6.1. In the steel mould 

  st

Q
d

G I



 (19) 

I = 1, 2, 3,…, G-1 

6.2. In the solidified molten metal 

  
i
r

S

X
d

M I



 (20) 

I = G+1, G+2, G+3, … , M-1 

6.3. In the liquid molten metal portion 

 
 
 

i
r

L

L X
d

N I





 (21) 

I = M+1, M+2, M+3 … N-1 

6.4. In the phase change boundaries 

The phase change is represented by the equations; 

  
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r

Ps

X
d

M G



 (22) 
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6.5. At the completion of solidification 

  SC

L
d

N G



 (24) 

As solidification time progresses, the boundary locations change, and the thickness of the 

solidified molten metal in the radial direction increases. The rate of change of boundary 

location with time is represented, mathematically in equation (25), 

 
 1j ji

r rr
X XdX

dt 

 
  (25) 

Where,  

 1j j
r rX X   -are differences in the thickness of solidified molten metal at a particular time 

interval as time progresses in the radial direction.  

 -time interval. 

7. Boundary conditions 

The problem of phase change during solidification is that the location of the solidifying 

molten metal / liquid molten metal interface is not known and this is determined 

continuously by appropriate mathematical analysis. This moving interface is normally 

expressed mathematically by the energy balance equations at the interfaces. In the 

numerical analysis, as solidification of molten aluminium metal progresses, three boundary 

interfaces occurred as: 

7.1. Steel mould-atmosphere interface (I = 1) 

The heat conducted to the steel mould material (from I = 2 to 1 = 1) equals the sum of the 

change in the internal energy and heat convected from the surface of the steel metal mould 

material into the atmosphere, mathematically represented in equation (26). 

 
*2 2

( )jst st st
i

st st st st st st

T K T H
T T

t C d r C d  
 

  
 

 (26) 

I = 1 

7.2. In the solidified molten metal-steel mould interface (I = G) 

The sum of the heat conducted from the solidifying molten metal/steel mould interface and 

the change (decrease) in the internal energy at the boundary equal the sum of the heat 

conducted to the steel mould and the change (increase) in the internal energy at the 

interface. 



 
Experimental Determination of Heat Transfer Coefficients During Squeeze Casting of Aluminium 43 

 
1 1

2 2
S S st st

S S S S st st st st

T T T T
K C d K C d

r t r t
 

   
  
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 (27) 

I = G 

7.3. In the liquid molten metal – Solidified molten metal interface, (I = M) 

The sum of the heat conducted from the liquid molten metal and the internal energy 

generated equal the sum of heat conducted to the solidified molten metal and the internal 

energy generated at the interface as in equation (28). 

 
1 1

2 2
S SL L

L L L L S S S S

T TT T
K C d K C d

r t r t
 

  
  

   
 (28) 

I = M 

 

Figure 3. Corner nodes. A) External, B) Internal nodes 

7.4. At the corners 

The usual one dimensional heat transfer analysis does not take into consideration heat loss 

at the corners as represented in figure 3. Heat loss at both the external and internal corner 

nodes of the steel mould have been considered and analysed while the die is lagged at the 

bottom surface.  

7.5. External corner effect 

 1i g convq q q    (29) 



 

An Overview of Heat Transfer Phenomena 44 

The heat conducted from point Ri+1 to point Ri added to the change in the internal energy 

equal the amount of heat convected out to the atmosphere at point RI., Fig. (3a). The finite 

form of equation (29) is represented by equation (30), 

    1

2

j j j jst st st
st st i i

st st

K T T h h
C T T T T

d r t d H
  

 
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 
 (30) 

7.6. Internal corner effect 

The heat conducted from point PI+1 to point PI added to the change in the internal energy 

amount to the heat conducted into the steel mould at point I, fig. (3b) thus becoming 

equation (31); 

 
1

2 1
S S st st st st st

S S
st S

K T T K T K T
C

d r t d r H Z

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  

   
 (31) 

7.7. First time analysis 

Solidification takes place only in the radial direction, a one-dimensional heat solidification 

problem was assumed numerically to take place in the radial direction only after filling the 

steel mould cavity with the liquid molten metal. 

