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1. Introduction 

Studies on synthetic carbohydrates to be used as potential vaccine candidates for 

polysaccharide encapsulated bacteria were started in the mid-1970s. They were the logical 

follow-up to studies being performed at that time on the immunogenicity of antigens 

composed of carrier proteins and synthetic hapten groups. Hapten-carrier complexes were 

first introduced in immunology by Karl Landsteiner in the early 1900s [1]. He discovered 

that (i) small organic molecules with a simple structure, such as phenyl arsonates and 

nitrophenyls, do not provoke antibodies by themselves, but (ii) if those molecules are 

attached covalently, by simple chemical reactions, to a protein carrier, then antibodies 

against those small organic molecules are evoked. Since their introduction, these hapten-

carrier complexes have become excellent tools to elucidate the role of different antigen-

reactive cells in the immune response [2]. The key players in this immunological process are 

thymus-derived T cells and bone marrow-derived B cells. The former group of lymphoid 

cells is responsible for various phenomena of cell-mediated immunity, e.g. delayed 

hypersensitivity, allograft-, and graft-versus-host reactions, and reacts with specific 

determinants on the carrier protein (T cell epitopes). The latter group of lymphoid cells (B 

cells) give rise to the precursors of antibody-secreting cells, and reacts with both the carrier 

protein and the synthetic haptenic determinants. This results in antibody formation to both 

the carrier and the hapten. 

The reason to apply the above concepts and techniques to carbohydrate antigens was to 

address an immunological problem: polysaccharide molecules are classified as so-called 

thymus-independent (TI) antigens, because they do not require T cells to induce an immune 

response of B cells. As a result, the antibodies formed are mainly of the IgM class and have a 
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low avidity. Moreover, no immunological memory is generated and the antigens are poorly 

immunogenic in infants. Latter characteristic has major implications for development of 

vaccines against polysaccharide encapsulated bacteria. It was hypothesized that by linking 

small carbohydrates (oligosaccharides) to a carrier protein, the immunogenic behavior 

would change to that of a thymus-dependent (TD) antigen. Therefore, the studies of both 

Goebel [3, 4] and Campbell and Pappenheimer [5], who first isolated the antigenic 

determinant of Streptococcus pneumoniae type 3, were combined and extended. The hapten-

inhibition studies by Mage and Kabat [6] demonstrated that the antibody-combining site of 

type 3 pneumococcal polysaccharide consists of two to three cellobiuronic acid units. In the 

dextran-anti-dextran system extensively studied by Kabat and colleagues [7] the upper size 

limit of the antibody-combining site appeared to be a hexa- or heptasaccharide and the lower 

limit was estimated to be somewhat larger than a monosaccharide. Snippe and colleagues [8] 

proved in 1983 that small synthetic oligosaccharides (tetra- and hexasaccharides) of S. 

pneumoniae type 3 could be transformed into TD antigens by conjugating them to a protein 

carrier. This opened the way to explore the synthesis and immunogenicity of numerous 

oligosaccharide-carrier protein conjugates of different pneumococcal serotypes. Those 

studies culminated in 2004 in the large-scale synthesis and introduction of a synthetic 

oligosaccharide vaccine for Haemophilus influenzae type b for use in humans in Cuba [9]. The 

recent exploration of gold nanoclusters coated with synthetic oligosaccharides and peptides 

as a vaccine are a promising platform towards the development of fully synthetic 

carbohydrate-based vaccines [10]. 

2. Streptococcus pneumoniae 

Streptococcus pneumoniae (S. pneumoniae or pneumococcus) is a leading cause of bacterial 

pneumonia, meningitis, and sepsis in children worldwide. It is estimated that 1.6 million 

people die from these infections each year, of whom one million are children [11, 12]. S. 

pneumoniae are lancet-shaped, gram-positive, and alpha-hemolytic bacteria that colonize the 

mucosal surfaces of the upper respiratory tract [13]. Three major surface layers can be 

distinguished from the inside to the outside: the plasma membrane, the cell wall, and the 

capsule (Fig. 1) [14]. The cell wall consists of a triple-layered peptidoglycan backbone that 

anchors the capsular polysaccharide, the cell wall polysaccharide, and also various proteins 

such as pneumococcal surface protein A (pspA) and hyluronate lyase (Hyl) (Fig. 1). The 

capsule is the thickest layer, completely concealing the inner structures of exponentially 

growing S. pneumoniae bacteria.  

