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1. Introduction

The successful application of therapeutic strategies to block the known growth stimulation
property of estrogen in breast cancer, namely the aromatase (CYP19) inhibitors formestane
(4-OH) and exemestane (Aromasin) [1], has paved the way for the investigation of inhibitors
of other P450 enzymes that might impart the growth of hormone-dependent cancers [2]. Cy‐
tochrome P450 17α-hydroxylase,C17,20-lyase (CYP17) is at the crossroads of androgen and
corticoid biosynthesis and has become a valuable target in prostate cancer (PC) treatment
[3-8]. Androgens, which are produced in steroidogenic tissues, bind to the androgen recep‐
tor (AR) and initiate transcription which in turn results in the synthesis of prostate-specific
proteins, as well as in cell proliferation. Systemic ablation of androgen by castration, either
surgical or chemical, is highly effective in treating PC when the disease is hormone-depend‐
ent [3]. However, within 18-24 months following the onset of primary hormonal therapies,
the disease becomes androgen-refractory by mechanisms in which AR-mediated signaling
and gene expression is still active despite castrate androgen levels [9]. The FDA approved
the combination of docetaxel (Taxotere) 1 and prednisone for the treatment of castrate-resist‐
ant PC (CRPC) which improves survival time in about 18 months [10, 11], and cabazitaxel
(Jevtana) 2 [12], a novel taxane derivative, for metastatic CRPC (mCRPC) which has pro‐
gressed following docetaxel therapy (Fig. 1). The immunotherapy Sipuleucel-T (Provenge) is
also approved for the treatment of asymptomatic or minimally symptomatic mCPRC. In
April 2011, abiraterone acetate (Zytiga) 3 became the first steroidal CYP17 inhibitor to be ap‐
proved by the FDA for the treatment of docetaxel-resistant mCRPC (Fig. 1) [13, 14]. Follow‐
ing abirateroneacetate 3, galeterone (TOK-001) 4 (Fig. 1), another steroidal CYP17 inhibitor,
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with AR antagonistic and ablative activities, is currently undergoing Phase I/II clinical trials
for the treatment of chemotherapy-naive CRPC [15, 16].
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Figure 1. Compounds used in the clinical practice for PC treatment, and galeterone4, currently undergoing clinical
trials for the treatment of chemotherapy-naive CRPC.

The first reports on steroidal CYP17 inhibitors date back to about 40 years ago [3, 8, 17-20].
Many different chemistries have been exploited in their development which has been com‐
plicated by the fact that no 3D structure of the enzyme is available. Nonetheless, structure-
activity analysis has revealed the general features of a good inhibitor and recent docking
and modeling studies have further shed some light on the way these molecules interact with
the enzyme’s active site [21, 22]. Moreover, additional effects of these compounds on other
PC-related targets have been studied and disclosed. This chapter will tell the success story
of the development of steroidal CYP17 inhibitors from their early discovery days to their
very recent introduction into the clinics for the treatment of advanced PC.

2. The CYP17 enzyme: One active site, two activities

The eukaryotic class II cytochrome P450 enzyme CYP17 is an endoplasmic reticulum mem‐
brane bound multifunctional protein with 17α-hydroxylase and C17,20-lyase activities, both
engaged on a single active site (Fig. 2) [23-28].
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Figure 2. CYP17 and androgen physiology. i. P450 cholesterol side-chain cleavage (P450scc); ii. 3β-Hydroxysteroid de‐
hydrogenase, Δ4,5-isomerase; iii. CYP17 (OHase); iv. CYP17 (lyase); v. 17β-Hydroxysteroid dehydrogenase; vi. 5α-Reduc‐
tase; vii. Aromatase (CYP19).

