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1. Introduction 

The correlation between transportation systems and adverse impacts on the natural 

environment have been investigated at different scales of observation (Kuitunen et al., 1998; 

Bouman et al., 1999; Corrales et al., 2000; Formann et al., 2003, Wheeler et al., 2005, Fletcher 

and Hutto, 2008). There is a growing body of literature reporting and quantifying the effects 

caused by transportation infrastructure on the proximate biophysical setting as shown in 

(Keller & Largiardèr, 2003) as well as on the socio-economic setting as shown in (Boarnet & 

Chalermpong, 2001). The environmental consequences of landscape fragmentation in different 

phases of transportation project development have been investigated and tabulated by 

(Corrales et al., 2000). However, the disparity of definitions for the biophysical landscape can 

make it difficult to communicate clearly and even more difficulty to establish consistent 

management policies. Landscape invariably comprises an area of land containing a mosaic of 

patches or land elements (McGarigal & Marks, 1995; Hilty et al., 2006). The overall knowledge-

base of transportation systems and methods to consider, minimize, and mitigate adverse 

impacts on natural systems and biophysical settings have gradually been absorbed and 

adopted by transportation and Environmental Impact Assessment (EIA) practitioners to 

design balanced engineering solutions and deliver transportation infrastructure in an 

environmentally responsible manner. The body of science and knowledge supporting 

practitioners has grown through in-depth reviews about transportation and ecological effects 

(Spellerberg, 1998; and Formann et al., 2003) Similarly, the knowledge base concerning the 

impacts of land use on travel behaviour is also being investigated and developed from the 

transportation perspective (Mokhtarian & Cao, 2008; Litman, 2008).  

Road development is a primary mechanism responsible for habitat, ecosystem, and overall 

biophysical fragmentation, replacing or modifying pre-existing land cover such as wetlands, 
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creating edge habitat and altering landscape structure and function (Saunders et al., 2002). 

While conserving the remaining natural environment as well as restoring environmentally 

impacted areas is vital for natural sustainability, transportation corridor development is 

required by society and results in our modern transportation infrastructure and travel 

patterns.  

Previous lessons learned show that environmental issues should be considered early the 

transportation planning process in order to balance economic, engineering and natural 

sustainability perspectives (Amekudzi & Meyer, 2006). A highway design that meets the 

transportation corridor needs, while minimizing environmental impacts, requires 

cooperation and compromise among different parties. It is a pressing challenge for 

researchers and practitioners to develop and validate novel methods for transportation 

planning that deliver streamlined planning approaches and improved environmental 

benefits beyond those possible through traditional approaches (Spellerberg, 1998; Stefanakis 

& Kavouras, 2002; Mongkut & Saengkhao, 2003; Huang et al., 2003; Gregory et al., 2005). 

The integration of transportation demand, current and long term development plans, and 

economic and ecological impacts in time-series scenarios by using land cover and land use 

analysis is a good way to provide promising results (Saunders et al. 2002; Forman & 

Alexander, 1998). The use of Multi-Criteria Decision Making (MCDM) as a decision-making 

framework for transportation infrastructure planning, which can accommodate, model, and 

combine varying stakeholder values and help to resolve conflicting opinions, is an area that 

has only been recently explored. Initial results offer significant promise to streamline the 

National Environmental Policy Act (NEPA) process (Nobrega et al., 2009).  

MCDM can facilitate the integration of different planning scenarios as well as the 

combination of different approaches for environmental sustainability in transportation 

planning. In modern transportation projects, considerations of both landscape analyses and 

natural-economic sustainability are mandatory under programs such as NEPA and similar 

state and local-level laws (Corrales et al., 2000). In 2003, Burnett and Blaschke demonstrated 

that advances in informatics and geographic information tools have made it possible to 

segment the complex environments supported by the ecological theory into factors that may 

be considered in a landscape analysis approach. Current reviews about geospatial landscape 

analysis in ecology reflect the relatively recent trend towards the use of remote sensing 

through object-based image analysis (Blaschke et al., 2001; Burnett & Blaschke, 2003; Aplin, 

2005). Geographic Object-Based Image Analysis (GEOBIA) employs polygons as bounding 

areas which delimit the landscape and enable data and image analyses that transcend 

traditional per-pixel approaches such as spectral-based analysis (Nobrega, 2007; Hay & 