For the first time analysis, the specimen is considered to be in the molten stage and therefore 

equation (32) for the liquid molten metal is used for computation. Thus; 

 

2
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1L L L
L L L
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dT T T
C K

dt r rr

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  
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 (32) 

This equation is subjected to the boundary conditions with; 

 L ST T  (33) 

The instantaneous radius ri in the first time analysis is given by equation (34); 
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I = G, G+1, G+2, G+3,…., N 

The boundary velocity of moving coordinate of equation (32) is given as equation (35); 
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7.8. At the completion of solidification 

At the completion of solidification, the whole molten region becomes solidified molten 

metal, and just before pressure is applied, the governing heat transfer equation becomes 

equation (36) representing the solidified portion; 
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1S SL
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t r rr


  
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 (36) 

The equation is applicable within the region defined by equation (37); 

 r L  (37) 

The boundary motion at the completion of solidification is as in equation (38); 
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I = G, G+1, G+2, G+3,…, .N 

The boundary velocity at the completion of solidification is expressed as equation (39); 
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where, 

L -constant value 

8. Finite difference of governing heat transfer equations 

The heat transfer equations generated in the cast metal and interfaces are written in the 

finite difference forms. These equations are presented in the various regions thus; 

8.1. In the steel mould region 
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where,  
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I = 1,2,3,……………G 
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8.2. In the solidified molten metal portion 
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where, 
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I = G+1, G+2, G+3,………., M 

8.3. In the liquid molten metal region 
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where, 
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I = M, M+1, M+2, M+3, …, N 

8.4. In the phase change boundary condition (I = M) 
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where, 
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8.5. In the steel mould / atmosphere interface (I = 1) 
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I = 1 

where; 
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I = 1, 2, 3, …, G 

8.6. In the solidified molten metal / steel mould interface (I = G) 
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8.7. In the liquid molten metal / solidified molten metal interface (I = M) 
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where, 
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I = M, M+1, M+2, M+3,…,N 

8.8. External corner effect (I = 1) 
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where,  
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8.9. Internal corner effect (I = G) 
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where, 
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8.10. First time analysis 

Finite difference form of equation (32) therefore becomes equation (58);  
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where,  
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I = G+1, G+2, G+3, ………., .N 

8.11. At the completion of solidification 

Finite difference form of equation (36) becomes equation (60);  
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where; 
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I = G+1, G+2, G+3,… , (N-1) 

9. Stability criteria 

For stability criteria to be achieved, the values of temperature 
'j

iT  in all the heat governing 

equations should not be negative according to Ozisik (1985) and White (1991) not to negate 

the law of thermodynamics which could lead to temperature fluctuations. Therefore, for 

stability to be achieved, the coefficients of 
'j

iT  in each of the equations must be greater than 

zero. 

10. Casting with pressure application and die heating 

Pressure was applied only when the cast specimen was solidified, the governing heat 

transfer equation therefore, takes the form of solidified molten metal (completion of 

solidification). The finite difference of equation (8) is written as equation (62);  

 1
12 2 2

2
1j j j jS S S S S

i i i i
S S S SS S S

T T T T T
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 (62) 

where,  

T -temperature change resulting from pressure application  

The cast specimen height, hc, is pressure dependent and the relationship is expressed with 

the equation (63) below after performing series of experiment with various applied pressure; 

 0.00007 0.036833ch P    (63) 

where coefficient of correlation r = 0.996 

The plastic flow stress, σ(T), is dependent on both the applied pressure, P, and die 

temperature, TM, (White, 1991), and expressed with the equation (64); 

 ( ) 0.244 0.0405 18.614T P TM     (64) 

where coefficient of correlation r = 0.9508 

11. Casting with die heating 

Aluminium cast specimens were produced with die pre- heating temperatures of between 

100- 3000C without applying pressure on the solidifying aluminium metal. The die heating 
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process was carried out, using three electric heater rods (100Watts each) that were connected 

to a.c supply. The required die temperatures were set and controlled, using a bimetallic 

thermostat. 

