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1. Introduction 

Cobalt powders have been used extensively in cemented carbides, high-temperature alloys, 

PCD and PCBN, and magnetic materials, etc., due to its excellent physical, chemical, and 

mechanical properties. The fabrication and final properties of the above materials are 

strongly affected by the quality (purity, phase, size, shape, dispersity, fluidity, etc.) of Co 

powders. In order to fabricate a homogeneous and densified microstructure without pores, 

Co-pool, Co-poor and Co-free zones, etc., ultra-fine spherical Co powders have been desired 

with the development of ultra-fine and even nano grain materials. However, it is very 

difficult to industrial fabricate ultra-fine spherical Co powders with good quality by the 

conventional decomposition and hydrogen-reduction technology. In this paper, a new low 

energy-consumption industrial production technology-a continuously dynamic-controlled 

combustion synthesis (CDCCS) technology has been proposed about investigating how to 

obtain ultra-fine spherical Co powders (the average particle size is smaller than 0.8μm, and 

the length-diameter ratio is smaller than 2) with a lower impurity content. 

2. Cobalt: Properties, minerals, extraction and applications 

2.1. Properties 

2.1.1. Physical properties 

Cobalt does not occur naturally as a pure metal, but is a component of more than near a 

hundred naturally occurring minerals, including various sulfides, arsenides, sulfoarsenides, 

hydrates, and oxides. Pure cobalt can be produced by reductive smelting, and was firstly 

prepared by G. Brandt in 1735. Cobalt was confirmed as an element by T. Bergman in 1780. 

Cobalt is a metallic transition element, and its position in the Periodic Table is characterized:  
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Name, symbol, number: Cobalt, Co, 27 

Element category: Transition metal 

Group, period, block: 9(VIIIA), 4, d 

Standard atomic weight: 58.933195 

Electron configuration: 4s3d7 

Electrons per shell: 2, 8, 15, 2 

Co is a brittle, hard metal, resembling iron and nickel in appearance. Pure cobalt produced by 

reductive smelting is a hard, lustrous, silver-gray metal. Co has a relative permeability two 

thirds that of iron [1]. Its Curie temperature and magnetic moment are 1115C [2] and 1.6~1.7 

Bohr magnetons/atom [3], respectively. The basic physical properties are listed in Tab.1, and 

vapor pressure vs. temperature is shown in Fig.1. The transformation is sluggish and accounts 

in part for the wide variation in reported data on its physical properties. Metallic Co occurs as 

two crystallographic structures: a hexagonal closed-packed crystal structure (hcp) and a face-

centered cubic crystal structure (fcc). During cooling, Co usually undergoes a polymorphous 

transformation from fcc to hcp. The temperature corresponding to the equilibrium between the 

high-temperature β (fcc) and low-temperature α (hcp) phases in Co is 417C [4], but in fact, the 

energy difference is so small that random intergrowth of the two is common [5].  

 

Physical properties values 

Color Silver-gray

Density 8.9g/cm-3

Liquid density at melting point temperature 7.75g/cm-3

Melting point 1768K, 1495C, 2723F
Boiling point 3200K, 2927C, 5301F
Heat of fusion 16.06kJ/mol

Heat of vaporization 377kJ/mol

Molar heat capacity 24.81J/(mol·K)

Table 1. The basic physical properties of Co metal 

 

Figure 1. Vapor pressure of Co 
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2.1.2. Chemical properties 

Pure Co does not dissolve in water and soil, and can stay for years at room temperature (RT). 

Co can stay in the air for a few days, and can be oxidized to CoO at about 300C, and can be 

burnt to Co3O4 at high temperature. Fine Co powders prepared by the hydrogen-reduction 

technology are easily oxidized to cobalt oxide and even generate self-ignite in the air. So the 

fine Co powders must be carefully preserved in a vacuum or an inert gas container.  

Co is a weakly reducing metal, and is easily attacked by halogens and sulfur, and is also 

rapidly dissolved by HCl, H2SO4 and HNO3 acid solution, and is slowly eroded by HF, 

NH4OH, NaOH solution.  

Co can solid-dissolve many metal and nonmetal atoms to form many intermetallic 

compounds. Co can well infiltrate many ceramics (WC, TaC, TiC, ZrC, TiN, Al2O3, cBN, 

diamond, etc.), and the almost all wetting angles are lower than 50 [6], so it is often used as 

a binder in the above ceramic-metal composites. 

2.1.3. Mechanical properties 

Metallic Co occurs as two crystallographic structures: hcp-α and fcc-β. Strength and 

hardness of hcp-α should be higher than those of fcc-β, but inverse for their plasticity 

because there are more slipping systems in fcc-β than hcp-α. Some mechanical properties of 

Co are listed in Tab.2.  

