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1. Introduction

It is well known that the wave propagation depends mainly on its velocity and frequency
in one direction for a single wave[1-3]. There are many literatures devoted researches of
single wave propagation such as solitary wave, periodic wave, chirped wave, rational wave
etc [4-6]. However, what can be happen when two and even more waves with different
features propagate together along different directions? In the past decades, many methods
have been proposed for seeking two waves and multi-wave solutions to nonlinear models
in modern physics. Recently, some effective and straight methods have been proposed such
as homoclinic test approach(HTA)[7-8], extended homoclinic test approach(EHTA)[9-10] and
three wave method [11-12]. These methods were applied to many nonlinear models. Several
exact waves with different properties have been found out, such as periodic solitary wave,
breather solitary wave, breather homoclinic wave, breather heteroclinic wave, cross kink
wave, kinky kink wave, periodic kink wave, two-solitary wave, doubly periodic wave, doubly
breather solitary wave, and so on. Because of interaction between waves with different
features in propagation process of two-wave or multi-wave, some new phenomena have been
discovered and numerically simulated, for example, resonance and non resonance, fission
and fusion, bifurcation and deflexion etc. Furthermore, similar to the bifurcation theory of
differential dynamical system, constant equilibrium solution of nonlinear evolution equation
and propagation velocity of a wave as parameters are introduced to original equation, and
then by using the small perturbation of parameter at a special value, two-wave or multi-wave
propagation occurs new spatiotemporal change such as bifurcation of breather multi-soliton,
periodic bifurcation and soliton degeneracy and so on.

This chapter mainly focus on explanation of different test methods and comprehensive
applications to two-wave or multi-wave propagation. New methods will be described
such as HTA, EHTA, Three-wave method and parameter small perturbation method. The
spatiotemporal variety in exact two-wave and multi-wave propagation will be investigated
and numerically simulated. In this chapter, some important models such as shallow
water wave propagation models under the transverse long-wave disturbance Potential
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Kadomtsev-Petviashvili equation [13-17], Kadomtsev-Petviashvili [18-27] equation, and
specially, Kadomtsev-Petviashvili with positive dispersion equation are considered. Applied
new methods to these equations, some new two-wave and multi-wave are obtained and
spatiotemporal variety in multi-wave propagation is investigated and numerically simulated.

This chapter consists of four sections. In section 1, we introduce some methods including
homoclinic test approach (HTA), extended homoclinic test approach(EHTA), three-wave
method and parameter small perturbation method. In section 2, we consider the
potential Kadomtsev-Petviashvili equation and investigate the exact periodic kink-wave and
degeneracy of soliton. In section 3, we consider the Kadomtsev-Petviashvili equation and
investigate periodic bifurcation, deflexion of two solitary waves. In section 4, we consider the
Kadomtsev-Petviashvili equation with positive dispersion. By using three-wave method, we
obtain some breather kinds of multi-solitary wave solutions, and investigate the fission and
fusion of multi-wave.

2. Some methods for seeking two-wave and multi-wave

2.1. Homoclinic test approach

Consider a (2+1) dimensional nonlinear evolution equation of the general form

F(u, ut, ux, uy, · · · ) = 0 (1)

where F is a polynomial of u(x, y, t) and its derivatives, t represents time variable and x, y
represent spatial variables. Assume that there exists a transformation of unknown function
such that Eq.(1) becomes a bilinear equation in the following form

G(Dt, Dx, Dy, · · · ) f · f = 0 (2)

where G is a general polynomial in Dt, Dx, Dy, · · · , where the Hirota’s bilinear operator
D-operator is defined by[2]

Dm
x Dn

t f (x, t) · g(x, t) = ( ∂
∂x − ∂

∂x′ )m( ∂
∂t − ∂

∂t′
)n[ f (x, t)g(x′, t′)]|x′=x,t′=t (3)

Traditionally, one obtains two solition solutions with the assumption

f = 1 + eη1 + eη2 + deη1+η2 (4)

where d is a constant, η1 = k1x + l1y + c1t, η2 = k2x + l2y + c2t, and kj, lj, cj, j = 1, 2 are real

numbers. If we treat k1 and k2 as complex numbers by taking k1 = −k2 = ik, i2 = −1 and
assuming l1 = l2 = l and c1 = c2 = c, Eq.(4) can be convert into the following form

f = 1 + cos(kx)ely+ct + de2ly+2ct (5)

In order to get more forms solution of Eq.(1), we use a more general Ansätz which contains
complete variables of Eq.(2) replacing Eq.(5):

f = 1 + cos(η1)e
η2 + de2η2 (6)

where
η1 = k1x + l1y + c1t
η2 = k2x + l2y + c2t

(7)
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where all of d, kj, lj, cj, j = 1, 2 may be real numbers or complex numbers. This process is
similar to the procedure that one can obtain the homoclinic orbit of the defocusing nonlinear
Schrödinger equation from its dark-hole soliton solutions[1]. As a result, we call this skill as
"Homoclinic test approach".