12. Heat transfer coefficient evaluations 

The method of calculating heat transfer coefficients as reported by Santos et al (2001) and 

Maleki et al, (2006) is based on the knowledge of known temperature histories at the interior 

points of the casting or mould together with the numerical models of heat flow during 

solidification. These temperatures are difficult to measure due to the difficulty in locating 

accurate position of thermocouple at the interface. Therefore, the inverse heat conduction 

problem based on non-linear estimation technique of Chattopadhyay, (2007) and Hu and 

Yu, (2002), has been adopted to determine the values of interface heat transfer coefficients, 

as a function of time during solidification of squeeze casting. Solidification of squeeze 

casting of aluminium involves phase change and therefore thermal properties of aluminium 

are temperature dependent, making the inverse heat conduction problem non-linear.  

The governing heat transfer equation in one-dimensional cylindrical coordinates is given by 

equation (65): 
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Equation (65) holds within the boundary condition as expressed in equation (66):  

 ( ) ( )al al al M

T
q K T h T T T

r


    

 (66) 

The thermal conductivity Kal (Reed-Hill and Abbaschian 1973) and (Elliot, 1988) of 

aluminium is dependent upon casting temperature, Tal, and expressed in equation (67): 

 ( ) 241.84 0.041al alK T T   (67) 

The heat flow across the casting/mould interface can be characterized by an average 

interfacial heat transfer coefficient, hal(T) as obtained by Gafur et al (2003) and Santos et al 

(2004). This is expressed mathematically in equation (68): 

 ( )al
al M

q
h T

T T

  

 (68) 

The heat transfer coefficient, h, at the interface is estimated by minimizing the errors 

between numerically estimated and measured temperatures defined by equation (69): 
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F h T T
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where,  

Test and Texp -are the estimated and experimentally measured temperatures at various 

thermocouples location and times, 

n -iteration stage 

13. Numerical simulations of differential equations 

Squeeze casting consists of two stages, the first of which is mould filling: - the mould is 

filled with the required quantity of liquid molten metal; the second is cooling, this continues 

until the part has solidified completely. Controlling both stages is of major importance for 

obtaining sound casts with the required geometry and mechanical properties as observed by 

(Kobryn and Semiatin, (2000), Browne and O’Mahoney, (2001) and Martorano and 

Capocchi, (2000). When molten metal is poured into the mould cavity, it is initially in the 

liquid state with a high fluidity. It quickly becomes very viscous, in the early stage of 

solidification, and later completely solidifies (Gafur et al, 2003). For the numerical analysis 

of heat transfer problem, the appropriate set of equations were determined that described 

the heat transfer behaviour in the cast metal (Hearn, 1992). With the boundary conditions, 

initial conditions, and thermo-physical properties of the materials being known, it is 

possible to obtain the temperature and variation of the whole casting system (Ozisik, 1985) 

and (Liu et al (1993). Finite number at discrete points (Adams and Rogers, (1973), Shampire, 

(1994) and Bayazitoglu and Ozisik, (1988)) within the cast specimen was employed as the 

numerical method of solution. This method provides the temperature at a discrete number 

of points in the cast region. In the numerical method, the cast region is defined and divided 

into discrete number of points. As temperature difference is imposed in the system, heat 

flows from the high-temperature region to the low-temperature region as shown in figure 1. 