Alike other cytochrome P450 enzymes, this cysteinato-heme enzyme functions as a mono-
oxygenase by activating and cleaving molecular dioxygen so that one of the atoms is insert‐
ed into its substrate while the other gives rise to a water molecule [29, 30]. P450 reductase
transfer of electrons in the presence of nicotinamide adenine dinucleotide phosphate
(NADPH) is a requisite for both catalytic activities [29, 30]. Its natural substrates are pregne‐
nolone (Preg) and progesterone (Prog) which are first hydroxylated at the 17 position and
then their side chain is cleaved to afford 17-keto derivatives (dehydroepiandrosterone,
DHEA and androstenedione, AD respectively), which are androgen precursors. The andro‐
gens (testosterone, T and dihydrotestosterone, DHT) that result from further metabolization
of both DHEA and AD, bind to the AR and initiate transcription, triggering the synthesis of
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specific proteins and also cell proliferation [31, 32]. Apart from male physiology, androgens
are involved in PC development and progression, as at least 80% of human PCs respond fa‐
vorably to androgen ablation therapy [33-35]. This dependence of PC on androgen signal‐
ling has been known for about 70 years [36, 37] and the use of strategies that effectively
lower the levels of circulating androgens in PC patients has been the mainstay of PC therapy
for several decades.

CYP17 is localized to the adrenals, testes, placenta and ovaries and plays a fundamental role
in the synthesis of not only sex steroids but also corticosteroids. The testes are responsible
for about 90-95% of the circulating androgens and the adrenals for the remaining 5-10% [38].
Human CYP17 is expressed from a single gene mapped to a specific sub-band of chromo‐
some 10 at q24.3, in steroidogenic tissue [39-41]. This bifunctionality of the product of a sin‐
gle gene has been explained by modulation of the enzyme’s C17,20-lyase activity by several
factors such as the presence of the electron carrier P450 oxidoreductase (POR) [42, 43], cyto‐
chrome b5 (cyt. b5) [44-48], the phosphorylation of serine/threonine residues [44, 49-51], and
single amino acid mutations [52-55]. The effective ratio of C17,20-lyase to 17α-hydroxylase ac‐
tivities is under tight control during development in the human adrenal cortex, and becomes
greatly elevated in adrenarche, where a rise in DHEA body concentrations is observed with‐
out concomitant increase in glucocorticoid or mineralocorticoid production [56]. Thus, pro‐
duction of the mineralocorticoid aldosterone occurs in the adrenal zona glomerulosa where
CYP17 is absent. In the zona reticularis and in the gonads, the presence of both activities
drives the production of sex steroids, whereas overexpression of 17α-hydroxylase activity is
fundamental for the production of glucorticoids in the zona fasciculata.

The crystal structure of CYP17 remains yet to be determined since purification from its
membrane environment and subsequent reconstitution of activity in vitro has proved to be a
difficult task [26, 29, 30]. However, the availability of some cytochrome P450 crystal struc‐
tures, such as the ones from prokaryotic P450cam [57, 58], P450BM3 [59-61], and P450 CY‐
PeryF [62], as well as the eukaryotic CYP3A4 [63] and AYP2C9 [64] among others [65], has
been a valuable tool in building homology models. In addition, the high-resolution crystal
structures of mammalian P450s that are significantly homologous to CYP17 and complexed
to a variety of ligands [66] have now been uploaded onto the Protein Data Bank (PDB). A
very recent model has been developed based on these crystal structures from closely related
mammalian cytochrome P450s [21]. In another approach, a truncated, His-tagged version of
human CYP17 was generated from a synthetic complimentary DNA and expressed in E. coli
[22]. These models were used to dock known CYP17 inhibitors to the active site.

3. Steroidal CYP17 inhibitors

Clinical practice outcomes with ketoconazole 5 (Fig. 1), an orally administered non-steroidal
imidazole antifungal agent that was first reported to cause gynecomastia in male patients
[67-69], have further evidenced the value of inhibition of the steroid synthesis pathway as a
therapeutic strategy for advanced PC. This compound is used clinically as the racemate of
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the cis-isomer [17, 70], and is offered as secondary hormonal therapy to patients with CRPC,
despite some significant gastrointestinal and hepatic side-effects when administered in high
doses [71-73]. Following ketoconazole 5, several non-steroidal compounds have been syn‐
thesized which displayed better inhibitory properties. In addition, modification of the origi‐
nal core of the enzyme’s natural substrates has also afforded very potent steroidal inhibitors
[3, 8, 17-20]. Based on the knowledge that was generated by this approach which was recent‐
ly validated by computational studies, common features were established for optimal inter‐
action between enzyme and substrate. Thus, a good inhibitor should possess a sufficiently
large hydrophobic core, comparable to a steroid molecule, and bear electronegative groups
at its external positions [74]. The presence of a heteroatom-containing group capable of coor‐
dination to the heme iron of CYP17, ofa planar α-face to pack against the I helix; and in ad‐
dition of hydrogen bonding groups such as the 3β-hydroxylto interact with conserved polar
residues in a hydrogen binding network, has proved invaluable for optimal inhibition, as is
the case of both abiraterone acetate 3 and galeterone 4 [22].