Castilla, 2008). The use of object-based segments for landscape analysis enable the 

generation of a large number of parameters based not only on intrinsic values extracted 

from the polygons, but also extrinsic values computed from the geometry, texture, and 

context of the objects. This information can be used to form a classification decision 

hierarchy and provide results that may be combined with existing GIS information to offer 

significant and innovative results to benefit transportation planning and management and 

streamline the Environmental Analysis processes (Nobrega, 2007). 
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2. Background 

2.1. Watersheds as natural biophysical landscape segments 

Hydrological watersheds are natural subdivisions of the landscape and exercise influence 

on other natural and man-made features. Wetlands are among the most sensitive of 

natural features and are vital components of the habitat requiring protection from adverse 

impacts that may be caused by human development and infrastructure projects. Indeed, 

NEPA requires transportation planners to consider possible impacts on the hydrological 

system including stream crossings, flood plains, land cover, and wetlands as part of 

maintaining the ecological and biophysical balance within the local watersheds 

(Amekudzi & Meyer, 2006).  

This research describes the use of a collaborative, interactive, and iterative multi-scale 

approach to assess and rank hydrologically segmented features and wetlands to deliver 

enhanced understanding of how these biophysical systems are affected by transportation 

infrastructure projects. This chapter addresses a two-level object-based landscape analysis 

computed from hydrological sub-watersheds from Hydrologic Unit Code 12-level (HUC-

12), wetlands, and a subsegment of the proposed Interstate 269 (I-269, a proposed bypass 

around Memphis, Tennessee, in the southern United States of America) as major objects of 

interest. Firstly, parameters are extracted per watershed from percentage of wetlands, 

zoning, existing and current developments, and density of perennial and intermittent 

streams. Watersheds are ranked according the potential for risk on the natural environment, 

as described below. The watersheds are considered as primary objects in this hierarchical 

landscape analysis. After ranking these objects, the next step in the hierarchical analysis 

process is identifying and ranking wetlands based on potential for adverse impact. For each 

watershed, topographic analysis (computed from LiDAR elevation data) and computer-

assisted image interpretations are performed to enhance the delineation of the wetlands. 

Wetlands are analyzed according their distance from planned developments, planned roads 

and the I-269 corridor. 

It should be recognized that there are limitations inherent to geospatial data and their 

analysis within any research framework, and the practical implementation of innovative 

contributions for geospatial analysis depends upon properly designing and structuring 

approaches that may be implemented in a practical and feasible framework available in 

readily available GIS software. In this paper, a top-down GIS framework for landscape 

analysis is proposed using hydrological watersheds as reference objects for segmentation of 

the landscape. This segmentation facilitates the geographical analysis of biophysical 

subdivisions of the landscape based on a watershed approach to conduct contextual, 

geometrical, and hierarchical analysis. The overall idea is quite similar to standard 

approaches in object-oriented landscape analysis; however, the use of watersheds as a 

segmentation layer enables the analysis to consider biophysical subdivision as parts of 

transportation corridor planning and enables the use of output results in cumulative cost 

surfaces that may be employed to refine land use and corridor plans and improve agency 

coordination during the NEPA process. 
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2.2. Landscape analysis 

Landscapes are shaped by the interaction of social and ecological systems (Brunckhorst, 

2005). Current and future use of land, productivity and patterns of sustainability are 

continually modified by humans within the landscape in spatial scales across time in 

different magnitudes (Ono et al., 2005). For environmentally-focused transportation 

planning, eco-regions and hydrological watersheds are keys concepts that must be 

considered in landscape analysis. Understanding landscape and watershed characteristics, 

the geographic context of sensitive environmental resources, and the services provides by 

natural systems, is vital to providing balanced solutions for sustainable development amidst 

natural resources that face economic and social issues (Figure 1). Despite the similarity in 

some points of view between creating subdivisions of eco-regions and watersheds, a 

common misunderstanding of each of these landscape subdivision frameworks has resulted 

in inconsistency in their use and, ultimately, to ineffective application in addressing 

landscape analysis (Omernik & Bailey, 1997). 