 

Mechanical properties 
Crystal structures 

hcp fcc 

Electrical resistivity (Ω·m) 6.24×10-8 at 20C - 

Thermal conductivity (W/(m·K)) 100 - 

Thermal expansion (/K) 13.36×10-6 at 25C - 

Young’s modulus (GPa) 209 <hcp-Co 

Shear modulus (GPa) 75 <hcp-Co 

Bulk modulus (GPa) 180 <hcp-Co 

Posisson ratio 0.31 - 

Vickers hardness (MPa) 1043 <hcp-Co 

Table 2. Some mechanical properties of Co 

2.2. Co minerals and extraction 

Co is not a typically rare metal since it ranks 33 in abundance. Content of Co in the earth’s 

crust is about 0.035wt.%, and about 2.3 billion ton in the sea. Nearly, all Co is always found 

associated with metallic-lustered ores of other metals (for example, Cu, Ni, Fe, Pb, Zn, etc.), 

and Co minerals without other metals is very less except cobaltite in Morocco. So generally 

it is produced as a by-product of other metals mining. Near a hundred cobalt minerals have 

been already found in the nature, but about only 20 cobalt minerals are valuable and 

available, listed in Tab.3.  
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Based on the complexity of the Co minerals, the extraction processing is very complicated 

and efficiency of recovery is also very low. As usual, Co in the minerals is firstly 

concentrated or is transformed into the soluble states by the pyro-refining, and then Co in 

the calcine of pyro-refining is further enriched and extracted by the hydrometallurgy, the 

finally the cobalt compounds or pure cobalt are obtained. An extraction processing is shown 

in Fig.2 [7]. Section (the production of Co powders) in the dotted line scope in Fig.2 will be 

emphasized in the chapter.  

 

Cobalt 

minerals 
Chemical formula 

Theory 

cobalt 

contents 

(wt.%) 

Actual 

cobalt 

contents 

(wt.%) 

Distribution 

Arsenides 

CoAs2 23.2 15~21 Canada, Morocco, USA 

(Co,Fe)As2 28.2 9~23 
Morocco, Canada, 

Russian 

CoAs3    

(Co,Ni)As3 20.8 16~20 
Morocco, Canada, 

Russian 

(Co,Ni,Fe)As3    

Sulfides 

CoAsS 35.5 29~35.3 
China, Canada, 

Morocco, USA, Australia 

(Co,Fe)AsS  15~20 Morocco 

CuCo2S4 38.7 27~42 Zaire, Zambia 

Co3S4 48.7 36~53 Zaire, Zambia 

(Co,Ni)3S4 26 4~10 USA, China 

CoS2   Zaire, China 

Oxides 

m(Co,Ni)O·MnO2·nH2O <32 <30 
Zaire, China, New 

Caledonia 

3CoO·As2O3·8H2O 29.5  Morocco, Canada 

CuO·2Co2O3·6H2O 57 45~47 China, Zaire 

CoCO3 49.6  Zaire, Zambia 

Table 3. Cobalt minerals 

2.3. Applications  

Due to the excellent physical, chemical, and mechanical properties, it is widely used in 

fabricating various alloys (which are used as high-temperature and wear resistant 

components, dies, saws, cutting tools, etc.) by powder-metallurgy technology, such as super 

alloys, high speed steels, cemented carbides, PCD (polycrystalline diamond) and PCBN 

(polycrystalline cubic boron nitride), etc. Co in the above alloys is usually used as an 

additive, an alloying element or a binder.  
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An important use for Co is in the field of high-temperature alloys. Required in gas turbines, 

jet engines, and similar applications, such alloys retain their strength above 650C; these 

alloys contain 5~65wt.% Co. Even higher operating temperatures in turbines have resulted 

in an increased use of cobalt-containing and cobalt-based alloys known generally as super 

alloys. These can withstand severe operating conditions and temperatures up to 1150C. For 

example, Nimonic 90 is a nickel-based alloy containing 18wt.% Co, a similar amount of Cr, 

and some Ti, and Waspaloy is another alloy of this type. 

 

 

Figure 2. Cobalt extraction processing (the section in the dotted line scope will be emphasized in the 

chapter) 
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Cemented carbides, PCD and PCBN are used as cutting tools, wear-resistant components, 

dies, saws. In the production of a so-called cemented carbide, i.e. tungsten carbide 

composites, a briquetted mixture of tungsten carbide and soft cobalt powders is compacted 

and sintered at a temperature above the melting point of cobalt. The latter melts and binds 

the hard carbides, giving them the toughness and shock resistance needed to make carbides 

of practical value for cutting tools, drill bits, dies, and saws, etc. Co is the most satisfactory 

matrix metal for this purpose and may be adjusted in amounts from 3 to 25 percent by 

weight. A briquetted mixture of diamond or cBN and Co powders are sintered at high 

temperature and high pressure, and PCD and PCBN materials are obtained.  

