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1. Introduction 

1.1. Background 

Over the past few years, the development of wireless sensor network application has 

generated much interest. Research on the various ways to power wireless sensor devices has 

gradually become important [1-3]. Unlike portable devices such as cell phones and PDAs 

where the batteries can be recharged or replaced regularly, most micro sensors are powered 

by embedded batteries. Therefore, the life of a battery is a major constraint when trying to 

extend the convenience of micro sensors. With the advent of low-power electronic designs 

and improvements in fabrication, technology has progressed towards the possibility of self-

powered sensor nodes and micro sensors [4].  

 

Figure 1. Schematic diagram of a typical power harvesting system 

Figure 1 shows a typical power harvesting system for self-powered sensor nodes and micro 

sensors. It includes an external energy source, a transducer to convert energy from external 

energy to electric power, a harvesting circuit to optimize the harvesting efficiency and a 

storage battery or a load circuit. Much research has been focused on harvesting electric 

power from various ambient energy sources, including solar power, thermal gradients and 
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Energy Source Power Density Energy Density 

Batteries (znic-air)  1050-1560mWh/cm3 

Batteries (rechargeable lithium)  
300 mWh/cm3 (3-

4V) 

Solar (outdoors) 
15mW/cm2 (direct sun) 

0.15mW/cm2 (cloudy day) 
 

Solar (indoors) 

0.006 mW/cm2 (standard office 

desk) 

0.057 mW/cm2(<60W desk lamp) 

 

Vibrations 0.01-0.1 mW/cm3  

Acoustic Noise 
3E-6 mW/cm2 at 75 dB 

9.6E-4 mW/cm2 at 100 dB 
 

Passive Human-Powered 

Systems 
1.8mW (shoe inserts)  

Nuclear Reaction 80 mW/cm3 1E6mWh/cm3 

Table 1. A comparison of energy sources [2] 1 

vibrations [5]. When comparing all possible energy sources, mechanical vibration is a 

potential power source that can be easily accessed through adopting micro-

electromechanical systems (MEMS) technology [6, 7]. Table 1 shows a comparison of various 

energy sources [2]. Mechanical vibration energy can be converted into usable electrical 

energy through piezoelectric [3, 8, 9], electromagnetic [4, 10, 11] and electrostatic [12-14] 

transducers. The piezoelectric transducer is considered a potential choice when compared 

with electromagnetic and electrostatic transducers due to its high energy density [15]. Such 

comparison is given in table 2. 2 

 

Type Energy Density (mJ cm-3) Equation Assumptions 

Piezoelectric 35.4 (1/2)σy2 k2/2c PZT 5H 

Electromagnetic 24.8 (1/2)B2/μ0 0.25 T 

Electrostatic 4 (1/2)ε0E2 3 x 107 V m-1 

Table 2. Summary of maximum energy densities of three kinds of transducers [15] 

1.2. Literature review 

Several researches have been focused on the piezoelectric power generators for vibration 

power harvesting. T. Starner [16] et. al have concluded that power generation through 

walking can easily generate power when needed, and 5–8W of power may be recovered 

                                                                 
1 Values are estimates from literatures, analyses and few experiments; Values are highly dependent on amplitude and 

frequency of the driving vibrations 
2 There were already many successful vibration harvesting devices reported of different structures and interface 

circuits [7, 16, 17]. Piezoelectric material that has been found to have the ability to convert vibration energy to electric 

power has sparked much attention as it was attractive for use in MEMS applications [16, 18, 19, 20, 21, 22]. 
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while walking at a brisk pace. N. S. Shenck and J. A. Paradiso [8] at the MIT Media Lab then 

demonstrated a shoe-mounted device to scavenge electricity from the forces exerted on a 

shoe during walking. Further researches on improvement in the structures and circuits for 

the shoe-mounted devices were published at [17-19]. 

 

Figure 2. Piezoelectric-powered RFID shoes with mounted electronics. 

To realize the power supplement of wireless sensor net work, S. Roundy and P. K. Wright 

[15] demonstrated a vibration based piezoelectric generator. The device is a piezoelectric 

bimorph cantilever beam type with proof mass to adjust the resonance frequency. An 

optimized design demonstrated a power output of 375μW from a vibration source of 2.5m/s2 

at 120Hz. It could be used to power a custom designed 1.9 GHz radio transmitter from the 

same vibration source. 3  

 

Figure 3. An optimized piezoelectric generator with a 1.5 cm length constraint 

Since the mechanical vibration of a piezoelectric element generates an alternating voltage 

across its electrodes, most of the proposed electrical circuits include an AC–DC converter to 

provide the electrical energy to its storage device. Guyomar et al. [24], Lefeuvre et al. [25-27] 

and Badel et al. [28] have developed a new power flow optimization principle based on the 

extraction of the electric charge produced by a piezoelectric element, synchronized with the 

mechanical vibration operated at the steady state. They have claimed that the harvested 

                                                                 
3Similar works based on cantilever beam devices using piezoelectric materials to scavenge vibration energy can be 

found at [17, 20-23]. 
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electrical power may be increased by as much as 900% over the standard technique. Then, 

Sue et al. [29] detailed the analysis for the performance of a piezoelectric energy harvesting 

system using the synchronized switch harvesting on inductor (SSHI) electronic interface. It 

shows that the electrical response using an ideal SSHI interface is similar to that using the 

standard interface in a strongly coupled electromechanical system operated at short circuit 

resonance. 