3. Capsular polysaccharide 

Capsular polysaccharides are well known as the major virulence factors of S. pneumoniae. 

Today more than 92 serotypes have been identified based on the different chemical structures 

of these polysaccharides [16, 17]. This diversity determines the ability of the serotypes to 

survive in the bloodstream and very likely the ability to cause invasive disease, especially in 
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the respiratory tract [14, 16]. Recently, new S. pneumoniae serotypes have been identified, e.g. 

serotype 6C [17], 6D [18, 19], and 11E [20]. Capsular polysaccharides are large polymers (0.5-

2x106 Da), composed of multiple repeating units of up to eight sugar residues [14]. The 

capsular polysaccharides are generally synthesized by the Wzx/Wzy-dependent pathway, 

except for type 3 and 37 which are synthesized by the synthase pathway [21, 22] (Fig. 2). In 

the synthase pathway capsule is produced through processive transferase activity [23, 24].  

 

Figure 1. Schematic structure of S. pneumoniae. StrA=sortase A. Hyl=hyluronate lyase. 

PavA=pneumococcal adhesion and virulence. Eno=enolase. NanA=neuraminidase. PsrP=pneumococcal 

serine-rich repeat protein. LytA=autolysin. LTA=lipoteichoic acid. PspA=pneumococcal surface protein 

A. PspC=pneumococcal surface protein C. PiaA/PiuA=pneumococcal iron acquisition and uptake. 

PsaA=pneumococcal surface antigen A. (Adopted from van der Poll, T. and Opal, S.M. [15] and de 

Velasco, E.A. et al [14]) 

Many studies have demonstrated that antibodies directed against the capsular 

polysaccharide are essential for protection against pneumococcal disease [25-27]. However, 

the native capsular polysaccharides are well-known thymus-independent type-2 (TI-2) 

antigens that lack T-helper epitopes and therefore mainly induce IgM antibodies, and to a 

lesser degree IgG [28]. The TI-2 characteristics of polysaccharides can be altered by 

conjugation of polysaccharide to a protein carrier (glycoconjugate) resulting in a switch to 

an anti-polysaccharide antibody response with characteristics of a T-cell-dependent 

response. This is reflected by the generation of memory B and T cells and the induction of 

high titers of anti-polysccharide IgG antibodies after booster immunization [29]. 
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It should be noted that not all polysaccharides behave as TI-2 antigens. Zwitterionic 

polysaccharides such as S. pneumoniea type 1 polysaccharide: [3)--AATGal-(14)--D-

GalpA-(13)--D-GalpA-(1]n with a right-handed helix with repeated zwitterionically 

charged grooves elicit potent T cell responses in vivo and in vitro [30, 31].  

 

Figure 2. Representation of the Wzx/Wzy-dependent pathway for biosynthesis of CPS 9A (Adopted 

from Bentley. S.D. et al [21]). Representation of the Wzx/Wzy-Dependent Pathway Pictured is a 

hypothetical model for capsule biosynthesis in S. pneumoniae based on a mixture of experimental 

evidence and speculation.  

1. Non-housekeeping nucleotide sugar biosynthesis. 

2. The initial transferase (WchA in this case) links the initial sugar as a sugar phosphate 

(Glc-P) to a membrane-associated lipid carrier (widely assumed to be undecaprenyl 

phosphate). 

3. Glycosyl transferases sequentially link further sugars to generate repeat unit. 

4. Wzx flippase transports the repeat unit across the cytoplasmic membrane. 

5. Wzy polymerase links individual repeat units to form lipid-linked CPS. 
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6. Wzd/Wze complex translocates mature CPS to the cell surface and may be responsible 

for the attachment to peptidoglycan.  

4. Development of pneumococcal vaccines 

Although the first pneumococcal vaccines, including the application of the principle of 

conjugate vaccination, were already initiated in the beginning of the previous century, most 

of these developments stopped when antibiotics were introduced. Existing vaccines were 

even withdrawn from the market. By now, in many parts of the world, the antibiotic 

resistance of S. pneumoniae bacteria has increased: America [32, 33], Africa [34], Europe [35, 

36], Asia [37-39], and Australia [40]. This makes treatment of pneumococcal infections more 

difficult and stresses the importance of the development of effective vaccines as a strategy to 

reduce morbidity and mortality caused by S. pneumoniae infection worldwide. 