To determine the temperature distribution, energy conservation equations were used for 

each of the nodal points of the unknown temperature at the interfaces and the cast regions 

((Incropera and Dewitt, 1985) and (Janna, 1988)). Temperatures were monitored at distance 

2mm into the cast metal, represented by grid point M, and at the steel mould/cast metal 

interface (see figure 4). By using measured temperatures in both the casting and the steel 

mould, together with the numerical solutions of the solidification problem, heat transfer 

coefficients were determined based on Beck (1970) solution of the inverse heat conduction 

problem. The estimation of the surface heat transfer coefficients or heat flux density utilizing 

a measured temperature history inside a heat-conducting solid is called the inverse heat 

conduction problem (Cho and Hong 1996). This problem becomes non-linear, as the thermal 

properties (thermal conductivity, specific heat) are temperature dependent. 

14. Experimental procedure 

Chromel-Alumel thermocouples TC2, TC3, TC4, TC5 and TC6 were positioned on the sides 

of the cylindrical steel container, while TC1 and TC7 were positioned in the cast aluminium 

metal in the cylindrical and bottom flat surfaces respectively as shown in figure 4 below. 
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Thermocouples of chromel-alumel type, 3mm in diameter were used to determine the 

solidifying temperatures of the cast molten metal and heating temperatures of the steel 

mould at the various positions in the cylindrical steel container of figure 4. The solidifying 

temperatures at both the cylindrical and flat bottom surfaces of the cast molten aluminium 

metal were monitored at a position 2mm (from the surface of the steel mould –cast 

aluminium metal interface) into the cast molten aluminium metal. 

At the steel mould wall in the cylindrical surface, thermocouples were positioned at X2 = 

4mm, X3 = 8mm, X4 = 12mm, X5 = 16mm and X6 = 20mm measured from the cast 

aluminium metal / steel mould interface to monitor the heating temperatures at these 

positions of the steel mould wall as shown in fig. 4. From the temperatures versus time 

curves obtained for each position in the steel mould, the interface heating temperature 

versus time curve at the cast aluminium metal / steel mould, for position when X = 0 was 

obtained by using the polynomial curve fitting method. 

 

1-upper punch, 2-cylindrical steel mould, 3-lower die 

(X1 = 2, X2 = 4, X3 = 8, X4 = 12, X5 = 16, X6 = 20, Y1 = 2 (mm)) 

Figure 4. Schematic diagram of squeeze casting test rig 
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This was done by selecting a particular time of heating of steel mould, say t = 10sec. and 

drawing vertical lines cutting across the heating temperatures versus time curves at various 

thermocouples’ distances within the steel mould. At the point of intersection with each 

curve, the value of temperature was read against distance X, for the chosen time, t = 10sec. 

The value of interface steel mould / cast temperature at time say, t = 10sec. was determined 

at the steel mould / cast metal interface by substituting the value of X = 0 in the polynomial 

curve fitting equation (70) obtained from the values of temperatures at various distances in 

the steel mould at a chosen time, t = 10sec.  

 
4 3 2

0 0.0031 0.168 3.263 22.812 117.8XT X X X X      (70) 

The temperature obtained by this method corresponds to the interface steel mould / cast 

metal temperature at a distance X = 0 for the chosen time t = 10sec. If this procedure is 

repeated for a number of time increments, the temperatures obtained with corresponding 

times represent the temperature at X=0, for such time increments. The graph of extrapolated 

temperatures versus time is drawn for position when X = 0 to represent the heating 

temperatures versus time curve at the steel mould / cast aluminium metal interface is shown 

in figure 5. 

 

Figure 5. Effect of distance on the heating temperatures of steel mould (extrapolated heating curve at 

the cast specimen/steel mould interface i.e. X=0) 

15. Interface heat transfer coefficients determination 

Extrapolated temperature versus time curve of figure 5 for position when X = 0 (i.e. cast 

aluminium metal / steel mould interface) was used to determine the heat transfer 

coefficients of solidifying molten aluminium metal. It was used to determine the interface 

heat transfer coefficients in the cast aluminium metal / steel mould for no pressure and with 

pressure applications at both the cylindrical and bottom flat surfaces of the steel mould.  
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The interface heat transfer coefficients between the steel mould and cast aluminium metal at 

the cylindrical and bottom flat surfaces were determined from the extrapolated 

experimental heating temperature versus time curve obtained for position X = 0 and 

aluminium cast solidification temperature versus time curves obtained for the cylindrical 

and bottom flat surfaces, using equations (66) and (67). 