3.1. Androstanes

The first reports on CYP17 steroidal inhibitors date back to 1971 when Arth et al. synthe‐
sized and evaluated testosterone derivatives against rat testicular CYP17, following the ob‐
servation that testosterone acetate 6 (Fig. 3, Table 1, entry 1) was a potent inhibitor of the
enzyme [75]. Almost total abrogation of the enzyme’s activity was observed after treatment
with 1.5 µM of compounds 7, 8, and 10 (Table 1, entries 2-3, and 5), with the acetamide de‐
rivative 9 being less potent (Table 1, entry 4). Competitive inhibition of pig CYP17 was re‐
ported for the anabolic steroids mestanolone 11, stanozolol12, and furazobol 13 (Fig. 3) [76].
Week inhibition in the high µM range was found with compounds 11 and 13 against the
C17,20-lyase activity whereas stanozolol 12 inhibited both enzyme activities with IC50 values
of 2.9 µM and 0.74 µM, for the 17α-hydroxylase and C17,20-lyase activities, respectively.

The irreversible inhibition of CYP17 by compound 14 (Fig. 3, Table 1, entry 6) was reported
to occur due to the presence of a cyclopropylamino moiety capable of being activated by the
enzyme by one-electron oxidation of the nitrogen atom, which causes ring opening to afford
a β-iminium radical that covalently binds to the enzyme, while the compound is still bound
in the active site [77]. Other related irreversible inhibitors reported include compounds
15-18 (Fig. 3, Table 1, entries 7-10) [78-81]. Compounds 15-17 were potent inhibitors of the
human CYP17 at 0.8 and 1 µM, after preincubation with the enzyme (Table 1, entries 7-9).
The ki values of the 4-amino derivatives 16-17 and of the sulfoxide derivatives 19-20 were
determined using cynomolgous monkey and porcine testicular CYP17, respectively (Table 1,
entries 8-9 and 11-12) [82]. Compound 18 also potently inhibited the activity of the monkey
cynomolgous CYP17 at 0.1 µM, after preincubation with the enzyme (Table 1, entry 10) [80].

The introduction of heterocyclic moieties into molecules is a commonly used strategy in
drug discovery and the design of potent steroidal CYP17 inhibitors based on this feature is
an example of success. Thus, several androstane derivatives have been synthesized bearing
a heterocycle ring at C17 either connected to it by a carbon (Fig. 4, Compounds 21-50) or a
nitrogen (Fig. 5, Compounds 53-60) atom. In 1995, Jarman et al. reported the synthesis of
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abiraterone 21 (Fig. 4), a 17-(3-pyridyl)androstane derivative and a potent irreversible inhib‐
itor of human testicular CYP17 (Table 2, entry 1), about 16- and 9-fold more potent than ke‐
toconazole 5 for the inhibition of the hydroxylase and lyase activities, respectively, with IC50

values in the low nM range [86]. Its 3β-acetoxy derivative and prodrug, abiraterone acetate 3
(Table 2, entry 2) has helped to further evidence and establish the utility of specific CYP17
inhibition in metastatic PC (mPC) patients. In 2001, Hartmann et al. reported that the intro‐
duction of a pyrimidyl substituent at C17 originated compounds such as 22 and 23 (Fig. 4,
Table 2, entries 3-4) which were more potent inhibitors of the human enzyme than both ke‐
toconazole 5 and abiraterone 21, under the same assay conditions, and that compound 23
effectively lowered T plasma concentrations to castrate levels after administration to mice
[87, 88]. The thiazole and furan derivatives 24 and 25 were also synthesized and tested on
the monkey cynomolgous enzyme (Fig. 4, Table 1, entries 13-14) [83, 85].

Entry Compound
Inhibitor

concentration (µM)
% Inhibitiona Ki (nM) IC50 (µM) Ref.