 

Figure 1. Complex spheres of interaction reflecting human values, identity, and activities affecting 

landscape change (Brunckhorst, 2005). 

2.3. Geographic object-based analysis 

The traditional methods of classifying remote sensing data are based upon statistical and 

cluster-based classification of single pixels in a digital image (Lillesand & Kiefer, 2004). 

Recent research indicates that pixel based classification methods may be less than optimal in 

producing high-accuracy land use / land cover maps since they do not consider the spatial 

relationships of landscape features (Schiewe et al., 2001). For example, a significant 
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proportion of the reflectance recorded for a single pixel is derived from the land area 

immediately surrounding the pixel (Townshend et al., 2000). Analyzing at the polygon 

object scale enables imagery classification to move beyond this traditional problem. 

Contemporary object-based landscape analysis uses parameters derived from hierarchy, 

context and geometry of the image objects rather than pixel values. Despite a successful 

history with remote sensing, the accuracy of pixel-based image analysis can be 

compromised when applied to high resolution images (Nobrega, 2007).  

The development and practice of object-based classification has grown as have the variety 

of methods and approaches of incorporating spatial context into the classification process. 

Most object-based approaches compliment the axiom of landscape ecology; that it is 

preferable to work with a meaningful object representing the true spatial pattern rather 

than a single pixel (Blaschke et al., 2001). Furthermore, the development or use of objects 

(at one or multiple scales) is always an initial primary phase of the analysis which 

emphasizes capturing, extracting, or refining the size, shape, and distribution of features 

of interest. 

Object-based classification can be functionally decomposed into two major steps: 

segmentation and classification. In the segmentation step, relatively homogeneous image 

objects (polygons) are derived from both spectral and spatial information (Benz et al., 

2004). In the classification phase, image objects are labeled as to their class membership by 

using established classification algorithms, knowledge-based approaches, fuzzy 

classification membership degrees or a combination of classification methods (Civco et al., 

2002).  

The commercial software package, Trimble eCognition Developer (formerly Definiens 

Developer), has been well received as a tool for performing object-based classifications of 

land cover (an example list of scientific papers using eCognition for various land cover 

mapping tasks is available at http://www.ecognition.com/learn/resource-center/show-

more?type=Scientific%20Paper). For automated generation of segmentation objects, the 

application uses a region growing multi-scale segmentation algorithm for the delineation of 

image objects. The application also enables pre-existing spatial features to be used as objects 

within which segmentation may be constrained. eCognition provides two different 

classification methods that may be used separately or combined: a sample-based nearest 

neighbor classifier with fuzzy logic capabilities and a classifier that enables the development 

of hierarchic class-membership through a set of rule-based fuzzy logic membership 

functions.  

This chapter presents an implementation of constrained segmentation in which naturally 

occurring objects provide the initial basis for identifying relevant features on the landscape 

within which classification and analysis that implement GEOBIA theory are explored. No 

segmentation objects are computed, since the objects of interest (watersheds and wetlands) 

already exist, and segmentation statistics are generated for these areas and used in 

subsequent phases of analysis. The method combines intrinsic and extrinsic information 

extracted from the objects and the analyses are organized hierarchically. 
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2.4. Spatial MCDC-AHP in transportation planning 

Driven by the need to find a balanced solution among conflicting scenarios and because of 

the vast and growing availability of geospatial data, decision making theory has been 

explored by the environmental assessment community, including transportation planners.  

Multi-Criteria Decision Making is a systematic methodology to generate, rank, compare, 

and make a selection from multiple conflicting alternatives using disparate data sources and 

attributes (Gal et al., 1999; Nobrega et al., 2009). The applicability of MCDM is being 

extended to many different fields including GIS, which is capable of handling massive 

amounts of geospatial data. Analytical Hierarchy Process is a decision making approach 

introduced by (Saaty, 1994) based on pair-wise comparisons among criteria and factors in 

different hierarchical levels. AHP is presented as an effective technique for combining 

heuristic inputs from stakeholders to achieve a consensus-based decision. The technique 

allows competing agency expert views as well as stakeholder opinions to be considered 

quantitatively in a decision making approach (MacFarlane et al., 2008). In keeping with the 

spirit of NEPA, AHP does not pre-select any specific alternative; it exposes all potential 

alternatives to the analysis and selection process. 