 

Figure 4. The interface circuits (a) standard interface (b) Synchronous charge extraction (c) Parallel 

SSHI (d) Series SSHI 

For the development of the MEMS devices, Jeon et al. [30] have successfully developed the first 

MEMS based micro-scale power generator using d33 mode of PZT material. A 170μm × 260μm 

PZT beam has been fabricated. A maximum output power of 1.01μW across the load of 5.2MΩ 

at its resonance frequency of 13.9 kHz has been observed. The corresponding energy density is 

0.74mWh/cm2, which compares favorably to the values of lithium ion batteries. 

 

Figure 5. The first MEMS based micro-scale power generator[30] 

Fang et al. [31, 32] successfully developed a PZT MEMS power-generating device based on 

the d31 mode of piezoelectric transducers that uses top and bottom laminated electrodes. The 

(a) (b)

(c) (d)
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cantilever size is of 12μm thick silicon layer, 2000μm × 500μm cantilever in length and width 

500μm × 500μm metal mass (length × height), which generated 1.15μW of effective power 

when connected to a 20.4kΩ resistance load, leading to a 432mV ac voltage. An improved 

device was announced later that under the 608Hz resonant frequency, the device generated 

about 0.89V AC peak–peak voltage output to overcome germanium diode rectifier toward 

energy storage. The power output obtained was of 2.16μW. Some Other MEMS cantilever 

piezoelectric power generators examples of different materials and structures can be found 

in [33] and [34]. Other than single beam structures, Figure 7 [35]shows a MEMS power 

generator array based on thick-film piezoelectric cantilevers. This device can be tuned to the 

frequency which expanded the excited frequency bandwidth in ambient low frequency 

vibration.  

 

Figure 6. The SEM photo of the fabricated prototype by Fang et al.[32]. 

 

Figure 7. Photograph of power generator array prototype [35] 

2. Different types of MEMS power generators and their theoretical 

models 

D33 and d31 are the two main modes of piezoelectric cantilever beam. In this section, different 

types of MEMS power generators will be introduced. Readers will be able to see the 

theoretical models, and the comparison between the experimental results of different 
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modes. The output performances and characteristics for both the d33 mode and the d31 mode 

piezoelectric MEMS generators are evaluated using the same dimensions and with the same 

materials, with the exception of the differing electrode configuration and dimensions of the 

proof masses. The two devices were then compared for their resonance frequencies, output 

powers, output voltages and optimal resistive loads. 

2.1. Theoretical model and system equations of d31 type 

In this section, the theoretical model and the development of a d31 mode piezoelectric MEMS 

generator is presented. The d31 mode piezoelectric MEMS generator introduced in this 

chapter is a cantilever type made by using a silicon process which transforms energy by way 

of the piezoelectric PZT layer. It is laminated with a PZT layer sandwiched between upper 

and lower electrodes. The PZT sol-gel process that is suitable for fabricating thin film with a 

thickness of 1~2μm, is often seen in recent researches. But the PZT deposition processes that 

is applied in the introduced device uses an own developed PZT deposition machine which 

adopts a “jet-printing” approach based on an aerosol deposition method. This home-made 

PZT aerosol machine was developed and constructed in order to fabricate a high-quality 

PZT thin film more efficiently. 

For the modeling and analysis of the output performance of the piezoelectric MEMS 

generator connected with a resistive load, several methods are available. Electrical 

equivalent circuit model, force equilibrium analysis and energy method are the commonly 

used methods [36, 37]. The study of the characteristics of a PZT bender utilizing energy 

method model has been performed in previous studies and the model has shown fair 

accuracy in various conditions of mechanical stress. Therefore, the analyzing of the output 

performance of the device in this chapter will be based on the energy method. 

Figure 8 shows the configuration of the d31 mode piezoelectric MEMS generator. For 

fabricating the piezoelectric MEMS generator, a beam structure was manufactured and then 

covered with a PZT layer with a laminated upper and lower electrode. A proof mass was 

built at the tip of the beam to adjust the structure resonant frequency of the piezoelectric 

MEMS generator to fit the most adaptable frequency to match the ambient vibration of the 

surroundings. The beam structure was designed to operate at resonant frequency for 

maximum stress and strain so as to also maximize electric power output.  