1 6 1.5 65 __ __

[75]

2 7 1.5 95 __ __

3 8 1.5 100 __ __

4 9 1.5 85 __ __

5 10 1.5 90 __ __

6 14 __ __ 90b 4.6c [77]

7 15 0.8 64 __ __ [78,79]

8 16 1 84 339b __
[80,81]

9 17 1 86 286b __

10 18 0.1 79b __ __ [80]

11 19 __ __ 380c, d 1.9c

[82]
12 20 __ __ 380c, d 1.9c

13 24 0.1 58b __ 0.063b

[83-85]
14 25 0.1 53b __ __

Table 1. Inhibition of CYP17 by androstane derivatives. aHuman CYP17; bDetermined on cynomolgous monkey testis
enzyme; cPorcine testicular CYP17; dki for compound 14 under the same assay conditions was 3620 nM.

A series of interesting effects on PC cells other than just CYP17 inhibition was reported
by Brodie et al. for the imidazolyl, pyrazolyl, and isoxazolylandrostane derivatives 26-32
(Fig.  4,  Table 2,  entries 5-11).  The isoxazolyl compound 32  was not only a non-competi‐
tive inhibitor of human CYP17 but also a competitive inhibitor of 5α-reductase, with po‐
tency similar to finasteride,  while in addition bearing antiandrogenic activity [89-93].  Its
effects  were  confirmed using  PC xenograftmodels,  however,  its  short  half-life  and rela‐
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tively low bioavailability were reasoned to limit its efficacy in vivo  [93-95].  Less success‐
ful  attempts  of  CYP17 inhibitors  design include the 5’-methyl-2’-thiazolyl  androstane 33
(Fig.  4)  which  was  a  weak  inhibitor  of  human  CYP17  expressed  in  E.  coli  when  com‐
pared to ketoconazole 5  [3].  In 2006, Wolfling et al.  reported the synthesis of a series of
dihydrooxazine derivatives 34-45  (Fig. 4) which low inhibitory activity of CYP17 is most
likely due to the bulkiness of the C17 moieties and the absence of a double bond at C16
[96].  The same group later  reported the synthesis  of  the oxazolidone derivative 46  (Fig.
4, Table 2, entry 12) which inhibited the activity of rat testicular C17,20-lyase with an IC50

value of 3 µM [97]. Similar inhibition of the enzyme was observed with the halogenated
oxazoline derivatives 47 and 48 [98], and with the D-ring fused arylpyrazoline 51 (Fig. 4,
Table  2,  entries  13-14,  and 17)  [99].  The  N-phenylpyrazolyl  derivatives  49  and 50  were
however much less active, with IC50 values in the high µM range [100], as was the steroi‐
dal D-ring fused oxazolidine 52 (Fig. 4, Table 2, entries 15-16, and 18) [99].

Figure 3. Androstane based CYP17 inhibitors.

In 1996, Njar et al. reported the first steroidal inhibitors of CYP17 bearing a heterocyclic moi‐
ety bound to C17 by a nitrogen atom [101], which included compounds 53-55 (Fig. 5, Table
2, entries 19-21), among which the imidazolyl derivative 53 was found to be the most prom‐
ising [101-104]. Later, in 2005, the same group reported the synthesis of galeterone 4 and its
Δ4-3-keto derivative 56 (Fig. 5, Table 2, entries 22-23) [104-106].
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Figure 4. Androstane based CYP17 inhibitors.
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Entry Compound CYP17 inhibition (nM) Ref.

1 21
Human (OHase): 4

Human (lyase): 2.9
[86,107]

2 3
Human (OHase): 18

Human (lyase): 17

3 22

Rat: 220

Human: 24

E.coli a: 30
[87, 88]

4 23

Rat: 1460

Human: 38

E.coli a: 2500

5 26
Rat: 91

Human: 66

[89, 90]

6 27
Rat: 49

Human: 24

7 28
Rat: 79

Human: 58

8 29
NDb

Human: 21

9 30
Rat: 28

Human: 42

10 31
Rat: 76

Human: 59

11 32
Rat: 32

Human: 39

12 46 Rat: 3000 [97]

13 47 Rat: 4800
[98]

14 48 Rat: 5000

15 49 Rat: 22000
[100]

16 50 Rat: 59000

17 51 Rat: 5800
[99]

18 52 Rat: 26000

19 53

Rat: 9

Human: 8

LNCaP-CYP17 cellsc: 1.25

[102, 103]
20 54

Rat: 8

Human: 7

LNCaP-CYP17 cellsc: 2.96

21 55
Rat: 10

Human: 13
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Entry Compound CYP17 inhibition (nM) Ref.