AHP is robust and easily implemented in GIS for geospatial analysis. Results demonstrated 

in (Sadasivuni et al., 2009) and (Nobrega et al., 2009) showed that AHP can provide 

significant benefits in facilitating multi-criteria decision-making for planning. AHP is a tool 

useful for planning and can lead to stakeholder buy-in on planning approaches that 

consider resource allocation, benefit/cost analysis, the resolution of critical conflicts, and 

design and optimization. This chapter explores a practical application of spatial MCDM-

AHP for transportation planning. The solution presents a semi-automated approach based 

on an adaptation of Dr. Saaty’s theory. 

3. The study area: Initial processing 

The Interstate 69 is a proposed 1,600-mile long corridor that connects Canada to Mexico. The 

entire corridor is divided into 32 Segments of Independent Utility (SIU) for transportation 

planning and construction purposes. SIU-9 ranges from Millington, TN down to Hernando, 

MS, crossing the metropolitan area of Memphis, TN and reusing some existing roads such 

as I-55. However, a new I-269 bypassing the metropolitan Memphis, TN area to the east has 

been approved through an Environment Impact Statement (EIS) process and is entering the 

construction phase (Figure 2). The I-269 bypass is the test-bed for a series of research 

projects sponsored by the National Consortium for Remote Sensing in Transportation -

Streamlined Environmental and Planning Process- (NCRST-SEPP). This work is 

concentrated in Desoto County-MS, which is traversed by the designed I-269.  

The NCRST-SEPP project (http://www.ncrste.msstate.edu/) applied remote sensing technology 

and geospatial analysis to streamlining the EIS process for a specific on-the-ground 

transportation project. NCRST-SEPP research was designed to demonstrate the innovative 

application of commercial remote sensing and spatial information technologies in specific 
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environmental and planning tasks and activities, validating the use of those technologies by 

conducting rigorous comparison to traditional methods (Dumas et al., 2009). 

 

Figure 2. The route of the I-269 bypass including alternatives considered during the EIS process. The 

study extends along the I-269, in Desoto County, Mississippi, near Memphis-Tennessee. 

To make the proposed top-down watershed-wetlands framework analysis useful, this work 

utilized local geodata provided by Desoto County, MS, such as the transportation network, 

hydrographical data, LiDAR elevation data, zoning and the county comprehensive plan. A 

large collection of three-inch resolution aerial images provided support to enhance 

evaluation of wetland locations. Additionally, wetlands and hydric soil information 

extracted from satellite radar imagery were used to cover the lack of National Wetlands 

Inventory federal wetlands data for this specific area (Brooks et al., 2009). 

3.1. Overcoming the lack of NWI information in North Mississippi 

In our investigation of efficient methods to provide early assessment to wetlands potentially 

impacted by transportation corridors, we adopted existing findings of woody wetlands in 

North Mississippi. According to (Brooks et al., 2009), the motivation in improved methods 

of mapping forested (or “woody”) wetlands areas was two-fold: National Wetlands 

Inventory (NWI) digital mapping information of wetlands location is unavailable for 

approximately ¼ of the lower 48 U.S. States, including northwest Mississippi, based on the 

U.S. Fish and Wildlife Service NWI “Wetlands Online Mapper”; and forested wetlands are 
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very poorly mapped using traditional mapping methods including optical remote sensing 

(Sader et al., 1995; Bourgeau-Chavez et al., 2001). 

 

 

Figure 3. Availability of national wetland data (Modified from U.S. Fish and Wildlife Service, National 

Wetland Inventory, background image source: Google Earth.  

Given this data gap and problems with available traditional sources, we adopted the results 

described by (Brooks et al., 2009) that used a combination of radar remote sensing data with 

object-based techniques to compute potential woody wetlands and create a soil moisture 

index map for the NCRST-SEPP project (Figure 4). 

4. The top-down watershed-based landscape analysis 

The partition of the landscape into hydrological watersheds was a logical ecologically-

focused way to explore the context interactions between the natural and the man-made 

features. The methodology employed concepts of object-based geographical analysis to 

evaluate the level of landscape impact of the proposed transportation corridor scenarios. 