 

Figure 3. World production trend of cobalt 

Very strong magnets are created when Co is alloyed with other metals. So Co is used in 

fabricating many advanced magnetic materials.  

Cobalt’s use in rechargeable batteries is the fastest growing use. Notably in 2007, the percentage 

of cobalt use for rechargeable batteries rose to 25% of total cobalt demand from 22% in 2006. 

World production trend of cobalt is shown in Fig.3 [8,9]. The production of cobalt has been 

increasing steadily since 1996. 

3. Expectation qualities of cobalt powders in powder metallurgy industry 

Powder metallurgy materials (PMM) have been usually fabricated by mixing, pressing, and 

sintering processing. The quality (purity, phase, size, shape, dispersity, fluidity, etc.) of raw 

powders acts an important role in determining the fabrication and final properties of PMM. 

Especially with the rapid development of ultra-fine grain cutting tool materials (such as, 

WC/Co alloys, PCBN, PCD, etc.), ultra-fine spherical Co powders (the size is 0.8μm and the 

length-diameter ratio is smaller than 2) have been desired in order to fabricate a homogeneous 

and densified microstructure without pores, Co-pool, Co-poor and Co-free zones, etc. 

Though hcp-α Co is a room temperature stable phase, fcc-β Co can also be steadily retained 

at RT by some especial techniques (for example, rapidly cooling). For metal alloys, the 
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strength and plasticity are generally contrary, so hcp-α and fcc-β structures must be 

alternative in applications. For cemented carbides (WC/Co alloys), hcp-α Co powders are 

desired because the cold welding among Co particles due to its higher brittleness can be 

decreased during ball-milling. The cold welding (seen as “hard” agglomerations, as shown 

in Fig.4) among Co particles can easily result in “Co-pool” which result in a rapidly decrease 

of mechanical properties of WC/Co alloys. However, fcc-β cobalt in the sintered WC/Co 

alloys is desired by rapidly cooling during sintering because its good plasticity can improve 

the toughness of WC/Co alloys.  

 

(a) Initial morphology (“soft” agglomeration) of Co particles; (b) Occurring cold welding among fcc-β Co particles due 

to each other extruding; (c) Forming grain boundaries at the cold welding positions, and forming a “hard” 

agglomeration; (d) Forming flaky Co agglomeration due to plastic deformation; (e) hcp-α Co particles well dispersed 

Figure 4. Schematic representation of the evolution of hcp-α and fcc-β Co particle agglomerations 

during ball-milling 
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4. Decomposition-hydrogen-reduction to fabricate cobalt powders 

Co powders in powder metallurgy industry are mainly fabricated by a decomposition- 

hydrogen-reduction technique using cobalt compounds of cobalt oxalate (CoC2O4·2H2O), 

cobalt carbonate (CoCO3·xH2O), or cobalt oxide (Co3O4) powders as raw materials. 

Schematic representation of the device is shown in Fig.5. Raw powders are uniformly tiled 

in the boats, and then the boats are pushed into hydrogen-reduction furnace at regular 

intervals by a Feeder. The raw powders can also be continuously fed by a conveyor belt in 

some companies [10], but we consider that the conveyor belt should carry off a lot of heat, 

and resulting in an increase of energy-consumption and the complexity of the device is also 

increased. H2 from an inverse direction enters the furnace. The raw powders are heated, 

decomposed, and reduced in the heating zone (in which there are usually not less than three 

different temperature zones). Obtained Co powders are cooled to RT in the long cooling 

zone, and collected into a Receiver, and protected by N2. In order to reduce energy-

consumption and protect the environment, the residual H2 including some other gases, such 

as CO, CO2, H2O, etc., is purified by a Purifier, and then reused.  

 
1. Feeder; 2. Boat; 3. H2 exit to a Purifier; 4. Heating zone; 5. H2 entrance; 6. Cooling zone; 7. N2 Protecting; 8. Receiver 

Figure 5. Schematic representation of the device used in fabricating Co powder 

In order to well understand the decomposition mechanisms of CoC2O4·2H2O, CoCO3·xH2O, 

Co3O4 powders and further guide the production of Co powders, their thermal 

decomposition kinetics in an inert gas and air will be detailedly studied and discussed in the 

following sections. Effect of morphology, size and purity of three raw powders and 

technical parameters on the properties of Co powders is also discussed. Some beneficial 

methods are also summarized and proposed to improve the quality of Co powders.  