LNCaP-CYP17 cellsc: 7.97

22 4 E.colia: 300
[105, 106]

23 56 E.colia: 915

24 61 LNCaP-CYP17 cellsc: 11500
[4]

25 62 LNCaP-CYP17 cellsc: 17100

Table 2. IC50 values for androstane CYP17 inhibitors. aRecombinant human CYP17 expressed in E.coli; bND = Not
Determined; cRecombinant human CYP17 expressed in LNCaP cells.

Thus, in vitro results with compounds 53-55 revealed a high inhibitory potential of the hu‐
man enzyme expressed in LNCaP cells. In addition, compounds 53 and 55 completely sup‐
pressed T and DHT stimulated growth of LNCaP cells below 5 µM, and displayed
antiandrogenic activity [102, 108]. In vivo experiments confirmed these results and showed
that the compounds were however less effective than castration [109]. The C17-benzimida‐
zole derivative 4 became the first example of a CYP17 inhibitor and antiandrogen that could
effectively suppress androgen-dependent tumor growth better than castration [105]. In 2007,
our group reported the synthesis of the 1H- and 2H-indazole androstanes 57-60 which de‐
spite being poor inhibitors of human CYP17 displayed selective inhibition of PC-3 cells sug‐
gesting that mechanisms other than interference with the AR could be involved in their
cytotoxicity [5]. We also synthesized a series of steroidal carbamates out of which com‐
pounds 61 and 62 (Fig. 5, Table 2, entries 24-25) were inhibitors of human CYP17 with IC50

values of 11.5 and 17.1 µM, respectively [4].
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Figure 5. Androstane based CYP17 inhibitors.
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3.2. Pregnanes

Among the pregnane CYP17 inhibitors, compounds 63-65 (Fig. 6, Table 3, entries 1-3) bear‐
ing 20-substituents with moderate to strong dipole properties were more active than ketoco‐
nazole in inhibiting human CYP17, displaying IC50 values of 16 to 230 nM and 16 to 190 nM
for the hydroxylase and lyase activities, respectively [90, 110, 111]. In 2000, Hartman et al.
tested several pregneneoximes 66-76 among which some were potent inhibitors of both rat
and human CYP17 (Fig. 6, Table 3, entries 4-11) [112]. Compound 66 was effective in vivo
and suppressed plasma T concentrations more potently than ketoconazole. The hydroxamic
acid derivative 77 (Fig. 6) was not a CYP17 inhibitor [113].

Figure 6. Pregnane based CYP17 inhibitors.
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Entry Compound CYP17 inhibition (nM) Ref.

1 63
Human (OHase): 16

Human (lyase): 16
[90, 110, 111]

2 64
Human (OHase): 180

Human (lyase): 190

3 65
Human (OHase): 230

Human (lyase): 160
[90, 110, 111, 114]

4 66

Rat: 520

Human: 77

E. coli b: 230

[112]

5 67
Rat: 140

Human: 180

6 69

Rat: a

Human: 170

E. coli b: 520

7 70
Rat: a

Human: 100

8 71

Rat: a

Human: 200

E. coli b: 420

9 72
Rat: a

Human: 200

10 74
Rat: 300

Human: 300

11 76
Rat: 2760

Human: 270

12 78
Rat: 210

Human: 540
[115, 116]

13 79
Rat: 34000

Human: 1520

14 80 Rat: 1200
[115]

15 81 Rat: 36000

16 82
Rat: 9670

Human: 970

[116]17 83
Rat: 430

Human: 290

18 84
Rat: 530

Human: 400
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Entry Compound CYP17 inhibition (nM) Ref.