The focus on hydrological watersheds as principal objects made the main difference in 

comparison with the traditional object-oriented landscape analysis. Two levels of hierarchy 

were addressed in this work: 

1. Watersheds were identified and ranked according certain criteria as a significant 

percentage of unfavourable zoning, density of streams, wetlands and future man-made 

constructions. 

2. Wetlands identified and ranked for each watershed. This used topographical LiDAR 

data, image interpretation and the wetlands impacted by the designed I-269 corridor. 
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Figure 4. Potential woody wetlands product for the NCRST-SEPP I-269 study area.  

4.1. Defining objects in a hierarchical landscape analysis in GIS 

An I-269 area GIS was developed to improve the capabilities of geographical analysis by 

providing ways to access, process, store and disseminate large amounts of information in 

comparison with human tasks. The traditional GIS features (points, lines and polygons) enable 

a series of spatial operations as union, overlapping, intersection, etc. Some of these operations 

were used when integrating the watershed polygons and the landscape layers of information 

on the first level and when assessing and refining wetlands on the second level (Figure 5). 

4.2. Level I: Identification of watersheds 

The first step was the identification of the HUC-12 watersheds intersected by the part of the 

I-269 bypass that included alternative routes in the southeast part of the area located in 

northwest Mississippi. A simple spatial intersection operation highlighted ten watersheds as 

shown in Figure 6. 

Selecting the watersheds intersected by the I-269 corridor options area caused a significant 

reduction in the field study area and, consequently, the optimization of the data to be 

processed. Thus, the next step assessed the numerical criteria that enabled ranking the 

selected watersheds. At this point, the polygons of the 10 selected watersheds were 

intersected with other layers of information such as 100 year floodplain, hydrograph, 

existing roads and urban features, planed roads and developments and zoning in order to 

extract features to quantify the system. Figure 7 illustrates the layers used in this 

intersection. 



 
Application of Geographic Information Systems 10 

 

Figure 5. The basic workflow for the two levels of the hierarchical process.  

 

Figure 6. The HUC-12 watersheds intersected by the part I-269 analyzed in Desoto County-MS, which 

was the section with corridor options assessed as part of the EIS. 

In order to make straightforward the process, the zoning map in particular was previously 

reorganized into 5 classes: agriculture (green), residential (yellow), agriculture-residential 

(light green), commercial (red) and industrial (orange). Similarly, the maps of existing roads 

and existing buildings provided by Desoto County GIS Department were combined to 
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produce a density map that reflects the urbanized areas. These steps were necessary since no 

map of this kind was found to be available in existing GIS databases.  

 

Figure 7. Spatial intersections between the selected wetlands and the layers of interest to assess 

watershed characteristics to be used in the MCDM process. 

Aiming to simplify the decision making process, quite a few different impact factors were 

assigned to the layers of interest, ranging from 1 (low impact) to 9 (high impact). These 

values were hypothetical, but reflected the importance of the features due to the potential 

environmental impact upon existing wetlands. The percentage of covered areas was 

computed per watershed for the following GIS layers: watersheds, 100 year floodplain, dense 

urban, future developments, residential, agriculture, agriculture-residential, commercial and 
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industrial. Similarly, the density of linear features (km per Km2) was computed per 

watershed for the layers perennial streams, intermittent streams and planned roads. Table 1 

presents the relative values extracted per layer from the selected watersheds. These numbers 

were used to compute the ranking through the weighted average, as show in the Equation 1. 

          0Rank    A C E F H   3 * J   5 * B I   7 * K L   9 * D G   /  5                (1) 

 

 

Table 1. Relative values computed per layer per watershed (percentage of area and density of linear 

features) 

4.3. Level II: Identification of the wetlands 

Unlike the federal and small-scale geodata, local (large-scale or ground-level) geodata 

normally demand substantial time to be computed due to the high resolution and accuracy 

involved. Aerial images, high resolution satellite images and LiDAR are the most data 

intensive information in GIS in terms of storage and interpretation requirements. 

Minimizing computational efforts by analyzing the landscape, subdividing the geography 

into semi-homogeneous units, selecting units for further detailed analysis, and prioritizing 

areas of interest is key to reducing the geographic extent of the study, reducing the 

computational cost of the study, and supporting the top-down approach in geospatial 

analysis in which the analysis funnels options down into a reduced set of possible 

alternatives. 