 

Figure 8. Schematic diagram of the d31 mode piezoelectric MEMS generator 
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Figure 9. Dimension definitions of the d31 mode piezoelectric MEMS generator. 

Figure 9 shows the dimension definitions of the d31 mode piezoelectric MEMS generator. In 

the figure, lb is the length of the beam, lm the length of the proof mass, hp the thickness of the 

piezoelectric material, hs the thickness of the beam structure (silicon), wb the width of the 

beam, z the base vertical displacement and y the distance to the neutral axis of the beam.  

The constitutive equations of piezoelectric materials are following the definition in IEEE 

Standard on Piezoelectric [38]:  

 E
p pq q kp kT c S e E   (1) 

 S
i iq q ik kD e S ε E   (2) 

,where T is the stress (N/m2), S the strain, E the electric field (V/m), D is the electric 

displacement (Coulomb/m2). “cE” is the stiffness measured under the constant electric field. 

“εS” is the dielectric constant or permittivity under constant strain. “e” is the piezoelectric 

constant (Coulomb/m2). 

Some other forms of the constitutive equations are: 

 E
q pq p kq kS s T d E   (3) 

 T
i ip p ik kD d T ε E   (4) 

 D
q pq p kq kS s T g D   (5) 

 T
i ip p ik kE g T β D    (6) 

 D
p pq q kp kT c S h D   (7) 

 S
i iq q ik kE h S β D    (8) 

Equation (1) and (2) can be written in a matrix form: 
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E

S

-            
        

T c e S

D Ee ε
 (9) 

The model for a d31 type cantilever beam with piezoelectric elements MEMS generator can 

be obtained with an energy method approach. The generalized form of Hamilton’s Principle 

for an electromechanical system, neglecting the magnetic terms and defining the kinetic (Tk), 

internal potential (U), and electrical (We) energies, as well as the external work (W), is given 

by: 

  2

1

[ ] 0
t

k et
V.I. T U W W dt       (10) 

The individual energy terms are defined as: 

 1 1

2 2s p

t t
k s s p pV V

T ρ dV ρ dV  u u u u     (11) 

 1 1

2 2s p

t t
s pV V

U dV dV  S T S T  (12) 

 1 1

2 2p pe

t t
e p peV V

W dV dV  E D E D  (13) 

The subscripts s, p and pe indicate the inactive (structural) sections of the beam volume, the 

piezoelectric element of the beam volume and the piezoelectric element outside the beam 

structure respectively. The mechanical displacement is denoted by u(x,t) with ρ the density. 

The contributions to We due to fringing fields in the structure and free space are neglected. 

Considering nf discretely applied external point forces, fk(t), at positions xk , and nq charges, 

qj, applied at discrete electrodes with positions xj , the external work term is defined in terms 

of the local mechanical displacement, uk = u(xk, t), and the scalar electrical potential, 

 ,j t  jx : 

 
1 1

( ) ( )
nf nq

k k j j
k j

W t q t  
 

  u f  (14) 

The above definitions, as well as the constitutive relations of a piezoelectric material (1-9), 

are used in conjunction with a variational approach to rewrite equation (10): 

 
2

1

E

1 1

0

( ) ( )

s p s p

p p p

pe

t t t t
s s p p s s pV V V V

t t t t t S
p p pt V V V

nf nq
t S

pe k k j jV
k j

ρ dV ρ dV dV dV

dV dV dV dt

dV t q t

   

   

   
 

 
 

   
 
    
 
 
    
 

   

   

 

u u u u S c S S c S

S e E E eS E E

E E u f

   

 (15) 
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Three basic assumptions are introduced: the Rayleigh-Ritz procedure, Euler-Bernoulli beam 

theory, and that the electrical field across the piezoelectric is constant. In the Rayleigh-Ritz 

approach, the displacement of a structure can be written as the sum of nr individual modes, 

ψri(x), multiplied by a mechanical temporal coordinate, ri(t). For a beam in bending status, 

only the transverse displacement is considered and the mode shape is a function only of the 

axial position, x. Furthermore, the base excitation is assumed to be in the transverse 

direction as well: 

 
1

( , ) ( ) ( ) ( ) ( )
nr

ri i r
i

t x r t ψ x t


 u x r  (16) 

Similarly, the electric potential for each of the nq electrode pairs can be written in terms of a 

potential distribution, ψvj , and the electrical temporal coordinate, vj(t).  