19 85
Rat (OHase): 75.8

Rat (lyase): 55.8
[117]

20 86 Rat: 600 [118]

Table 3. IC50 values for pregnane CYP17 inhibitors. a≥ 125 µM; bE. Coli cells coexpressing human CYP17 and NADPH
reductase

A difference in the inhibitory potential of rat CYP17 of the aziridinylpregnanes 78-81 was ob‐
served between the S- and R-isomers, the S-isomers 78 and 80 being 162 and 30-fold more potent
than the R-isomers, respectively (Fig. 7, Table 3, entries 12-15) [115]. However, this finding was
not corroborated by later studies that used the human enzyme [116]. The activity of compounds
82-85 (Fig. 7, Table 2, entries 16-19) was also reported [116, 117]. Several fluorinated pregnanes
86–91and 93 were synthesized in search of greater metabolic stability (Fig. 7, Table 3, entry 20,
Table 4). Inhibition of the cynomolgous monkey enzyme at 1 µM, following preincubation with
the enzyme with compounds 87-93, is depicted on Table 4[118-122].
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O
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Figure 7. Pregnane based CYP17 inhibitors.
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Entry Compound % Inhibition Ref.

1 87 61

[119-121]

2 88 60

3 89 61

4 90 94

5 91 85

[122]6 92 60

7 93 62

Table 4. Inhibition of cynomolgous monkey testicular CYP17 by pregnane derivatives, at 1 µM, following
preincubation with enzyme.

3.3. Other steroidal inhibitors

Other reported steroidal inhibitors of CYP17 are depicted on figure 8. The 17-aza derivative
94 inhibited human CYP17 with an IC50 value of 4.9 µM [123]. Compound 95 inhibited both
5α-reductase and CYP17 with ki values of 27 and 14 nM, respectively [124]. The oxime 96
was also a dual inhibitor with the ability to reduce serum and prostatic T and DHT concen‐
trations in vivo [125].

Figure 8. Other steroidal inhibitors of CYP17.
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4. Abiraterone and galeterone

As previously mentioned, abiraterone acetate 3 (Fig. 1) constitutes the first and still the only
steroidal CYP17 inhibitor approved by the FDA in 2011, being indicated for the treatment of
mCRPC after chemotherapy [14].

This drug was developed at the Institute of Cancer Research (UK) considering the known
efficacy and limitations of ketoconazole in this field and following the observation that non-
steroidal 3-pyridyl esters had improved selectivity for the inhibition of CYP17. This led to
the preparation of abiraterone 21 (Fig. 4), a Δ5,16-steroid with a 3-pyridyl group bound to
C17, which revealed to be a potent and selective irreversible inhibitor of both 17α-hydroxy‐
lase and C17,20-lyase activities of CYP17 [86, 126, 127]. In fact, it was observed that abirater‐
one 21 is not only a more potent CYP17 inhibitor than ketoconazole but also is a less
effective inhibitor of other CYP450 enzymes, responsible for the significant side effects and
potential pharmacological interactions of ketoconazole in PC therapy [14, 128]. Accordingly,
preclinical studies in mice demonstrated that abiraterone 21 reduced serumT to castrate lev‐
els, in spite of a compensatory significant increase in luteinizing hormone (LH) [126]. How‐
ever, when abiraterone acetate 3was tested in human PC patients for the first time as a
substitute to gonadotropin-releasing hormone (GnRH) analogues, sustained suppression of
T production was not observed due to an increase in LH levels [129]. For this reason, abira‐
terone 21was developed to be concomitantly used with GnRH analogues in mCRPC [130].
Studies in xenograft models devoid of testicular and adrenal androgens further evidenced
that abiraterone 21 inhibited CRPC growth and thus also seem to suppress androgen pro‐
duction in PC tumors [128].

Several Phase I clinical studies [131, 132] revealed that abiraterone acetate 3 is safe and effec‐
tive on lowering serum androgen levels in both ketoconazole naïve and exposed patients. In
addition, its antitumor activity was nearly equivalent in both groups. However, a significant
increase in adrenocorticotrophic hormone (ACTH) was developed leading to hypokalemia
and hypertension as the predominant toxicities. In order to reduce these side effects eplere‐
none, a mineralocorticoid antagonist, was introduced. As the highest studied dosage of abir‐
aterone acetate 3 (1000mg) did not lead to limiting toxicities, the useof 1000mg daily was
chosen in additional trials [8, 131, 133 135].