The interface heat transfer coefficients were determined also numerically by the inverse 

method using the Finite Difference Method (FDM) and the obtained results were compared 

with the experimentally derived values. 

16. Discussions of results 

16.1. Temperature-time curves 

Figure 6 shows typical temperature versus time curves for solidifying molten aluminium 

metal and steel mould respectively without the application of pressure on solidifying metal.  

This figure shows the comparison of the numerical method usually applied by Cho and 

Hong (1996) to determine interface steel mould / cast metal temperature versus time curve 

with the extrapolated experimental method of this present work. The heating curve, as 

obtained through extrapolations of polynomial curves fitting equations and numerical 

methods are in close agreement and the deviations from the values obtained numerically 

varied from between 1.26- 19.31%. 

Typical result obtained under pressure is also shown in figure 7, indicating the solidification 

and heating curves generated for solidifying molten aluminium metal and steel mould 

which follow the same patterns to the curves in figure 6. 

 

Figure 6. Comparison of experimental measured temperatures with numerical values of aluminium 

metal without pressure application (P = 0) 

With the application of pressure, the peak temperatures recorded are about the same 649oC 

and 6480C for a pressure of 85.86 MPa at the bottom flat and cylindrical surfaces of the steel 
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mould respectively (see figure 7). The peak temperature (649oC) obtained at the bottom flat 

surface of the steel mould under applied pressure is found to be higher than that 

temperature (607oC) without pressure application. This effect may be associated to 

additional internal heat generated, resulting to higher temperature during pressure 

application on the solidifying molten aluminium. 

 

Figure 7. Effect of pressure on the experimental measured temperatures of solidification of aluminium 

metal (P = 85.86MPa) for side and bottom mould's surface 

16.2. Interface heat transfer coefficients with time  

From the temperature with time curves of figure 6, the heat transfer coefficients for both 

cylindrical and bottom flat surfaces were determined for both numerical and calculated 

values and shown in figure 8. The maximum heat transfer coefficients of 2927.92 W/m2K and 

2975.14 W/m2K are obtained at the cylindrical and bottom flat surfaces respectively for no 

pressure application, which is close to 2900 W/m2K as obtained for pure aluminium by Kim 

and Lee (1997). The values of heat transfer coefficients decrease rapidly for both the 

cylindrical and bottom flat surfaces to a level of 866.70 W/m2K and 969.50 W/m2K 

respectively in 90 seconds. These values further decrease to 361.80 W/m2K and 478.80 

W/m2K at these surfaces in another 150 seconds and further decrease then becomes not so 

noticeable. 

From figure 8, the peak values of interface heat transfer coefficients are 2927.92 W/m2K and 

2956.73 W/m2K as obtained by experimental and numerical determinations respectively at 

the cylindrical surface for no pressure application. For times within 40 seconds to 120 

seconds the values of the interfacial heat transfer coefficients obtained numerically and 

experimentally are found to show higher values of about 19.83 % for numerical results to 

experimental results. 

With the application of pressure on the solidifying aluminium metal, the heat transfer 

coefficients reach maximum values of 3085.34 W/m2K and 3351.08 W/m2K in the cylindrical 

and bottom flat surfaces respectively (see figure 9). These values also decrease to 847.80 
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W/m2K and 783.63 W/m2K in 240 seconds in the cylindrical and bottom flat surfaces 

respectively, while further decrease with time of solidification is no longer pronounced.  