 
1

( , ) ( ) ( ) ( ) ( )
nq

vj j v
j

t v t t  


 x x x v  (17) 

The Euler-Bernoulli beam theory allows the axial strain in the beam to be written in terms of 

the beam displacement and the distance from the neutral axis as: 

 
2

2

( , )
( , ) ( )r

u x t
t y y t

x
    


S x r  (18) 

Because the MEMS power generator is a composite beam structure, the actual composite 

beam can be replaced with an equivalent beam made of one material to simplify the 

analysis. Therefore, the silicon material will be represented by the piezoelectric material in 

the following derivation. For the composite beam structure, the neutral axis is located at y  

(from the bottom of the beam):  

  
2 22

2

p p s p p s s

p p s s

c h h c h c h
y

c h c h

 



 (19) 

, where cp and cs are the stiffness of the piezoelectric material and the silicon. Noted that for a 

special case which the neutral axis is right at the interface of the piezoelectric material and 

the silicon, the thickness of the piezoelectric material can be obtained from equation (19): 

 s
p s

p

c
h h

c
  (20) 

The bending rigidity of the composite beam structure could be shown as:  

 
 

 
2 4 3 2 2 3 2 44 6 4

12

b p p p p s s p p s s p p s s s s

p p s s

w c h c h c h c h c h c h c h c h

c h c h

   


 (21) 
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In order for replacing the silicon material by the piezoelectric material, the ratio of the elastic 

constant of the silicon to piezoelectric material, ηs=cs/cp, is used. Then the effective moment of 

inertia can be obtained from equation (21): 

 

 
 

 
 

4 3 2 2 3 4 2

4 2 3 2

3

4 6 4
I

12

4 6 4
  

12

b p p s s p s s p s s s s

p s s

h h s h s h s s

b s
h s

w h h h h h h h h

h h

w h

   



       

 

   




   




 (22) 

, where μh = hp/hs. If the neutral axis is right at the interface of the piezoelectric material and 

the silicon, the effective moment of inertia can be simplified from equation (22): 

 
 2

I
3

b p p sw h h h
  (23) 

Substituting Equations (16), (17) and (18) into Equation (15), the above equation can be 

written in terms of mass, M, stiffness, K, coupling, Θ, and capacitive terms, Cp, to obtain the 

governing equations in Equations bellow: 

 
1

( ) ( )
nf

t
r k k

k

ψ x f t


   Mr Kr Θv  (24) 

 
1

( ) ( )
nq

t
v j j

j

q t


  pΘ r C v x  (25) 

where, 

 
s p

t t
r s r s r p r pV V

dV dV       M  (26) 

 ( ) ( ) ( ) ( )
s p

t t E
r s r s r r pV V

y y dV y y dV            K c c  (27) 

 ( ) ( )
p

t t
r v pV

y dV    Θ e  (28) 

 ( ) ( ) ( ) ( )
p pe

t S t S
v v p v v peV V

dV dV               pC  (29) 

The applied external force input to the system is the base excitation is denoted as Bz . The 

loading is summated for all the elements and can be reduced to the integral over the 

structure length. Assumed that the device is uniform in the axial direction, the right hand 

side of equation (24) can be written as:  

 B0
( ) ( ) ( ) ( )

blt t
r r B Bx f t x mz dx z       F   (30) 



 
Piezoelectric MEMS Power Generators for Vibration Energy Harvesting 145 

, where FB is the forcing vector for the uniform device in the axial direction. However, the 

device now consists of two separate sections, the uniform beam and uniform proof mass. 

Both contribute to the inertial loading of the device. The proof mass displacement is 

calculated in terms of the displacement and rotation of the tip of the beam. A forcing 

function is defined in terms of the mass per length of the proof mass, mm, and two 

additional terms are calculated to make up the modified input matrix [39]: 

  B 0
( ) ( ) ( )

b b m b m

b b

l l l l l tt t
r m r b m r bl l

m x dx m l dx m l x dx  
      

   F  (31) 

Mechanical damping can be added through the addition of a damping matrix, C, to equation 

(24). The right hand side term of equation (25) can be differentiated with respect to time to 

obtain current. The current can be related to the voltage, assuming that the electrical loading 

is a resistor, Rl. 

 Bz    BMr Cr Kr Θv F    (32) 

 
1

0t

lR
  pΘ r C v v   (33) 

 

Figure 10. Schematic diagram of the assumed beam configuration 

In order to lower the resonance frequency of the piezoelectric energy harvester, it needs to 

add a proof mass at the tip of the cantilever beam. Figure 10 is the schematic diagram of the 

beam with tip proof mass. It is assumed that the center of gravity of the mass does not 

coincide with the end of the beam, O. The Euler-Bernoulli beam theory is used to determine 

the governing equations in terms of the mechanical displacement: 

 (4) 2 0r N rNEI ψ m    (34) 

and can be solved generally for the Nth mode: 

 sinh cosh sin cosrN N N N Nc x d x e x f x         (35) 