To derive analytic expression, we can take the following procedure in detail: inserting Eq.(6)
into Eq.(2), then equating the coefficients of the same kind terms to zero, subsequently, solving
the resulting algebraic equations to determine the relationship between variables k j, lj, j =
1, 2, · · · with the help of symbolic computation software such as Maple. In Eq.(7), noting the
cos functions is meaningful because we often take into account periodic effect in real physical
background. Indeed, we can observe this solution is periodic breathing from their profile.

2.2. Extended homoclinic test approach

After substituting Eq.(6) into Eq.(2), we can get that whether the Eq.(2) has the nonzero
solution. Furthermore, we do some mathematical simplicity. Rewrite Eq.(6) as follows:

f = eη2 (e−η2 + cos(η1) + deη2 ) (8)

or

f = eη2 [
√

d cosh(η2 + ln(
√

d)) + cos(η1)] (9)

We replace Eq.(9) with

f =
√

d cosh(η2 + ln(
√

d)) + b1 cos(η1) (10)

where b1, d are constants. Now, factoring out the exponentials produces: Exploiting this
Ansätz to obtain the new solutions of nonlinear evolution equation is called "Extended
Homoclinic test approach". To derive analytic expression, we can take the following procedure
in detail: inserting Eq.(10) into Eq.(2), then equating the coefficients of the same kind terms
to zero, subsequently, solving the resulting algebraic equations to determine the relationship
between variables kj, lj, j = 1, 2, · · · with the help of symbolic computation software such as
Maple.

2.3. Three-wave method

Multi-wave solutions are important because they reveal the interactions between the
inner-waves and the various frequency and velocity components. The whole multi-wave
solution, for instance, may sometimes be converted into a single soliton of very high
energy that propagates over large regions of space without dispersing and an extremely
destructive wave is therefore produced of which the tsunami is a good example. Since
all double-wave solutions can be found by using the exp-function method proposed by Fu
and Dai [18], we propose an extension of the three-soliton method [6] in this section (called
the three-wave method) for finding coupled wave solutions. Consider a high dimensional
nonlinear evolution equation of the general form

F(u, ut, ux, uy, uz, uxx, · · · ) = 0 (11)

where u = u(x, y, z, t) and F is a polynomial u of and its derivatives, t represents time variable
and x, y, z represent spatial variables. The three-wave method operates as follows.
Step 1: By Painleve analysis, a transformation

u = T( f ) (12)
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is made for some new and unknown function f .
Step 2: Convert Eq. (11) into Hirota bilinear form:

H(Dt, Dx , Dy, Dz, · · · ) f · f = 0 (13)

where D is identical to the Eq.(3).
Step 3: Traditionally, we taking the following Ansätz to obtain the three soliton solution

f = 1 + eξ1 + eξ2 + eξ3 + a12eξ1+ξ2 + a13eξ1+ξ3 + a23eξ2+ξ3 + a123eξ1+ξ2+ξ3 (14)

where
ξ j = ajx + bjy + cjz + djt, j = 1, 2, 3 (15)

a13, a23, a123 are the constants. Eq.(14) can be rewritten as

f = e
η1
2 (e−η1 + eη2 + eη3 + eη4 + a12eη4 + a13eη3 + a23e−η2 + a123eη1 ) (16)

where

η1 = ξ1+ξ2+ξ3

2 , η2 = ξ1−ξ2−ξ3

2 , η3 = −ξ1+ξ2−ξ3

2 , η4 = −ξ1−ξ2+ξ3

2
(17)

Thus, this three soliton Ansätz contains four variables η1, η2, η3 and η4. Here, we treat it in

a different way. We factor out the e
η1
2 in Eq.(16) and decrease the numbers of variables to

three terms. On the other hand, we set some parameters in a complex way. At last, the above
analysis allows us to construct the following assumptions:

f = e−ξ1 + δ1 cos(ξ2) + δ2 cosh(ξ3) + δ3eξ1 (18)

or
f = e−ξ1 + δ1 cos(ξ2) + δ2 sinh(ξ3) + δ3eξ1 (19)

where δj , j = 1, 2, 3 are constants. In fact, from Eq.(18) or Eq.(19), it is easily seen that it
only contains three wave variables. As a result, we call this method "three wave method".
It is obvious that three-wave method is the extension and improvement of the traditional
three-soliton method.