4.1. Cobalt oxalate 

The chemical formula of the commercial cobalt oxalate is CoC2O4·2H2O. Fig.6 shows TG and 

DTA curves of CoC2O4·2H2O in an inert gas (such as N2, Ar) and air, respectively. DTA 

curve in the inert gas exhibits two endothermic peaks, which are accompanied by the weight 

loss of ~19.67% and ~48.09% in the TG curve, respectively. The ranges of reactive 

temperatures at the peaks are in about 170~225C and 350~440C, respectively, which will 

change a few with different testing conditions (such as changing heating rate). Such weight 

loss agrees with the value calculated for the following two transformations:  
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  2 4 2 2 4 2
CoC O ·2H O CoC O + 2H O  According to the first endothermic peak       (1) 

  2 4 2
CoC O Co + 2CO  According to the second endothermic peak   (2) 

DTA curve in the air exhibits an endothermic peak and an exothermal peak, which are 

accompanied by the weight loss of ~19.67% and ~36.43% in the TG curve, respectively. The 

ranges of reactive temperatures at the peaks are in about 170~225C and 270~320C, 

respectively, which will also change a few with different testing conditions (such as 

changing heating rate). Such weight loss agrees with the value calculated for the following 

two transformations: 

  2 4 2 2 4 2
CoC O ·2H O CoC O + 2H O  According to the first endothermic peak    (3) 

  2 4 2 3 4 2
3CoC O + 2O Co O + 6CO  According to the second exothermic peak       (4) 

 

Figure 6. TG and DTA curves of CoC2O4·H2O in an inert gas (up) and air (down) 

In actual industrial production of Co powders, the decomposition-hydrogen-reduction 

processing of CoC2O4·2H2O occurs in a H2 atmosphere in the device of Fig.5. Tikkanen et al 

[11] indicated that the decomposition-hydrogen-reduction processing of CoC2O4·2H2O was 

divided into a guide stage and a decomposition stage. The dehydration (see the reaction (1-

1)) dominates during the guide stage. Huang et al. [12] indicated that high crystallinity 

CoC2O4 crystals with less defects can be obtained under a slow dehydration rate, and then 

further decomposition processing changes difficulty. Therefore, we easily surmise that it is 

disadvantageous to fabricate ultra-fine Co powders due to a decrease of the nucleation rate. 

In reverse, CoC2O4 crystals with many defects can be obtained under a rapid dehydration 

rate, and then the decomposition changes easy; resulting in an increase of the nucleation 

rate. So we propose to increase properly the feeding rate of boat and temperature during the 

guide stage. In actual industrial production, we can shorten properly the scope of the “I” 
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heating zone in Fig.5 and increase the dehydration temperature (usually higher 30~50C 

than the result of DTA). On the other hand, the dehydration processing of CoC2O4·2H2O can 

be incompletable because hcp-α Co powders are easily obtained during the decomposition 

of the CoC2O4 with a few H2O.  

Fig.7 shows the effect of decomposition temperature and time of CoC2O4·2H2O on the 

specific surface area of Co powders [11]. There are two activation energies for the growth of 

Co powders, which implies two different growth mechanisms: the aggregating growth 

among Co crystalline nuclei at lower temperature and the second aggregating growth 

among Co particles. It is obvious that the second growth must be inhibited during 

decomposition. The temperature occurring the second growth is about ~450C, which is 

similar to the results of DTA. Therefore, the temperature in the decomposition stage can not 

usually be higher than 450C in order to obtain ultra-fine Co powders. In fact, it is very 

difficulty to completely inhibit the second growth due to the local overheating in the boat. 

The following methods are usually used to improve the temperature homogeneity in the 

boat: increasing the surface of the boat, decreasing the layer thickness of CoC2O4·2H2O 

powders, and increasing the flow rate of H2.  

 

Figure 7. Effect of decomposition temperature and time of CoC2O4·2H2O on the specific surface area of 

cobalt powders 

Morphology of the commercial CoC2O4·2H2O powders is a short-fibrous structure with an 

average diameter of about 0.5~1μm and an average length of about 4~10μm, or a bunch 

(3~4μm) of fibrous particles is formed when several short-fibrous cobalt oxalate particles are 

adhered or bonded together during crystallization, as shown in Fig.8(a). Because 

morphology of Co powders can easily inherit that of cobalt oxalate, it is very difficulty to 

obtain spherical Co powders by decomposing cobalt oxalate; usually replacing a short-string 

or dendritic structure, shown in Fig.8(b). Furthermore, the production practice shows that 

there is always 2~4% “hard” agglomeration (a size of 10~30μm) in Co powders. The 

decomposition processing of cobalt oxalate is schematically shown in Fig.9. The short-
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fibrous CoC2O4·2H2O particles stacked disorderly in the boat are decomposed and reduced 

in situ in the device of Fig.5. The Co nuclei are nucleating and growing to form a short-string 

structure along the short-fibrous of CoC2O4·2H2O particle, and the short-string or dendritic 

structure, and even “hard” agglomerations are formed when several short-string Co 

particles grow or bond together.  