Given the completion of Level I processing described, a series of GIS analyses using 

information extracted from the topographic surface, such as topographic depressions and 

flat areas, as well as image analysis such as land cover, provided enhanced inputs to refine 

wetlands feature geometry as well as classifications based on the radar-based wetland 

mapping results.  

The following processes were developed for the watershed #0, which is second in the 

ranking as shown in the results section (Figure 8); it serves as a representative example for 

more detailed examination in this chapter. The reason is that the top-ranked watershed 

covers a small area and is mostly composed by developed areas and does not present a large 
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variety of landscape features (including wetlands) to illustrate the exercise proposed in this 

work.  

The geospatial analysis was performed using map algebra, so features in vector formats 

were converted to raster format. Due to landscape analysis considerations and the potential 

implications of I-269 and planned roads, the layers of information selected in this level 

(Level II) emphasize the hydrographic and physical aspects, which are basis for engineering 

construction perspectives. 

 

Figure 8. The layers employed to refine and rank the wetlands per watershed. For display purposes, 

the impact factor ranges from green (low) to red (high). 

Table 2 presents the layers used to refine the wetlands features, their respective criteria for 

classification and the weight to be used on MCDM. Distance criteria and weights are 

hypothetical; however, they reflect the goal of the paper on assessing potential impacted 

wetlands.  
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LAYER CRITERIA WEIGHT 

Topographic depressions  5 

Flat terrain Slope equal or less than 5% 3 

Distance from perennial streams 0-100m, 100-300m, 300-1000m, > 1000m 5 

Distance from I-269 0-300m, 300-1500m, 1500-3000m, > 3000m 9 

Distance from planned roads 0-300m, 300-1500m, 1500-3000m, > 3000m 7 

Distance from planned develop. 0-300m, 300-1000m, 1000-3000m, > 3000m 7 

Table 2. Layers, criteria and weights used on level II analysis 

The weights are included in the multi-criteria decision tool as input rankings. The tool was 

developed as part of the SEPP-NCRST project and implemented based on Saaty’s AHP 

method (Figure 9). The normalized weights are used as factors in the map algebra equation 

that is responsible to produce the cumulative cost surface, where high "cost" would 

represent higher environmental impact. 

 

Figure 9. Multi-criteria decision making tool developed to compute normalized weights for the map 

algebra. 

5. Results 

5.1. Step 1 

For the selected watersheds, impact factors were used to calculate a first-level ranking for 

watershed and wetland areas impact ranking. Watersheds were ranked and are shown in table 

3 in relative order from highest of 15.6 (left-most) to lowest of 4.5 (right-most) on the table. 

 

Watershed ID 6 0 2 1 4 3 5 7 9 8 

Ranking 15.6 11.8 11.5 10.2 7.9 7.8 6.8 6 5.6 4.5 

Table 3. Computed ranking of potentially impacted wetlands intersected by I-269 in the analysis area 

5.2. Step 2 

For a selected watershed, shown in figure 10 as the watershed #0, the cumulative cost 

surface shows that impacts are greatest in the lower part of the watershed (Figure 11). In this 
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area, the amount of upland drained is highest; the floodplain is broader and the wetlands 

are more frequent as are areas of likely ponded water (surface depressions). Over and above 

the actual number of stream crossings or acres of wetland impacted by a proposed 

transportation system, this analysis step illustrates that the landscape and hydrologic 

context of the ecologic and hydrologic features impacted can be shown to play a significant 

role in assessing the overall impacts of a transportation project on the hydrologic and 

biophysical systems traversed. 

 

Figure 10. Potentially impacted watersheds intersected by the I-269 – Level I of proposed methodology. 

6. Discussions and contributions 

In addition to the landscape analysis and transportation planning issues, the results of this 

investigation showed that a top-down analytical framework based on GIS and MCDM offers 

value to the early assessment of potentially impacted areas affected by future transportation 

networks. The work was developed using a set of geospatial data ranging from federal to 

county, and were intentionally selected to be included in a multi-scale geographic object-based 

analysis. The hierarchical decision making framework supported the top-down approach 

through a simple customization of AHP in a GIS environment. The methods and rankings 

were hypothetically selected (and intentionally made simple) in order to encapsulate the idea 

and test the MCDM methodology for analysing the impacts of the I-269 study area. 