The constants (c, d, e, and f) can be solved by using the boundary conditions of the beam 

with the mass. With a reasonable assumption that the both the beam and the proof mass are 

uniform in the axial direction with mass per lengths of m and mm, respectively, it is possible 
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to determine the boundary conditions at the point where the beam and the mass are 

connected, ylb:  

 2 2
0 0 0lb N lb N lbEIy I y S y      (36) 

 2 2
0 0 0lb N lb N lbEIy M y S y      (37) 

where: M0 = mm lm, S0 = M0 Ox, I0 = Iyy + M0(Ox2+ Oy2), E is the axial modulus of the beam, I is 

the second moment of area of the beam, Iyy is the moment of inertia of the proof mass 

around its center of gravity, and ωN is the natural frequency of the beam. By defining

N N bλ λ l , 0 0 xM M O , 2
0 0 bS S / ml  and 3

0 0 bI I / ml , the boundary conditions are used to 

obtain the matrix equation.  

 11 12

21 22

A A
0

A A

e

f

   
   

  
 (38) 

 
   

 

3
11 0

2
0

A sinh sin cosh cos

sinh sin

N N N N N

N N N

I

S

    

  

    

  
 (39) 

 
   

 

3
12 0

2
0

A cosh cos sinh sin

cosh cos

N N N N N

N N N

I

S

    

  

    

  
 (40) 

 
   

 
21 0

2
0

A cosh cos sinh sin

cosh cos

N N N N N

N N N

M

S

    

  

   

 
 (41) 

 
   

 
22 0

2
0

A sinh sin cosh cos

sinh sin

N N N N N

N N N

M

S

    

  

   

 
 (42) 

The mode resonance frequencies can be obtained by solving for Nλ  such that 11 12

21 22

A A
0

A A
 . 

Successive values of Nλ  correspond to the modes of the beam and the natural frequency of 

each mode can be determined with: 2 2

4N N

b

EIω λ
ml

 . The solution of equation (35) can be 

written in terms of a single arbitrary constant, say f: 

    12 11cosh cos / sinh sinrN N N N Nf x x A A x x           (43) 

The effective mass of the structure can be obtained from the Lagrange equations of motion 

and replaces equation (26) when a proof mass is added to a cantilever beam. 
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0

0 0 0 02

s p

t t t
r s r s r p r p r b r bV V

t t
r b r b r b r b

dV dV M ψ l l

S M ψ l l I M ψ l l

     

 

  

   

 M
 (44) 

The governing equation shown in (32) can be written in an alternative form by dividing 

through by M and making use of the definitions 1ω K M  and 12m C M  :  

 2
1 12 m B Br r r Θ M v F z M         (45) 

 
1

0p
l

Θr C v v
R

     (46) 

The dimensionless factors 1 l pω R C  , 2 2
pKC   and 1ω ω  are introduced, where ω 

is the base input frequency and the system response is calculated: 

 
 

    

2

22
2 2 3

11

1 1 2 2 1
B B
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r

F z K



     

 


              


 (47) 
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22
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1
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2 2

2 22
2 2 3

1

2
1 1 2 2 1B B m m

P

MKF z

 

     




              


 (49) 

Equation (47) gives the generalized mechanical displacement, which can be converted to 

actual displacements by multiplying it with the mode shape. The system can be analyzed at 

short-circuit and open-circuit conditions by letting the electrical load resistance tending to 

zero and infinity, respectively. Two optimal frequency ratios for maximum power 

generation can be obtained, which correspond to the resonance (subscript sc) and anti-

resonance (subscript oc) frequencies of the beam structure: 

 21, 1sc oc       (50) 

The power can be optimized with respect to the load resistance to obtain an optimal 

electrical load. This is achieved by optimizing the power with respect to the dimensionless 

constant, τ: 

 
   

   

2 22

2 22 2

1 21

( 1) 2

m

opt

m




 

   

     

 (51) 
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Substituting equation (51) into power equation (49) can found that:  

 
 

   
             

2

2 2 2

2

2 2
2 2 2

2 2 2 2 2 2

22
1

2P

2
2 2 22 212 1 1

2 2
8 2 4

m

F zB B
MK

m m m m



  

   
     

  


  
   

 




  
            


 (52) 

It can be found that except the geometric dimensions, the output power is only the function 

of Ω, ζm and κ. For MEMS-scale devices, ζm is generally at least an order of magnitude 

smaller than κ2 [40]. With this assumption, the power output at both the resonance and anti-

resonance frequencies (under optimal electrical load) is approximated as: 

 
 2

optP
16

B B

m

F z

MK



 (53) 

2.2. Theoretical model and system equations of d33 type 

This section presents the theoretical model and the development of the d33 mode 

piezoelectric MEMS generator. It is composed of interdigitated electrodes at the top of the 

PZT layer. The aerosol deposition method is also adopted to fabricate a high-quality PZT 

thin film more efficiently. 