 

Figure 8. Morphology of the commercial cobalt oxalate powders and Co powders fabricated by 

decomposing cobalt oxalate: (a) short-fibrous cobalt oxatate powders and (b) short-string or dendritic 

cobalt powders 

 

(a) Morphology of cobalt oxalate powders; (b) A short-string structure of Co particles along the short-fibrous after 

hydrogen-reduction, there is a weak adhesion between Co particles; (c) Co particles grow up, and a strong adhesion 

bond between Co particles is formed; (d) The short-string or dendritic structure of cobalt powders after sifting 

Figure 9. Schematic representation of in situ decomposition-hydrogen-reduction processing of cobalt 

oxalate 

In order to obtain ultra-fine spherical cobalt powders, there are two methods: to obtain 

spherical cobalt oxalate powders and to impede or break the adhesion of cobalt nuclei 

during the decomposing processing of cobalt oxalate. Spherical cobalt oxalate powders can 

be crystallized by adding a few spheroidizer [13,14] into the cobalt salt leachate, but the 

spheroidizer can deteriorate the properties of the final sintered alloys. Du et al. [15] 

proposed that spherical cobalt oxalate powders can be crystallized by adding a pulsed 

magnetic field in the cobalt salt leachate, but the size of cobalt oxalate particles is up to 

3.5μm which is disadvantageous to fabricate ultra-fine Co powders. Huang et al. [16] 

proposed to decrease the size of cobalt oxalate powders by an airflow dispersion method, 

but it is obvious to largely increase the production cost and to easily result in an increase of 

the content of impurity in cobalt oxalate powders. Li et al. [17] proposed to impede the 
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adhesion of cobalt nuclei by doping tungsten powders into cobalt oxalate powders, and then 

equiaxed or spherical-like Co powders are obtained and the size of Co particles decreases 

with increasing tungsten powders. But tungsten can promote to transform hcp-Co into fcc-

Co, and the difficulty controlling the content of carbon in the final sintered WC/Co alloys is 

increased because the additional tungsten in Co powders must be completely reacted to 

form WC by adding carbon powders.  

4.2. Cobalt carbonate 

The chemical formula of the commercial cobalt carbonate is CoCO3·xH2O (x is lower than 1.). 

Fig.10 shows TG and DTA curves of CoCO3·xH2O in an inert gas (such as N2, Ar) and air, 

respectively. DTA curve in the inert gas exhibits two endothermic peaks. The ranges of 

reactive temperatures at the peaks are in about 130~220C and 320~420C, respectively. 

According to XRD results in Fig.11, there are the following two reactions:  

  3 2 3 2
CoCO · H O CoCO + H O   According to the first endothermic peakx x    (5) 

  3 2
CoCO CoO + CO           According to the second endothermic peak     (6) 

DTA curve in the air also exhibits two obvious endothermic peaks. The ranges of reactive 

temperatures at the peaks are in about 130~220C and 250~320C, respectively. According to 

XRD results in Fig.11, there are the following two reactions:  

  3 2 3 2
CoCO · H O CoCO + H O   According to the first endothermic peakx x    (7) 

  3 2 3 4 2
6CoCO + O 2Co O + 6CO   According to the second endothermic peak    (8) 

 

 
 

Figure 10. TG and DTA curves of CoCO3·xH2O in an inert gas (up) and air (down) 
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In addition, there seems a weak exothermic peak in about 220~270C, in which the weight 

loss on the TG curve is a few slower than that in 270~320C. According to XRD result at 

220C in the air, there also are the following two possible reactions:  

 
3 2

CoCO CoO + CO     (9) 

  2 3 4
6CoO + O 2Co O According to the weak exothermic peak      (10) 

A similar result was reported in Ref. [18], namely the decomposed products of 

Co5(OH)6(CO3)2·xH2O powders at a lower temperature are a mixture CoO and Co3O4 

powders, and CoO is oxidized to form Co3O4 at a higher temperature.  

 

Figure 11. XRD patterns of the decomposed products of CoCO3·xH2O powders at various conditions 

Being different from the short-fibrous CoC2O4·2H2O powders, the production practice 

[19,20] indicates that the spherical Co powders can be easily obtained by decomposing a 

nearly spherical CoCO3·xH2O powders (see Fig.12(a)). However, the minimum average size 

of Co powders obtained by decomposing CoCO3·xH2O powders is only up to 0.8~0.9μm (see 

Fig.12(b)), and Co powders also possess a wide particle size distribution. The content of fcc-

Co in the powders is as high as 60%. 