4.1. Pneumococcal polysaccharide-based vaccines. 

Currently two vaccine types against S. pneumoniae are commercially available: a 

pneumococcal polysaccharide vaccine (PPV) and a pneumococcal conjugate vaccine (PCV) 

[41]. The first multivalent pneumococcal polysaccharide vaccine (PPV) contains 23 purified 

capsular polysaccharides (25 µg of each capsule type; Pneumovax®, PPV23: 1, 2, 3, 4, 5, 6B, 7, 

8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 15F, 18C, 19A, 19F, 20, 22F, 23F, 33F ) which is licensed for 

use in adults and children older than 2 years of age [42]. This vaccine was shown to be 

moderately effective in young adults [43] but not in young children [44] and elderly [45] and 

also not in immunocompromised patients, e.g HIV infected people [46, 47].  

In early 2000, a polysaccharide-protein conjugate vaccine targeting seven pneumococcal 

serotypes was licensed in the United States for use in young children (Prevnar, PCV7: 4, 6B, 

9V, 14, 18C, 19F, 23F). The polysaccharides are conjugated to the non-toxic cross reactive 

material from diphtheria toxin, CRM197 and each dose contains 2µg of each capsule type, 

except for 6B, for which 4 µg is included in every vaccine dose[48]. The PCV7 vaccine 

produces a significant effect regarding prevention of invasive pneumococcal disease in 

children younger than 24 months (based on a meta-analysis of published data from trials on 

pneumococcal vaccine) [49]. Large scale introduction of PCV7 has resulted in an overall 

decline in infectious pneumococcal disease (IPD). However, IPD caused by the non-vaccine 

serotypes serotypes 1, 19A, 3, 6A, and 7F has increased (replacement disease), highlighting 

the need for inclusion of these serotypes in future improved vaccine formulations [50]. 

Apart from the CRM197 based PCV7, several new candidate pneumococcal conjugate 

vaccines have been developed to cover more serotypes with different protein carriers and 

most of them are in clinical trials, such as PCV10 vaccine (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, 

23F) [51, 52] and PCV13 vaccine (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F) [53]. 

4.2. Pneumococcal protein-based vaccines 

An alternative vaccine strategy focuses on the use of pneumococcal surface-associated 

proteins which are to be assumed to elicit protection in all age groups against all, or nearly 
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all, pneumococcal serotypes (Fig. 1). Protection induced by the proteins should be serotype-

independent and possibly cheaper and thus within reach of developing countries [54]. 

Currently, several surface pneumococcal proteins are investigated as a candidate vaccine 

against S. pneumoniae infection with single or combination of recombinant proteins, such as 

pspA family fusion protein [55]; pneumolysis and pspA1/pspA2 combined [56]. Recently 

new candidate protein antigens were discussed at the 8th International Symposium on 

Pneumococci and Pneumococcal Diseases at Iguaçu Falls, Brazil (2012), phtD (pneumococcal 

histidin triad protein D) and PcpA (pneumococcal choline binding protein A) [57]. 

4.3. Pneumococcal synthetic oligosaccharide-based vaccines 

The current polysaccharide conjugate vaccines are based on natural polysaccharides, purified 

form bacterial cultures. Synthetic oligosaccharide–protein conjugates (neoglycoconjugate), 

involving functional mimics of the natural polysaccharide antigens have emerged as an 

attractive option [58]. The advantages of neoglycoconjugates are well-defined chemical 

structures (chain length, epitope conformation, and carbohydrate/protein ratio) as well as a 

lack of the impurities present in polysaccharides obtained from bacterial cultures [59, 60].  

The chemical synthesis of oligosaccharide fragments however is complex. According to the 

sequence in the natural polysaccharide, monosaccharide residues have to be linked in such a 

way that they form an oligosaccharide with the required stereospecificity (epitope). Various 

methodologies and strategies for synthesis of carbohydrates have successfully been used for 

production of experimental neoglycoconjugates, as reviewed by Kamerling [16]. In 2001, the 

first automated synthesis of oligosaccharides was reported by Plante, O.J. et al [61].  