Step 4: Substitute Eq.(18) (or Eq.(19)) into Eq.(13), and collect the coefficients of e−ξ1 , eξ1 ,
sin(ξ2), cos(ξ2), cosh(ξ3) and sinh(ξ3). Then equate the coefficients of these terms to zero and
obtain a set of over-determined algebraic equations in aj, bj, cj and dj, j = 1, 2, 3.
Step 5: Solve the set of algebraic equations in Step 4 using Maple and solve for aj, bj, cj, dj and
δj , j = 1, 2, 3.

Step 6: Substituting the identified values into Eq.(12) and Eq.(13). Thus, we can deduce the
exact multi-wave solutions of Eq.(11).

2.4. Introducing parameters and small perturbation method

In this section, we still consider a high dimensional nonlinear evolution equation of the
general form

F(u, ut, ux, uy, uz, uxx, · · · ) = 0 (20)

where u = u(x, y, z, t) and F is a polynomial u of and its derivatives, t represents time variable
and x, y, z represent spatial variables. Here, we introduce a parameter to Eq.(20) in two ways.

108 Wave Processes in Classical and New Solids
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(i). Initial solution as a parameter is introduced to Eq.(20). We assume that the u0 is an initial
solution of Eq.(20), then we use the transformation

u = u0 + T( f ) (21)

to convert nonlinear evolution equation (20) into Hirota bilinear form which contains the small
perturbation parameters u0 :

H(u0, Dt , Dx, Dy, Dz, · · · ) f · f = 0 (22)

where D is also the Hirota D-operator. The next step is to exploit the existent method to
solving the Eq.(22). The perturbation parameter u0 plays an important role to the resulting
solution, where the spatiotemporal feature in multi-wave propagation including velocity and
direction even the shape will change as u0 makes small perturbation.

(ii). The velocity of a wave variable as a parameter is introduced to Eq.(20). We can assume
that ξ = z − αt in Eq.(20), where ξ is a new wave variable and α is its velocity. Then Eq.(20)
can be became to

F1(u, α, uξ , ux, uy, uxx, · · · ) = 0 (23)

Then solving Eq.(23). In this case, the spatiotemporal feature in multi-wave propagation for
Eq.(20) may happen outstanding change as α makes a small perturbation.

3. Potential Kadomtsev-Petviashvili equation

Potential Kadomtsev-Petviashvili (PKP) equation studied in this section is described as

uxt + 6uxuxx + uxxxx + uyy = 0 (24)

where u : Rx × Ry × R+
t → R. It is well known that the PKP equation arose in number

of remarkable non-linear problems both in physics and mathematics, the solutions of PKP
equation have been studied extensively in various aspects. By applying various methods and
techniques to PKP equation, exact traveling wave solutions, linearly solitary wave solutions,

soliton-like solutions and some numerical solutions have been obtained[1-3,5-7]. Recently,
two soliton and periodic soliton solutions were presented, resonance and non-resonance
interactions between periodic soliton and different line solitons were investigated[6].

In this section, we use homoclinic test method and extended homoclinic test technique to
seek periodic soliton solution, exact periodic kink-wave solution, periodic soliton solution
and doubly periodic solution of PKP equation. Furthermore, it is explicitly exhibited that the
feature of solution is different varying with direction of wave propagation on the x -axis,
periodic soliton is degenerated into doubly periodic wave when the direction of a wave
propagation changes from progressing to the left into right.

3.1. Degenerative periodic solitary wave

In this section, the periodic solition solution is constructed by homoclinic test technique and
bilinear form method and the degeneracy of solitary wave is investigated.
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Setting ξ = x − αt in Eq.(24) yields

uyy − αuξξ + 6uξuξξ + uξξξξ = 0 (25)

where α is a wave velocity. Let u = (ln F)ξ , then Eq.(25) can be reduced into the following
bilinear form

[D2
y − αD2

ξ + D4
ξ − A]F · F = 0 (26)

where A is an integration constant, Dm
x Dk

t is defined in Eq.(3). With regard to Eq.(26), using
the homoclinic test technique, we can seek the solution in the form

F = 1 + b1(e
ipξ + e−ipξ)eΩy+γ + b2e2Ωy+2γ (27)

where A, p, Ω, γ, b1 and b2 are all real to be determined below.