Another disadvantage is: the content of some impurities (such as S and Ca) in CoCO3·xH2O 

powders are usually higher than those in CoC2O4·2H2O powders due to the different 

precipitation extraction processing. It is very difficulty to completely eliminate the 

impurities, which can be often retained into the final sintered WC/Co alloys. And then the 

properties of WC/Co alloys can be deteriorated by the impurities. Fig.13 shows that there is 

a higher content of S and Ca at a fracture origin in a sintered WC/Co alloy, and the raw Co 

powders are fabricated by decomposing and reducing cobalt carbonate powders. Although 

the impurities can be transformed into some non-deleterious compounds by adding a few 
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rare earth elements [21,22], the other questions are again introduced during fabricating 

WC/Co alloys. 

 

Figure 12. Morphology of (a) the commercial CoCO3·xH2O powders and (b) Co powders fabricated by 

decomposing and reducing CoCO3·xH2O powders 

 

 

Figure 13. The failure of a sintered WC/Co alloy caused by the S and Ca impurities: (a) A fracture 

surface; (b) The EDS analysis at the fracture source (see the square region in (a)) 

4.3. Cobalt oxide 

There are some advantages using Co3O4 powders to fabricate Co powders by hydrogen-

reduction technology: (1) For CoC2O4·2H2O and CoCO3·xH2O powders, Co powders easily 

grow if the decomposition and reduction processing (nucleation and growth processing) can 

not be completely separated. But for Co3O4 powders, there is only the reduction processing. 

So the technology processing is easily controlled. (2) The content of Co in Co3O4 is two times 

higher than those in CoC2O4·2H2O and CoCO3·xH2O, as listed in Tab. 4. So the output of Co 

powders can be improved by double times at a same reduction condition. (3) The Co 

powders obtained by hydrogen-reducing Co3O4 powders are almost all hcp-Co. Therefore, 

ultra-fine spherical Co3O4 powders are the best raw material to fabricate ultra-fine spherical 

Co powders.  
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Compounds CoC2O4·2H2O CoCO3·xH2O CoO Co2O3 Co3O4 

Cobalt contents (wt.%) 32.24 49.58 78.67 71.08 73.44 

Table 4. Cobalt contents in various raw materials used to prepare cobalt powders 

5. The continuous and controllable combustion synthesis 

Basing on the above analysis, it is very difficulty to obtain the satisfied ultra-fine spherical 

Co powders by the conventional technique while using CoC2O4·2H2O and CoCO3·xH2O as 

the raw materials. Ultra-fine spherical Co3O4 powders are the best raw material used to 

fabricate ultra-fine spherical Co powders. But the key question is how to obtain ultra-fine 

spherical Co3O4 powders by a low energy-consumption and low-cost method? And then a 

continuous and controllable combustion synthesis has been proposed.  

5.1. Basic principles 

5.1.1. Selecting the raw powders 

As mentioned above, although spherical Co powders can be obtained by decomposing 

spherical CoCO3·xH2O powders, there is the higher content of some impurities (such as S 

and Ca) and the size of Co powders is still larger. So CoC2O4·2H2O powders will be used as 

the raw materials to fabricate ultra-fine spherical Co3O4 powders, and then ultra-fine 

spherical Co powders can obtained by hydrogen-reduction technology in Fig.5. Using 

CoC2O4·2H2O powders to fabricate ultra-fine spherical Co3O4 powders, the following 

advantages can be utilized and some key technical difficulties must be resolved.  

5.1.2. Utilizing the exothermal reaction of CoC2O4·2H2O — Low energy-consumption 

Selecting CoC2O4·2H2O powders as the raw material to fabricate ultra-fine Co3O4 powders, a 

main advantage is that the decomposition processing of CoC2O4·2H2O in the air is an 

exothermal processing according to DTA. Seham et al. [23] showed that the total exothermal 

energy was 24.26kJ/mol during the decomposition of CoC2O4·2H2O in the air, which is an 

enough energy to operate the following decomposition processing of CoC2O4·2H2O. 

Therefore, after giving a starting energy, the decomposition once starts, and then further 

heating does not need, and the needful energy of the following decomposition can be 

provided by the released reaction energy of CoC2O4 converting into Co3O4. So the 

decomposition processing of CoC2O4·2H2O in the air is a spontaneous and continuous 

processing, and a lot of energy can be saved.  