The concomitant use of the corticosteroids dexamethasone or prednisone in the efficacy of
abiraterone acetate 3in several conditions was studied in Phase II trials [133-135]. A signifi‐
cant decrease in hyperaldosteronism-related symptoms was observed and therefore predni‐
sone 5mg b.i.d. was included in all subsequent studies, as well as in the FDA label
indication. Other Phase II studies evaluated the efficacy of abiraterone in docetaxel-treated
CRPC patients, and continued to evidence the importance of this steroidal drug in this stage
of the pathology [135].

A Phase III study compared the use of abiraterone acetate 3and prednisone versus predni‐
sone alone in 1195 ketoconazole-naïve men with mCRPCshowing disease progression dur‐
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ing or after therapy withdocetaxel. The primary endpoint was overall survival and the
secondary endpoints were PSA decline, time to PSA progression and progression-free sur‐
vival. In this study an increased median overall survival in the abiraterone acetate 3+ predis‐
one group was observed when compared to that of patients treated with prednisone alone
(14.8 vs 10.9 months; hazard ratio of 0.65). In addition, all the other endpoints were met and
as expected the toxicities caused by CYP17 blockage occurred mostly in the abiraterone ace‐
tate 3+ prednisone group. Another Phase III study set to be completed in 2014 is evaluating
the use of abiraterone acetate 3 and prednisone versus prednisone alone in CRPC prior to
chemotherapy [136].

Due  to  all  these  beneficial  results  and  after  the  first  Phase  III  studies,  in  April  2011,
abiraterone  acetate  3was  approved  by  the  FDA for  the  treatment  of  mCRPC after  che‐
motherapy [14].

Abiraterone 3 is being used in the form of its 3β-acetyl prodrug in order to increase its oral
bioavailability, and is quickly deacetylated to the active drug once absorbed. In spite of the
fact that high-fat meals increase its oral absorption, it is recommended that this drug should
be taken on an empty stomach. Other pharmacokinetic studies revealed that this drug is
highly bound to plasma proteins and has a plasma half-life of 10-14h [131, 132]. At present,
several other clinical trials are ongoing, mainly for the study of the combination of abirater‐
one acetate 3 with other relevant drugs in PC treatment [137].

Galeterone 4 (Fig. 1) is structurally similar to abiraterone 21 and was rationally designed as
an androgen biosynthesis inhibitor via CYP17 inhibition [8]. In fact, as previously men‐
tioned, several research works evidenced that modification of the C17 substituent of Δ16-ste‐
roids, particularly by attachment of nitrogen heterocycles, was a relevant strategy to
produce potent inhibitors of the enzyme. Following these considerations, Handratta et al.
designed and prepared several Δ16-steroidal C17 benzoazoles and pyrazines and evaluated
their CYP17 and 5α-reductase inhibitory activities, binding to and transactivation of the AR,
as well as their antiproliferative effects against two human PC cell lines (LNCaP and
LAPC4). Some of the compounds including 4 and its Δ4-3-ketone derivative 56 (Fig. 5) were
potent CYP17 inhibitors and antagonists of both wild type and mutant AR. These com‐
pounds were the first reported examplesbearing such a dual activity. In addition, these ste‐
roids inhibited the growth of DHT-stimulated LNCaP and LACP4 PC cells with IC50 values
in the low micromolar range. Galeterone 4 and compound 56 were further studied for phar‐
macokinetic properties and antitumor activities against androgen-dependent LAPC4 human
prostate tumor xenografts in severe combined immunodeficient (SCID) mice. Galeterone 4
was more effective than castration in its in vivo antitumor activity [104]. Taking this into ac‐
count, Vasaitis et al. demonstrated by in vitro and in vivo studies that unlike bicalutamide
and castration, galeterone 4 also caused down-regulation of AR protein expression, which
appears to contribute to its antitumor efficacy. The authors also evidenced that this com‐
pound caused a significant regression of LAPC4 tumors in xenograft models, being more
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potent than castration, and that treatment with galeterone 4 was also very effective in pre‐
venting the formation of LAPC4 tumors [138].