16.3. Interface heat transfer coefficients with solidification temperatures 

Figures 10 and 12 show the calculated experimental interface heat transfer coefficients for 

solidifying molten aluminium metal as a function of solidification temperatures of the 

solidifying molten aluminium metal. Figure 10 shows the variation of heat transfer 

coefficient with solidification temperatures of aluminium at the cylindrical surface, while 

figure 12 is the interface heat transfer coefficients with solidifying temperature at the bottom 

flat surface with and without the application of pressure on the solidifying metal. From the 

two graphs, the maximum interface heat transfer coefficients obtained without pressure and 

with pressure application in the bottom flat surface of the steel mould are 2975.14 W/m2K 

and 3351.08 W/m2K respectively. 

 

Figure 8. Comparison of numerical values of heat transfer coefficients with calculated experimental 

values (P = 0) 

 

Figure 9. Effect of time of solidification of aluminium metal on heat transfer coefficients with pressure 

application (P  = 85.86MPa) at side and bottom surfaces of steel mould 
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Figure 11 shows the numerical values of the variation of interface heat transfer coefficients 

with the solidification temperature of aluminium metal at the cylindrical surface with the 

application of pressure. The maximum value of heat transfer coefficient of 3397.29 W/m2K at 

applied pressure of 85.86Mpa as compared to 3351.08 W/m2K obtained through the 

experimental procedure.  

At solidifying temperature above 600oC, a sharp reduction in the interface heat transfer 

coefficients is noticed at both surfaces as is shown on figures 10, 11 and 12.  

For temperatures below 5000C, the interface heat transfer coefficients for both no pressure 

and pressure applications are close in values. This shows that at temperature below 5000C, 

the effect of applied pressure is no longer significant on the interface heat transfer coefficient 

values. The drop in temperature results in solidification of the molten aluminium, which in 

turn leads to a drop in the heat transfer coefficient values. The effect of applied pressure on 

the heat transfer coefficients of aluminium becomes more pronounced at solidifying 

temperatures above 5000C which was also reported by Cho and Hong (1996). Below this 

temperature, the effect of applied pressure on interface heat transfer coefficient values 

becomes less pronounced. 

Therefore, from figures 10, 11 and 12, it is observed that the effect of applied pressure 

becomes more significant at temperature close to the liquidus temperature of aluminium as 

measured along the bottom flat surface of the steel mould (see figure 12). The maximum 

value of 3397.29 W/m2K is obtained for pressure level of 85.86MPa as compared to 2975.14 

W/m2K for no pressure at the bottom flat surface of the steel mould.  

 

Figure 10. Typical effects of pressure applications on heat transfer coefficients with solidifying 

temperature at the side cylindrical mould surface by experimental method 

16.4. Peak interface heat transfer coefficients with applied pressures 

Figure 13 shows the variation of peak values of interface heat transfer coefficients with and 

without pressure applications. Higher experimental values of heat transfer coefficients are 

obtained at the bottom flat surface than at the cylindrical surface of the steel mould (see 
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figure 13). This can be associated to greater effect of pressure application experienced at the 

bottom flat surface than at the side cylindrical surface, thus leading possibly to greater 

additional internal heat energy generated, and hence obtained higher values of heat transfer 

coefficients. The results of numerical determination of heat transfer coefficients as in figure 

13 shows higher values as compared to the values obtained by experimental method. At 

applied pressure of 85.86MPa, the obtained heat transfer coefficients are 3397.29 W/m2K and 

3351.08 W/m2K by numerical and experimental procedures respectively. From the curves of 

heat transfer coefficients obtained with temperatures of figures 10, 11 and 12, three distinct 

portions are noticed. These portions are easily differentiated by the aluminium solidification 

temperature. These temperatures are below 5000C, solidus phase, 500 to 6600C, liquidus-

solidus phase, and above 6600C liquidus phase of solidification of molten aluminium.  