5.1.3. Utilizing airflow dispersion to in situ break the adhesion among Co3O4 particles 

Morphology of Co3O4 powders can still inherit the short-fibrous structure of CoC2O4·2H2O 

powders when the decomposition processing is carried out in a fixed bed, namely Co3O4 

particles can easily grow together to form a short-fibrous structure (see Fig.14(a)) due to the 

exothermal reaction. But a short-fiber is composed of ultra-fine spherical Co3O4 particles 
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with a size of about 0.1~0.2μm, see Fig.14(b). The Co3O4 particles arrange a short-string 

along to the fiber, and there is a weak adhesion between particles. The results further 

explain why the short-string or dendritic Co powders is easily obtained by decomposing 

and reducing CoC2O4·2H2O powders in a fixed bed. Ultra-fine Co3O4 powders with the size 

of 0.1~0.2μm can obtained if the weak adhesion between them before forming a strong bond 

can be broken in situ. How to break the adhesion of Co3O4 particles? So a dynamic 

decomposing processing is proposed. If an airflow can be provided to CoC2O4·2H2O 

powders during decomposition, the released energy can be homogenized to avoid overheat 

in part and also impede the adhesion and grow among Co3O4 particles.  

 

Figure 14. The short-fibrous structure of Co3O4 particles obtained by decomposing CoC2O4·2H2O 

powders in a fixed bed: (a) low multiple, the morphology with a short-fibrous structure is very similar 

to that of CoC2O4·2H2O powders; (b) Magnifying several fibrous particles, consisted of ultra-fine 

spherical Co3O4 particles with a size of about 0.1~0.2μm 

5.2. Production equipments 

According to the above desires, a continuously dynamic-controlled combustion synthesis 

(CDCCS) process is proposed and the bottlenecks of continuous production and process 

controls of combustion synthesis (CS) have also been solved satisfactorily. The 

preparation of ultra-fine Co3O4 powders via CDCCS is carried out in a gas-solid fluidized 

bed unit (CS unit), as shown in Fig.15. The unit is patented equipment consisting of 

fluidized bed roaster, feeding systems, receiving systems, dust collection systems and air 

supply system [24,25].  

There are reaction and cooling boiling (11 and 21) that formed by gas-solid fluidization on 

the upper and lower gas distribution plates (61 and 62), respectively. The raw material on 

the upper gas distribution plate (61) is fleetly penetrated by the gas from the upper gas 

pipeline (32). The boiling bed with the flowing property like liquid is formed when the 

superficial gas velocity reaches a critical value of 0.03m/s. In our experiments, the superficial 

gas velocity is 0.09~0.18m/s. The height of boiling beds, locating between the gas 

distribution plates to the top of overflow gates, is about 500mm. And several thermocouples 

are installed on the CS unit’ wall and the location is about at 2/3 height of boiling beds.  
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When the boiling bed (11) containing CoC2O4·2H2O powders which are fed into by the screw 

feeder (51) is preheated to 380C by the hot carrier gas, CoC2O4·2H2O powders will react 

with O2 in the air. Co3O4 powders pour from the upper overflow pipe (35) under gravity and 

enter the cooling boiling bed (21), followed by collecting from the lower overflow pipe (34). 

The temperature of CS in reaction region can be perfectly controlled though the linkage of 

the upper thermocouple (71) and the upper gas pipeline (32).  

 

Figure 15. Schematic representation of CS unit, in which Co3O4 powders fabricated by CDCCS: 1. 

Fluidized bed roaster; 10. Upper chamber; 11. Reaction boiling bed; 12. Upper overflow gate; 13. Feed 

inlet; 19. Clapboard; 20. Lower chamber; 21 Cooling boiling bed; 22. lower overflow gate; 23. Overflow 

entry; 31. Upper exhaust pipe; 32. Upper gas pipeline; 33. Lower gas pipeline; 34. Lower overflow pipe; 

35. Upper overflow pipe; 36. Lower exhaust pipe; 41. Upper dust catcher; 42. Lower dust catcher; 43. 

Product collection container; 51. Screw feeder with storage hopper; 61. Upper gas distributor; 62. Lower 

gas distributor; 71. Upper thermocouple; 72. Lower thermocouple 

5.3. Process analysis of CDCCS to fabricate Co3O4 powders 

When the reactant CoC2O4·2H2O powders are fed by the screw feeder (51) into the boiling 

bed, no self continuous reaction occurs. Only when CoC2O4·2H2O powders in the 

combustion zone are heated by hot carrier gas, and the continuous reaction is ignited. This 

means that once the combustion reaction between O2 and CoC2O4·2H2O powders is ignited, 

the released heat by the combustion reaction can be used to ignite the following exothermic 

reaction and no external heat is needed, and then the hot carrier can be transformed into the 

cool carrier gas.  
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Fig.16 shows the effect of the feeding rate of CoC2O4·2H2O powders and the superficial gas 

velocities in the boiling bed on the temperature of combustion wave [26]. Temperature of 

combustion wave decreases with increasing gas velocity at a given feeding rate. Therefore, 

the temperature of combustion wave can be adjusted and controlled dynamically by 

changing the feeding rate of CoC2O4·2H2O powders and/or the superficial gas velocity. 