Indeed, in an actual implementation, the relative weights assigned to factors and the 

rankings associated with factor properties would be subject to alternative assignments of 

values which would produce results that could significantly depart from those presented 

and enable a rich evaluation of potential alternatives, including ones based on agency and 
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public inputs. The results presented show a single scenario to illustrate the process rather 

than an exhaustive exploration of possible scenarios which might arise from collecting a 

cross-section of objective and subjective values from stakeholders.  

 

Figure 11. Potential impacted wetland areas (red-orange) highlighted in the cumulative cost surface. 

The results demonstrate that the proposed top-down approach is a practical screening 

process valid to the early assessment and ranking of the impacted wetlands. 

Desoto County (MS) is an example of many areas that are not fully mapped or adequately 

covered by Federal mapping efforts such as the detailed county-based soil surveying program 

and state-based wetland inventories. Therefore, the methodology demonstrates that the 

complementary use of wetlands computed from radar-based remote sensing can be used to 

overcome gaps of in the National Wetlands Inventory (NWI) (Bourgeau-Chavez et al., 2009). 

Indeed, a specific benefit of using remote sensing data is that they can enable the identification 

of features of interest where ground-based observations or surface-mapped results are limited 

or absent. For this reason, it is important to highlight that NWI and other relevant data, such as 

soil survey GIS layers, are not available nation-wide in high detail. Thus, the methodology 

presented in this paper can be reproduced from environmental and landscape applications, in 

particular for areas where other map-based products are not available. 

The methods presented in this paper were intentionally simplified to highlight a set of 

framework approaches to help demonstrate the collection of technologies implemented, 

especially MCDM. Some concepts of geographic object-based analysis such as 
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neighbourhood relationships, contextual analysis, and others could be explored in more 

depth; however, such an effort would overshadow the desired explanation and synthesis of 

the more innovative characteristics highlighted in the methodology that focus on MCDM 

and AHP and their application to context-sensitive landscape analysis in the transportation 

planning and NEPA processes. Furthermore, it should be noted that the methods presented 

are both flexible and extensible. They may be adapted to other purposes, transferred to other 

geographic areas and transportation corridors, and extended to include additional data, 

steps, and analysis procedures. Follow-on studies are suggested to further explore the 

application and extension of the methods presented. 

7. Conclusion 

This chapter presents novel methods that leverage spatial implementation of MCDM-AHP 

in the integrated application of geospatial data to assist transportation decision making 

throughout the NEPA process. A significant finding is that advanced technologies in 

geographic object-based analysis can be used to partition the landscape into hydrological 

watersheds as a basis for context- and object-based analysis. The methodology employed 

object-based approaches to analyze the landscape and considered a plurality of data layers 

to derive ranking and weights for understanding the impacts of transportation 

infrastructure relative to the watershed as a whole as well as to the landscape position of 

possible transportation alignments within the watershed. The focus on hydrological 

watersheds as principal objects highlights an important difference in this new and 

innovative approach as compared to traditional environmental impact analysis.  

Watersheds provide subdivisions which are biophysically and ecologically focused, 

enabling the application of spatial analysis methods which explore the context-sensitive 

interactions between natural and man-made features in a landscape. The results indicate 

that the object-based analysis of landscape context and position can provide understanding 

and insight for assessing transportation corridor impacts on the environment and 

ecosystems that extend beyond traditional approaches which simply quantify the number of 

stream crossings and the areas of wetlands impacted. The results show that example 

hypothetical but reasonable values can be assigned to various landscape features and that 

these values may be considered in the context of spatially enabled MCDM-AHP. The 

hierarchical decision making framework implemented through top-down GIS-based 

analysis enabled the adoption of the segments of the landscape by hydrologic areas. The 

combination of data, methods and values per level delivers results significant to making 

decisions, assessing impacts, and designing mitigation strategies that are contextually 

aligned and indicate an environmentally responsible attitude and sustainable focus for 

anthropogenic impacts on the environment 
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