 

Figure 11. Typical effects of pressure application on heat transfer coefficients with solidifying 

temperature of the side cylindrical mould surface by numerical method 

 

 

Figure 12. Typical effects of pressure applications on the heat transfer coefficients with solidifying 

temperature at the bottom flat mould surface 
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The liquidus-solidus phase, which occurs over a solidification temperature range of 5000C to 

6600C, instead of a constant solidification temperature of 6600C can be attributed to the 

presence of impurities such as silicon, magnesium and manganese in the commercially pure 

aluminium a fact supported by Higgins (1983). 

 

Figure 13. Effect of pressure on the peak values of heat transfer coefficients of aluminium metal at 

liquidus stage at side and bottom flat moulds' surfaces 

The empirical equations for each of the distinct phase changes as a function of applied 

pressures and solidification temperatures are determined for both the experimental and 

numerical methods. The empirical equations obtained are for mean average values of heat 

transfer coefficients based on the experimental method at the cylindrical and flat bottom 

surfaces. These are equations (71-73): 

Temperatures below 5000C (solidus phase), 

 (exp) 3.081 1.303 232.942Sh T P    (71) 

with coefficient of correlation r = 0.9545. 

Temperatures between 5000C and 6600C (liquidus-solidus phase), 

 (exp) 10.420 5.641 4176.022LSh T P    (72) 

with coefficient of correlation r = 0.9884. 

Temperatures above 6600C (super heat, liquidus phase), 

 
(exp) 2.769 2.518 988.921Lh T P    (73) 

with coefficient of correlation r = 0.7825. 

The empirical equations (74-76) obtained through the numerical methods are from the 

results of the computer simulations of heat transfer coefficients at the cylindrical cast metal / 
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steel mould interface by the application of various applied pressures. These empirical 

equations are: 

Temperatures below 5000C (solidus phase), 

 ( ) 3.849 3.643 700.427S numh T P    (74) 

with coefficient of correlation r = 0.969 

Temperatures between 5000C and 6600C (liquidus-solidus phase), 

 ( ) 9.027 3.414 3000.625LS numh T P    (75) 

with coefficient of correlation r = 0.964 

Temperatures above 6600C (super heat, liquidus phase), 

 ( ) 2.489 2.787 1342.19L numh T P    (76) 

with coefficient of correlation r = 0.772 

16.5. Die heating effect 

Figure 14 is the effect of die pre-heat temperatures on the values of heat transfer coefficients 

of aluminium metal without the application of pressure. From the figure, the heat transfer 

coefficients become lower with increase in die pre-heat temperatures. At die temperature of 

950C, the heat transfer coefficient is 3185.34 W/m2K and drop to a value of 2476.73 W/m2K at 

die temperature of 3000C. For all the die temperatures, there is a fall in the heat transfer 

coefficient’s values as solidification temperature decreases. 

 

Figure 14. Typical effect of die temperature on heat transfer coefficients without the application of 

pressure (P=0) 
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16.6. Comparison of heat transfer coefficient with semi-empirical method 

The values of heat transfer coefficients determined using experimental, heat differential 

equations (numerical), and methods of semi-empirical equations are shown in figure 15 

under a pressure application of 85.86MPa. From this graph, the peak values of interface heat 

transfer coefficient are 3358.19 W/m2K and 3198.79 W/m2K as obtained by heat differential 

and method of semi-empirical equations respectively for a pressure application of 85.86MPa. 

The heat transfer coefficients’ values for the three methods drop with time and are found to 

be 1708.03, 1976.81 and 1838.72 W/m2K in 100seconds for experimental, differential and 

methods of semi-empirical equations respectively. 

With die temperature of TM=1500C, the peak heat transfer coefficients of 3088.99 W/m2K, 

3249.84 W/m2K and 2982.60 W/m2K are obtained for experimental, heat differential and method 

of semi-empirical equations as shown on figure 16 following the same pattern as in figure 15. 