For piezoelectric elements, the longitudinal piezoelectric effect can be much larger than the 

traverse effect (d33/d31 ∼ 2.4 for most piezoelectric ceramics [41]). For this reason, it is 

desirable to operate the device in the d33 mode. The d33 mode operation occurs when the 

electric field and the strain direction coincide. Figure 11 shows the configuration of the d33 

mode piezoelectric MEMS generator. For fabricating the piezoelectric MEMS generator, a 

beam structure was manufactured and then covered with a PZT layer with a laminated 

upper electrode. A proof mass was also built at the tip of the beam.  

Since the output voltage is a function of the output charge and the capacitance between the 

interdigitated electrodes, the output voltage can be adjusted by the distance between the 

interdigitated electrodes. Therefore, the following text will also show readers the 

relationships between the distance of the interdigitated electrodes with the output voltage 

and power output performance.  

 

Figure 11. Schematic diagram of the d33 mode piezoelectric MEMS generator 
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Figure 12. Dimension definitions of the d33 mode piezoelectric MEMS generator. 

Figure 12 shows the dimension definitions of the d33 mode piezoelectric MEMS generator. In 

the figure, lb is the length of the beam, lm the length of the proof mass, hp the thickness of the 

piezoelectric material, hs the thickness of the beam structure (silicon), hg the interval of the 

interdigitated electrodes, wb the width the beam, z the base vertical displacement and y the 

distance to the neutral axis the beam.  

Since the electric field is not completely in the axial direction through the thickness of the 

piezoelectric element, nor is the section of piezoelectric element under the electrode 

completely inactive, an approximate model for the interdigitated electrode-configuration 

has been adopted. It is assumed that the region of the piezoelectric element under the 

electrode is electrically inactive, whereas the section between the electrodes utilizes the full 

d33 effect. Figure 13 shows the geometry of the approximate model. 

 

Figure 13. (a) Interdigitated electrode configuration (b) the model approximation 

The model for a d33 type cantilever beam with piezoelectric elements MEMS generator can 

be obtained with an energy method approach. The generalized form of Hamilton’s Principle 

for modeling the electromechanical system is as shown in equation (10). The individual 

energy terms (the kinetic Tk, internal potential U, and electrical We) are defined in equations 

(11), (12), and (13). It is important to note that although the device is made up of a number of 

separate piezoelectric regions, there is only one electrode pair and the voltage across all the 

elements will be the same. Since the strain varies along the length of the beam, different 

amounts of charge will be generated in each region and the charge sums to give the total 

charge output of the device. Therefore, the electric potential can be written as: 

 ( , ) ( ) ( )vt t x x v  (54) 

Following the procedure and the assumptions in the previous section and considering only 

one interdigitated electrode pairs, the governing equations can be rewritten as: 

(a) (b)
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In order to lower the resonance frequency of the piezoelectric energy harvester, a proof mass 

was added at the tip of the cantilever beam. The modal shape for a cantilever beam with the 

addition of the mass is shown as in equation (34). The following electric potential 

distribution is assumed to give a constant electric field in one piezoelectric element between 

interdigitated electrode pair. The potential distribution varies from +1 at the electrode on 

one side to 0 at the electrode on the other side. The function ψv can be shown as: 
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The governing equation shown in (55) and (56) can be written in an alternative form by 

dividing through by M and making use of the definitions 1ω K M  and 12m C M  :  

 
2

1 12 m B Br r r Θ M v F z M         (63) 
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    (64) 

The dimensionless factors 1 l pω R C  , 2 2
pKC   and 1ω ω  are introduced, where ω is 

the base input frequency and the system response is calculated: 
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The results are identical to the d31 mode piezoelectric MEMS generator as shown in (47), 

(48), and (49).  

The system can be analyzed at short-circuit and open-circuit conditions by letting the 

electrical load resistance tending to zero and infinity, respectively. Two optimal frequency 

ratios for maximum power generation can be obtained, which correspond to the resonance 

and anti-resonance frequencies of the beam structure: 

 21, 1sc oc       (68) 

The power can be optimized with respect to the load resistance to obtain an optimal 

electrical load. This is achieved by optimizing the power with respect to the dimensionless 

constant, τ: 
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This is the same as the results of the d31 mode piezoelectric MEMS generator as shown in 

(51). Substituting equation (69) into power equation (67) can found that:  
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 (70) 

It can be found that except the geometric dimensions, the output power is only the function 

of Ω, ζm and κ. With the assumption that for MEMS-scale devices, ζm is generally at least an 

order of magnitude smaller than κ2 [40], the power output at both the resonance and anti-

resonance frequencies (under optimal electrical load) is approximated as: 
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3. Fabrication of piezoelectric MEMS power generators 