Neoglycoconjugates have been prepared for saccharides of different microorganisms. In 2004, 

Verez Bencomo et al., reported the large-scale synthesis and the introduction of a synthetic 

oligosaccharide vaccine for Haemophilus influenzae type b for use in humans in Cuba [9]. The 

immunogenicity of the synthetic oligosaccharide fragment of the O-specific polysaccharide 

(O-PS) of Vibrio cholera O1, serotype Ogawa, conjugated to bovine serum albumin has been 

investigated in a mouse model [62, 63]. A multimeric bivalent synthetic hexasaccharide 

fragment of the O-specific polysaccharide of Vibrio cholera O1, serotype Ogawa, in 

combination with Inaba:1 or a synthetic disaccharide tetrapeptide peptidoglycan fragment as 

adjuvant were prepared and conjugated to recombinant tetanus toxin H(C) fragment as 

protein carrier [64]. The immunogenicity of synthetic oligosaccharides mimicking the O-

antigen of the Shigella flexneri 2a lipopolysaccharide (LPS) was also investigated in mice [65, 

66]. Immunization of mice with synthetic hexasaccharide of glycosylphosphatidylinositol 

malarial toxin conjugated to a protein carrier was reported to protect the mice from an 

otherwise lethal dose of malaria parasites [67]. A fully synthetic carbohydrate-based 

antitumor candidate vaccine for the common T-synthase was recently reported [68]. 

Meanwhile we and other groups have been working on improving the immunogenicity of 

neoglycoconjugates against different S. pneumoniae serotypes in animal models: Di-, tri-, and 

tetrasaccharides related to polysaccharide type 17F conjugated to keyhole limpet 

hemocyanin (KLH) protein[69, 70] and tri- and tetrasaccharides related to type 23 
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conjugated to KLH protein [71]; Di-, tri-, and tetrasaccharides related to type 6B conjugated 

to KLH protein [72]; Di-, tri-, and tetrasaccharide related to type 3 conjugated to the cross-

reactive material of diphteria toxin (CRM197) protein [60] and most recently overlapping 

oligosaccharide varying from tri- to dodecasaccharides related to polysaccharide type 14 

conjugated to CRM197 protein [73, 74]. 

5. Immunogenicity of synthetic oligosaccharide based vaccines 

This review focuses on the S. pneumoniae type 14 capsular polysaccharide (Pn14PS) which 

consists of biosynthetic repeating units of the tetrasaccharide {6)-[-D-Galp-(1→4)-]-D-

GlcpNAc-(13)--D-Galp-(1→4)--D-Glcp-(1→}n [75] (Fig. 3).  

 

Figure 3. A branched tetrasaccharide repeating unit of S. pneumoniae type 14 capsular polysaccharide 

(A) and its nomenclature symbol (B): filled circle = glucose (Glc); open circle = galactose (Gal), and filled 

square = N-acetylglucosamine (GlcNAc) 

5.1. Identification of the minimal structure of oligosaccharide capable in evoking 

anti-Pn14PS antibodies.  

It was reported that a synthetic branched tetrasaccharide, corresponding to a single 

structural repeating unit of Pn14PS conjugated to the cross-reactive material of diptheria 

toxin (CRM197), was found to induce anti-polysaccharide type 14 antibodies by Mawas, F. et 

al [74]. We continued to investigate further how small the minimal structure in Pn14PS can 

be and still produce specific antibodies against native polysaccharide type 14 [73]. 16 

overlapping oligosaccharide fragments of Pn14PS were synthesized as described previously 

[76-79] and were conjugated to the protein carrier CRM197. The mice immunization studies 

were performed to investigate the immunogenicity of the neoglycoconjugates. We found 

that the fragments with a linear and/or incomplete branched structure did not elicit specific 

antibodies against native Pn14PS (Fig. 4: JJ118, JJ42, JJ141, DM65, JJ153, JJ9, JJ6 and DM35) 

[73]. High titer of anti-Pn14PS IgG antibodies was observed when the complete branched 

structure fragments, conjugated to the protein carrier were used in the mouse model (Fig. 4: 

JJ1, DM66, DM36, ML1, ML2, and CRM197-Pn14PS as a positive control), excepted for JJ5 and 

JJ10 which elicited low titer of anti-Pn14PS antibodies.  