 

Figure 15. Typical comparison of numerical values of interface heat transfer coefficients with 

experimental and empirical values with pressure application (P=85.86MPa, TM =300C) 

 

Figure 16. Typical comparison of numerical values of interface heat transfer coefficients with 

experimental and empirical values with die heating (TM=150°C) 
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17. Conclusions 

The following conclusions can be made from the present investigation: 

The graph of temperature against time curves obtained by extrapolating to steel mould / cast 

metal interface by polynomial curve fitting to heating temperatures graphs with times at 

various steel mould locations are found to agree in values to the usual numerical methods 

obtained by previous authors. The interface heat transfer coefficients obtained by the 

numerical and experimental methods without the application of pressure are found to have 

values close to that of the numerical methods. The values of the numerical methods were 

higher by about 19.83%.  

Effect of pressure application on the solidifying molten aluminium is more pronounced at 

casting temperatures above 5000C of the cast aluminium specimen on the values of the 

interface heat transfer coefficients obtained. Interface heat transfer coefficients are found to 

decrease with increase in solidification time in both the cylindrical and bottom flat surfaces 

of the steel mould and thereafter remain fairly constant at temperature below 5000C 

Values of experimental peak heat transfer coefficients at the bottom flat surface are found to 

be higher with pressure application on the solidifying aluminium metal than at the 

cylindrical surface. 

The empirical equations, relating the values of interface heat transfer coefficients with the 

applied pressures and solidification temperatures at three distinct stages of solidifying 

molten aluminium are determined and can be applied to determine the heat transfer 

coefficients. 

The values of heat transfer coefficients obtained by heat differential equations incorporating 

internal heat energy and methods of semi-empirical equations are very close in values. The 

values as obtained by semi-empirical equations were higher by about 1.7% within the first 5 

seconds of solidification. 

The semi-empirical equations generated are flexible and could be used to predict the casting 

temperatures of other metals if the heat transfer coefficient values at the three phase changes 

are known. 

Nomenclature 

CL - Specific heat of liquid molten aluminium metal, 

CS -Specific heat of solidified molten aluminium metal, 

Cst - Specific heat of steel mould, 

dsc -Spatial step size in the solidified molten metal at completion of solidification, 

dL -Spatial step sizes at the Liquid portion, 

dPS -Spatial step size at the solidified molten metal phase change, 

dPL -Spatial step size at the solidified molten metal phase change, 

ds -Spatial step size in the solidified molten metal, 

h0 -Initial height of cast specimen metal (no pressure application), 
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hPL    -Spatial step size at the liquid molten metal phase change, 

hPS -Spatial step size at the solidified molten metal phase change, 

H* -Convective heat transfer of the surrounding atmosphere around the steel mould, 

I -grid point, 

G -grid point at the steel mould-solidified molten metal interface, 

M -grid point at the solidified molten metal-liquid molten metal interface, 

N -grid point at the centre of the solidifying cast specimen metal, 

KL -Thermal conductivity of liquid molten metal, 

Kst -Thermal conductivity of steel mould material, 

KS -Thermal conductivity of solidified molten metal, 

Ro -external radius of steel mould, 

L -internal radius of steel mould, 

r -radial axis/coordinate, 

T -Temperature, 

T∞ -ambient temperature, 

Ti -temperature at a specified grid point(i, j), 

TL -temperature of liquid molten metal, 

Tst, TM -temperature of steel mould, 

TMM -melting temperature of cast (aluminium) metal, 

Tp -pouring temperature of liquid molten metal (super heat temperature), 

TS -temperature of solidified molten metal, 

Xir -thickness of solidified molten metal at a specified grid point-radial direction, 

Q -Thickness of the cylindrical steel mould. 

Greek symbols 

L  -thermal diffusivity of the liquid molten metal, 

st -thermal diffusivity of the steel mould material, 

S -thermal diffusivity of solidified molten metal, 

 -time interval step, 

st -density of steel mould material, 

S -density of solidified molten metal, 

L  -density of liquid molten metal, 

(T) -Plastic flow stress (temperature dependent). 
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