3.1. PZT deposition method 

Fabricating the PZT layer using an aerosol deposition method has been proven to be a 

quick, efficient and easy-to-pattern MEMS process [42, 43]. The aerosol deposition 

equipment deposited PZT film up to 0.1 micrometer per minute. Figure 14 shows the 

schematic diagram of the aerosol deposition equipment. The PZT powder with a particle 

size smaller than 1μm in diameter was put in a continuously vibrating powder chamber in 

order to suspend the PZT particles. Nitrogen or Helium gas was connected to the powder 

chamber with gas flow rate of 4~6 liters per minute so as to bring the PZT particles through 

the nozzle and into the deposition chamber. With the deposition chamber in a vacuum, the 

pressure difference between the power chamber and the deposition chamber accelerated the 

PZT particles and forced them to jet out from the nozzle inside the deposition chamber and 

deposit onto the wafer surface with high speed. The wafer substrate was then carried by an 

X-Y moving stage so that deposition over the entire area of the PZT took place. Both the 

flow rate of the inlet gas and the scan speed of the X-Y moving stage were then used to 

control the deposition rate and the roughness of the deposited PZT layer.  

 

Figure 14. Schematic diagram of the aerosol deposition machine 

Figure 15 shows the SEM photography of the PZT layer as deposited by aerosol deposition 

with a thickness of up to 28μm. A lift-off method was adopted to pattern the PZT layer that 
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was deposited by the aerosol deposition machine. A photoresist4 with suitable hardness and 

adhesion between the photoresist and PZT powder was needed for the lift-off process to 

prevent damage to the photoresist during processing and to limit accumulation of the PZT 

powder at the sidewall. Figure 16 shows the SEM photograph of the sidewall of the PZT 

layer patterned by the lift-off method. 

 

Figure 15. SEM Photograph of the cross-sectional view of 28μm thickness PZT layer after deposition 

 

Figure 16. SEM Photograph of a patterned PZT layer by lift-off method 

An annealing process was required to improve the characteristics of the material. To 

investigate the effects at different annealing temperatures, the relationship between 

polarization and the electric field of the annealed PZT film with 5μm in thickness at 

different annealing temperatures were undertaken using a ferroelectric analyzer (TF 

ANALYZER 2000). Figure 17 shows the measured P-E hysteresis curves. The applied 

electrical field was 75MV/m at 100Hz. The remnant polarizations were 7~9.3μC/cm2 after 

annealing above 450°C, which shows much improvement when compared to non-annealed 

PZT layers. The measurement results show that the coercive field decreased with respect to 

an increase in annealing temperature.  

The crystalline phase of the deposited PZT layer associated with the different annealed 

temperatures can be characterized by XRD (x-ray diffraction). The non-annealed crystalline 

phase was used as a reference point. (See figure 18) The findings indicate that a perovskite 

phase in the PZT powder remains after a 650°C annealing process. Therefore, after the PZT 

film was deposited, it was then annealed at 650°C for 3 hours in a furnace and then cooled 

to room temperature. It should be noticed that PZT microstructures will crack easily when 

                                                                 
4 A photoresist KMPR-1050 (MicroChem Corp.) or THB-151N (JSR Micro Inc.) was used in this work. 
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the annealing temperature is higher than 700°C. Similarly, acceptable piezoelectric constants 

cannot be obtained for annealing temperature lower than 450°C. 

 

Figure 17. P-E hysteresis curve of a 5μm PZT layer at different annealing temperatures  

 

Figure 18. XRD scan of the PZT layers at different annealing temperatures 

3.2. MEMS fabrication process of the device 

The piezoelectric MEMS generator was a laminated cantilever structure which was 

composed of a supporting silicon membrane, a piezoelectric layer and laminated electrodes. 

Both the d31 and d33 mode piezoelectric MEMS generator introduced in this chapter were 

designed to incorporate a 3000×1500μm2 size cantilever beam structure with an 11μm 

thickness comprised of a 5μm piezoelectric PZT layer and a 1μm SiO2 at the bottom of the 

beam structure. For the d33 mode device, the interdigitated electrodes were fabricated with 

30μm widths and 30μm gaps. The proof mass for the d31 mode piezoelectric MEMS 

generator was fabricated under the beam structure with dimensions of 500×1500×500μm3, 

and 750×1500×500μm3 for the d33 mode. A different proof mass dimension comparing to the 

d31 mode piezoelectric MEMS generator was used to show readers how the proof masses 

influence the resonance frequency. Most of the process steps were undertaken in a standard 

clean room environment. The piezoelectric material PZT thin film deposition was deposited 

using aerosol deposition machine. 
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Figure 19. Fabrication processes of d31 (left) and d33 (right) devices 

Figure 19 shows the fabrication process of both mode of the piezoelectric MEMS generator. 