We also tested the phagocytic capacity of mice sera by human polymorph nuclear cells and 

a mouse macrophage cell line. We found that the sera containing antibodies against Pn14PS 

were also capable of promoting the phagocytosis of S. pneumoniae type 14. Conjugates that 

did not evoke specific antibodies against polysaccharide type 14 also did not display 

phagocytic capacity [73].  
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Figure 4. Level of anti-Pn14PS antibodies and schematic structure of overlapping synthetic 

oligosaccharide fragments of Pn14PS (Adopted from Safari et al 2008 [73]). The oligosaccharides were 

conjugated to CRM197 protein and the immunogenicity of those conjugates were studies in a mouse model. 

Mice were immunized with polysaccharide type 14 conjugated to CRM197 (CRM197-Pn14PS) as a positive 

control. Enzyme-linked immunosorbent assay was employed to measure specific anti-Pn14PS IgG 

antibodies after the booster immunization. Antibody titers were expressed as the log10 of the dilution Filled 

circle = glucose (Glc); open circle = galactose (Gal), and filled square = N-acetylglucosamine (GlcNAc).  
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In conclusion, the present study has shown that the branched trisaccharide Glc-(Gal-)GlcNAc 

is the core structure inducing Pn14PS-specific antibodies and that the neighboring galactose 

at the non-reducing end significantly contributes to the induction of phagocytosis-

promoting antibodies [73]. Our study provides evidence that the branched tetrasaccharide 

Gal-Glc-(Gal-)GlcNAc is a prime candidate for a synthetic oligosaccharide conjugate vaccine 

against infections caused by S. pneumoniae type 14 [73]. 

5.2. Relationship between polysaccharide of Pn14PS and GBSIII 

We also determined the minimal epitope in group B streptococcus type III polysaccharide 

(GBSIIIPS), using both a panel of anti-Pn14PS mouse sera and sera of humans vaccinated with 

either Pn14PS or GBSIIIPS as reported by Safari et al [80]. Native Pn14PS is structurally related 

to and has cross-reactivity with GBSIIIPS [81]. The branched structures of Pn14PS and 

GBSIIIPS differ only in the absence (in Pn14PS) or presence (in GBSIIIPS) of the (α23)-linked 

sialic acid N-acetylneuraminic acid (Neu5Ac) in their side chains: {→4)-β-D-Glcp-(1→6)-[±α-

Neu5Ac-(23)-β-D-Galp-(14)-]β-D-GlcpNAc-(1→3)-β-D-Galp-(1→}n [82]. We reported that 

type-specific Pn14PS antibodies which recognize the branched structure of Pn14PS have a low 

affinity for the native GBSIIIPS and do not promote opsonophagocytosis of GBSIII, however 

desialylation of GBSIIIPS, however, resulted in dramatically higher affinity of anti-Pn14PS 

antibodies in mice when GBSIIIP was treated by nurimindase (desialylation) [80]. These results 

revealed that GBSIII bacteria are protected from binding of antibodies against Pn14PS by a 

residue of (α23)-linked sialic acid, as described previously [83, 84]. 

5.3. Booster immunization either with either neoglycoconjugate or native 

polysaccharide 

We investigated further the immune response to a neoglycoconjugate of Pn14PS (GC) on the 

outcome of sustained immunity to S. pneumoniae type 14 in a mouse model after the booster 

injection with either (GC) or native Pn14PS (PS) [85]. We found, as we expected, that the 

amount of specific IgG antibodies against Pn14PS increased substantially when a GC booster 

was given to mice previously primed with the same GC [85]. The induced antibodies were 

capable to opsonise S. pneumoniae type 14. Boosting with PS following a primary conjugate 

vaccine injection did not result in IgG antibody formation to Pn14PS (Table 1).  

In order to explain these phenomena we investigated how a booster immunization with a 

GC or PS affects the cell-mediated immune response by measuring the production profile of 

a panel of cytokines [85]. We observed a high level of IL-5 in serum after a booster injection 

with GC (GC-GC or GC-GC-GC). Boosting with PS did not result in the induction of IL-5 

nor of any of the other tested cytokines (Table 1; GC-PS and GC-PS-PS). We conclude that 

induction of the cytokine IL-5 in serum is an early sign of a successful booster immunization 

and is a prerequisite for the production of specific anti-polysaccharide IgG antibodies [85]. 