An in vitro  study using high-passage LNCaP cells demonstrated that galeterone 4  inhib‐
ited  the  proliferation  of  these  cells  that  were  no  longer  sensitive  to  bicalutamide  and
had increased AR expression. In addition, the combination of galeterone 4with inhibitors
of signal transduction pathways such as gefitinib and everolimus, was proven to be syn‐
ergistic when compared to either agent alone and superior to their combination with bi‐
calutamide  [139].  Later,  in  vivo  studies  with  LNCaP  and  high-passage  LNCaP  tumor
xenografts  in  SCID mice indicated that  dual  inhibition of  AR and mammalian target  of
rapamycin  (mTOR)  in  castration-resistant  models  can  restore  the  sensitivity  of  tumours
to  anti-androgen  therapy.  The  results  observed  in  this  study  also  indicated  that  the
CYP17  and  AR  inhibitor  galeterone  4  combined  with  the  mTOR  inhibitor  everolimus
may be effective in resistant PC [140].

A very recent in vitro study with LNCaP and LAPC4 cells demonstrated that both galeterone
4 and abiraterone 21 directly down-regulated the expression and activation of the AR via
multiple mechanisms, in addition to their CYP17 inhibitory activities [141].

Due to the impressive biological activities observed, galeterone 4  is currently being eval‐
uated  in  a  phase  I/II  open  label  clinical  trial  (ARMOR1  study)  as  a  potential  drug  for
the  treatment  of  castration  resistant  prostate  cancer.  This  study  began  in  2009  and  has
as primary outcomes the incidence of adverse effects (phase I) and the proportion of pa‐
tients with 50% or greater decrease in PSA from baseline (phase II) [137].

Recently,  in  a  continuing  study  of  the  clinical  candidate  4  and  analogues  as  potential
agents  for  PC  treatment,  putative  metabolites  of  4  and  metabolically  stable  derivatives
were prepared. Putative metabolites included compounds with no double bonds at C16,
C5,  or  both  as  well  as  their  corresponding  3-oxo  derivatives.  Metabolically  stable  ana‐
logues of 4,  developed to optimize its potency and to increase its stability and oral bioa‐
vailability,  included  their  3α-azido,  3ξ-fluoro,  3β-mesylate  and  3β-O-sulfamoyl
derivatives.  Several  in  vitro  studies,  including CYP17 inhibitory activity,  binding to  and
transactivation of AR, as well  as antiproliferative effects against LNCaP and LAPC4 cell
lines,  demonstrated that  none of  the compounds were superior to 4  in the observed ef‐
fects.  The  3ξ-fluoro  analogue  was,  however,  nearly  2-fold  more  efficacious  vs  LAPC4
xenografts  than  4.  Nonetheless,  the  toxicity  observed  with  this  halogenated  compound
was of concern [142].

5. Conclusion

PC is one of the most prevalent causes of death in Europe and USA. In spite of important
advances in the treatment of localized disease, advanced PC is still incurable. One of the
most relevant PC therapeutic strategies involves the inhibition of androgen biosynthesis by
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CYP17 inhibition. In fact, starting from the structure of the natural substrates of this enzyme,
several steroids, mainly with a heterocyclic ring bound to C17, have been developed over
the years as CYP17 inhibitors. All these studies successfully led to the approval of abirater‐
one acetate 3 by the FDA in 2011 for the treatment of mCRPC after chemotherapy. In addi‐
tion, other clinical trials involving this drug are being performed in order to expand its
clinical usefulness, namely in CRPC prior to chemotherapy and in combination with other
drugs. Another steroid that is in Phase I/II clinical trials for CRPC is galeterone 4, which is
structurally similar to abiraterone 21. However, in addition to bearing a potent and selective
CYP17 inhibitory activity, this compound also modulates AR activity. As it is now clear that
function of the AR axis remains crucial to a majority of patients with CRPC, its mechanism
of action can be of great advantage in PC therapy, either alone or in combination with other
AR-modulating agents.In the future it is expected that the invaluable knowledge provided
by the use of CYP17 inhibitors in PC treatment will shed more light on the most significant
biological pathways involved in this disease. The establishment of a possible role for combi‐
nation regimens including CYP17 inhibitors in earlier stages of PC as a means to prevent
surgery and classical chemotherapy drugs would undoubtedly contribute to improving the
quality of life of PC patients.
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