SOI wafers with a 5μm device layer and a 1μm buried oxide layer was used in the process. 

The processes are similar to one another except for the second step, where the d31 generator 

has the bottom electrode deposited with a 30nm Ti and 220nm Pt on the top-side of the SOI 

wafer using an e-beam evaporator. PZT layers of 5μm were then deposited onto the bottom 

electrode of the d31 device, using the aerosol deposition method described above. For the d33 

device the PZT layer is directly deposited upon the SOI wafer. The patterning processes 

required in the previous steps were done by lift-off processes. Then, the annealing process 

was taken place at a furnace of 650°C for 3 hours. Afterwards, an e-beam evaporator was 

used to deposit the top electrode with 30nm Ti and 220nm Pt and then patterned by lifting-

off. The beam shape was defined and etched on the top side DRIE. The buried oxide layer 

was etched out using RIE at the same time. Finally a DRIE process was then used to etch the 

wafer from the back side until the beam was released. The proof mass was made at the same 

time and its size adjusted during the etching to the back side. The PZT layer was then poled 

under a high electric field. For the poling process, the device was heated up to 160°C using a 
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hot plate, followed by poling under 100V for 30 minutes, and then allowed to cool slowly to 

room temperature with the electric field applied through continuously during the entire 

heating and cooling process.  

The SEM of the finished d31 and d33 modes piezoelectric MEMS generator are shown in 

figure 20 and figure 21. The cantilever beams were covered with laminated electrode and 

the proof mass at the tips can be seen. The beam structures could be seen to be bent 

upwards due to the thermal expansion difference for PZT and to the silicon wafer after the 

PZT cooled down to room temperature from 650°C.  

  

Figure 20. SEM photograph of a finished d31 mode device 

 

Figure 21. SEM photograph of a finished d33 mode device 

4. Discussion on different types of MEMS power generators 

4.1. Comparison between d31 and d33 mode piezoelectric MEMS generators 

The d31 mode and the d33 mode piezoelectric MEMS generators were both excited at a 2g 

acceleration level. The measurement results are summarized in Table 3. The optimal load 

was found to be inversely proportional to the capacitance of the piezoelectric material [44, 

45]. For the same dimensions of the beam shape of the d31 and d33 mode devices, it was 

obvious that the capacitance of the d31 mode device was larger than the d33 mode device. 

Therefore, the optimal resistive load for the d31 mode device was smaller than that of the d33 

mode device. The output power for the d33 mode piezoelectric MEMS generator was smaller 

than that for the d31 mode piezoelectric MEMS generator. This was due to the PZT material 

of the d33 mode device which was poled by the interdigitated electrodes and which results in 

a non-uniform poling direction. The material under the electrodes was not used because it 

was not poled correctly. Furthermore, the further the distance from the surface of the PZT 
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material, the less effective the poling electric field strength will be. This causes an efficiency 

drop for the d33 mode piezoelectric MEMS generator when compared to the d31 mode 

piezoelectric MEMS generator. Nevertheless, the output voltage of the d33 mode 

piezoelectric MEMS generator was higher than that of the d31 mode piezoelectric MEMS 

generator and easily adjusted by the gap of the interdigitated electrodes under the same 

dimensions of the beam shape.  

 

Mode Resonant

Frequency 

Optimal

Load 

Power

Output 

Voltage Output

(open circuit) 

Voltage Output 

( with load ) 

d31 

d33 

255.9 Hz 

214.0 Hz 

150kΩ 

510kΩ 

2.099μW 

1.288μW 

2.415VP-P 

4.127VP-P 

1.587VP-P 

2.292VP-P 

Table 3. The Output performance of the d31 and d33 mode piezoelectric MEMS generators at 2g 

acceleration 

5. Conclusion 

In this chapter, the theoretical analysis, design and manufacture methods of two basic 

piezoelectric MEMS generators were introduced. For these piezoelectric MEMS generators, 

we investigated the relationship between output voltage and output power at different 

resistive loads.  

The measurement results show that the d31 mode piezoelectric MEMS generator had a 

maximum open circuit output voltage of 2.675VP-P and a maximum output power of 

2.765μW with a 1.792VP-P output voltage at resonant frequency of 255.9Hz at a 2.5g 

acceleration level. The d33 mode piezoelectric MEMS generator showed a maximum open 

circuit output voltage of 4.127VP-P and a maximum output power of 1.288μW with a 2.292VP-

P output voltage at resonant frequency of 214Hz at a 2g acceleration level. The output power 

and the output voltage are also influenced by the driven acceleration intensely.  

When comparing the output characteristics of both the d31 mode and the d33 mode 

piezoelectric MEMS generators, the results showed that the d31 mode device made of a PZT 

sandwiched between laminated electrodes was better in output power performance than the 

d33 mode device that composed of interdigitated electrodes at the top. 
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