In-vitro spleen cell cultures were also used to investigate the effect of a booster injection on 

activation of memory T cells. IL-5 which well known Th2 cytokines, were evoked by the GC 

in spleen cell cultures of mice previously primed and boosted with the same GC [85]. In 
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conclusion, the inability of polysaccharide to boost primed mice might be due to the 

incapability to induce the cytokines. 

 

Immunization1 
IgG titer 

(Log10)2 

Level of Cytokine IL-5 (pg/ml) 

In serum3 After stimulation4 

GC-GC 2.18±0.22 1022.3±275.2 571.2±20.0 

GC-PS 0.34±0.47 0.3±0.5 66.1±0.4 

GC-GC-GC 3.02±0.17 2700.4±112.3 1172.8±7.1 

GC-PS-PS 0.0 0.0 664.9±221. 

Saline 0.0 6.9±1.1 0.0 

1Five mice per group were immunized with a CRM-neoglycoconjugate (GC), a synthetic branched tetrasaccharide of 

Pn14PS that is conjugated to a CRM197 protein. Booster doses containing either a GC (GC-GC and GC-GC-GC) or a 

native polysaccharide of Pn14PS (PS) (GC-PS, GCGC-PS, and GC-PS-PS) were injected at Weeks 5 and 10. 
2ELISA was employed to measure specific anti-Pn14PS IgG antibodies, and expressed as the log10 of the sera dilution 
3Cytokine levels in sera from mice receiving booster injection. Sera were collected on Day 1 after the primary immunization 
4Splenocytes were isolated 7 days after the first booster injection. Spleen cells were cultured in vitro and stimulated 

with CRM-neoglycoconjugate and supernatants were collected 72 h after culture initiation.  

Table 1. Effect of booster immunization either with with either the same neoglycoconjugate or a native 

polysaccharide (Adopted from Safari, D. el at [85] with permission) 

5.4. Improvement of anti-Pn14PS antibodies level by coadjuvant administration 

The immunogenicity of neoglycoconjugate was increased with adjuvant coadministration 

[73, 86]. We set out to investigate in a mouse model the effect of adjuvant coadministration 

i.e. Quil-A, MPL, DDA, CpG and Alum on both the antibody- and cell-mediated immune 

response against a neoglycoconjugate as reported by Safari et al [87]. In the absence of 

adjuvant, immunization with neoglycoconjugate leads after a booster merely to IgG1 

antibodies against PnP14PS. Coadministration of adjuvant had multiple effects: a diversified 

anti-Pn14PS IgG antibody response (also other IgG subclasses than IgG1 were evoked), an 

enhanced avidity and increased opsonic activity of these antibodies [87]. We found that next 

to Quil-A also DDA as a single dose or in combination with CpG had similar effects on the 

diversification of eliciting a broader variety of anti-Pn14PS IgG antibody subclasses. 

Meanwhile, CpG or alum on their own showed in majority IgG1 antibodies after booster 

immunization in a same pattern as in non adjuvant groups [87]. Compared to other 

adjuvants, codelivered Quil-A strongly improved the antibody avidity and enhanced the 

phagocytosis of S. pneumoniae type 14 [87]. 

6. Future researches 

In this review, synthetic oligosaccharide-protein conjugates are proven to be effective 

vaccines in mice model. A logical next step would be a feasibility and immunogenicity 

study in human volunteers. Before that, a study should be started with synthetic 

oligosaccharide-protein conjugates for at least the pneumococcal serotypes 1, 4, 5, 9V and 

18C and should even have been completed, because the minimal epitopes for these 

polysaccharides are still unknown. 



 
The Future of Synthetic Carbohydrate Vaccines: Immunological Studies on Streptococcus pneumoniae Type 14 627 

To improve the immunogenicity of oligosaccharide-protein conjugates co-delivery of 

adjuvants are required. As an alternative to the addition of adjuvants, studies should be 

initiated to direct oligosaccharide-protein conjugates to dendritic cells by incorporation of 

specific ligands. Targeting to and activation of dendritic cells by TLR5 is a possibility to be 

explored. 
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