According to the thermal analysis of CoC2O4·2H2O in the air, the CoC2O4 can be completely 

converted to Co3O4 at a temperature higher than 320C. Therefore, in order to ensure the 

dehydration reaction of CoC2O4·2H2O and the oxidation reaction of CoC2O4 can be carried 

out rapidly and completely, and the combustion temperature is set at 380~400C. 

 

Figure 16. Effect of the feeding rate of CoC2O4·2H2O powders and the superficial gas velocities in the 

boiling bed on the temperature of combustion wave 

Being different from the conventional CS, the combustion wave here is almost full of the 

combustion zone in the middle of the boiling bed and the temperatures in whole space are 

homogeneous. The combustion wave is relatively suspended in the fluidized bed, and the 

temperature in the combustion zone can be dynamically controlled by adjusting the flow of 

carrier gas, as mentioned above. During the preparation, CoC2O4·2H2O powders are 

continuously fed by the screw feeder into the upper area of reaction boiling bed and 

contacted with the combustion wave. The Co3O4 particles are dispersed by the carrier gas 

flow. After the CS, the dispersed Co3O4 powders fall down and leave the combustion wave 

in time through flowing out off the overflow gate on the wall of the unit continuously.  

The CS unit in the paper is different from the conventional one reported in Ref. [27,28]. In 

the conventional unit, the reactants and products are nearly stationary while the combustion 

wave propagates from reactants to products. The advantages of the continuous fluidization 

technologies and the CS are well utilized and combined in our unit. The combustion wave is 

relatively stationary, but the reactants and products are continuous and mobile at a given 

speed.  
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5.4. Quality of products 

Fig.17(a) shows the morphology of Co3O4 powders fabricated by the CDCCS. The adhesion 

among Co3O4 powders shown in Fig.14(b) is broken by the carrier gas flow. The particles 

exhibit a spherical or quasi-spherical shape, and the size of Co3O4 particles is about 

0.1~0.3μm. In the gas-solid fluidized bed unit, the temperature of the whole boiling bed is 

nearly homogeneous, and almost each solid particle in the boiling bed has a similar 

surrounding, namely all CoC2O4·2H2O particles can be completely decomposed to form 

Co3O4. The suspended solid particles collide and grind each other without aggregation by 

the action of airflow, which accelerates the formation of the spherical Co3O4 powders. The 

uneven distributions of particle size or hard aggregation appear scarcely due to the 

favorable diffusion condition and rapid transfer of heat and mass. The Co3O4 powders with 

a narrow particle size distribution, good dispersity and excellent fluidity are fabricated by 

the CDCCS.  

As mentioned above, using the ultra-fine spherical Co3O4 powders fabricated by the CDCCS 

as raw materials, the ultra-fine spherical or quasi-spherical Co powders is easily obtained by 

hydrogen-reduction technology, as shown in Fig.17(b). The Co powders with an average 

size of 0.6μm possess a narrow particle size distribution, good dispersity, and excellent 

fluidity.  

 

 

 

 

 

 
 

 

 

 

Figure 17. (a) Ultra-fine spherical Co3O4 powders fabricated by CDCCS; (b) Ultra-fine spherical Co 

powders fabricated by hydrogen-reduction technology using ultra-fine spherical Co3O4 powders as raw 

materials 
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5.5. Advantages of the CDCCS 

The preparation of ultra-fine spherical Co3O4 powders (the size is smaller than 0.8μm and 

the length-diameter radio is smaller than 2) by the CDCCS has been successfully applied in 

the industrialization production in Xiamen Golden Egret Special Alloy Co., Ltd [24,25].The 

novel method has the following several advantages:  

1. Comparison with the fixed bed, ultra-fine spherical Co3O4 powders are continuously 

produced in the fluidized bed unit and the production efficiency is improved.  

2. No external heat is needed after the reaction is once ignited, and then the energy 

consumption is reduced.  

3. The fabrication process is in a closed unit so that a clean operation environment is 

realized and a high pure product is fabricated.  

4. The device operations are automated, except the transport of reactants and products, 

thus the labor intensity is largely decreased. 

5. The most important advantage is that the properties of the products fabricated by 

CDCCS are more excellent than those fabricated by the conventional method.  

6. Expectation 

Ultra-fine spherical Co3O4 powders are firstly fabricated by CDCCS, and then ultra-fine 

spherical Co powders can be fabricated by hydrogen-reduction technology. Can ultra-fine 

spherical Co powders be directly fabricated by CDCCS if a hydrogen flow is blown into 

the CS unit? However, the hydrogen is a flammable and explosive gas. Therefore, our 

future work is how to directly fabricate ultra-fine spherical Co powders in the CS unit by 

solving the key technology difficulty of the hydrogen safety. Furthmore, the fabrication of 

many other metal powders (for example, W, Mo powders, etc.) can be applied in the CS 

unit.  
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