Substituting Eq.(27) into Eq.(26) yields the exact solution of Eq.(24) in the form

u =
−2b1peΩy+γ sin(pξ)

1 + 2b1 cos(pξ)eΩy+γ + b2e2Ωy+2γ
(28)

where parameters A, b1, b2, Ω, p and γ satisfy dispersive relations

A = 0 Ω
2 = −p4 − αp2 b2

1 =
Ω

2b2

Ω2 − 3p4
(29)

Obviously, α < 0 is required so that the conditions Ω
2
> 0, b2

1 > 0 and 0 < p2
< −α can

be satisfied. Taking ξ = x − αt, b2 = 1, γ = 0 in Eq.(28), then b1 =
√

Ω2

Ω2−3p4 > 1, the exact

solution to PKP equation can be expressed as

u =
−b1p sin(p(x − αt))

b1 cos(p(x − αt)) + cosh(Ωy)
(30)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α < 0

0 < p2
< − α

4
Ω

2 = −p4 − αp2

b2
1 = Ω

2

Ω2−3p4

(31)

Here, we choice 0 < p2
< − α

4 such that b2
1 > 0, then Eq.(30) is the periodic soliton solution of

PKP equation which is a periodic traveling wave progressing to the left with velocity |α| on
the x-axis, and meanwhile is a soliton on the y-axis (see Fig.1).

Making a variable transformation ξ = x − αt, η = iy in Eq.(24), then it can be transformed into
the following form

uηη − (−α)uξξ − 6uξ uξξ − uξξξξ = 0 (32)

Letting u = (ln F)ξ , being similar to the way of dealing with PKP equation in above, we take

F = 1 + b3(e
ip1ξ + e−ip1ξ)eΩ1η+γ1 + b4e2Ω1η+2γ1

110 Wave Processes in Classical and New Solids
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Figure 1. The periodic soliton solution which is a periodic wave progressing to the left with velocity
|α| > 0 on the x-axis ,and meanwhile is a soliton on the y-axis

By computing, the exact solution of Eq.(32) is given by

u = − 2b3 p1 sin(p1ξ)eΩ1η+γ1

1 + 2b3 cos(p1ξ)eΩ1η+γ1 + b4e2Ω1η+2γ1
(33)

where parameters b3, b4, Ω1, p1 satisfy following dispersive relations

Ω
2
1 = p4

1 + αp2
1 b2

3 =
Ω

2
1b4

Ω2
1 + 3p4

1

(34)

We can see that Ω
2
1 ≥ 0 always holds for every real p1 as long as α ≥ 0.

Taking ξ = x − αt, η = iy in Eq.(33), the exact solution to PKP equation (α ≥ 0) is expressed
as

u = − 2b3 p sin(p1(x − αt))

2b3 cos(p1(x − αt)) + (e−iΩ1y−γ1 + b4eiΩ1y+γ1)
(35)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α ≥ 0, p2
1 ≥ 0

Ω
2
1 = p4

1 + αp2
1

b2
3 =

Ω
2
1b4

Ω2
1+3p4

1

(36)

In particularly, taking γ1 = 0, b4 = 1 in Eq.(35) yields

u = − b3p1 sin(p1(x − αt))

b3 cos(p1(x − αt)) + cos (Ω1y)
(37)

Obviously, both cos p1(x − αt) and cos(Ω1y) are periodic, so the solution given by Eq.(37) is
an doubly periodic solution which is a periodic traveling wave progressing to the right with
velocity α on the x-axis, and meanwhile is a periodic standing wave on the y-axis (see Fig.2).

It is important that we can take the same p and p1 such that p2 = p2
1 = | α

k | = p2
0 in Eq.(30)

and Eq.(37) from the constraint condition Eq.(31) and Eq.(36) respectively, where k > 4 is an
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Figure 2. The doubly periodic solution which is a periodic wave progressing to the right with velocity α

on the x-axis, and meanwhile is a periodic standing wave on the y-axis.

arbitrary real number. Therefore, we obtain a periodic soliton solution and an doubly periodic
solution which have the same period with x-direction as follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u =
−b1p0 sin(p0(x − αt))

b1 cos(p0(x − αt)) + cosh(Ωy)
, α < 0

u = − b3p0 sin(p0(x − αt))

b3 cos(p0(x − αt)) + cos (Ω1y)
, α ≥ 0

(38)

It is easy to find that the feature of solution of Eq.(24) is different from Eq.(38) on the arbitrary
small neighborhood of velocity α = 0. There exists a periodic soliton solution which is a
periodic with x-direction, and a soliton with y-direction as well as α < 0. When α ≥ 0,
this periodic soliton degenerates into a doubly periodic wave which are periodic with both
x-direction and y-direction. However, period with x-direction is preserved identically.

3.2. Exact periodic kink-wave solution

In this section, a new type of periodic kink-wave solution for PKP equation is obtained using
extended homoclinic test technique.

Taking a transformation
u = (ln F)x (39)

Then Eq.(24) can be transformed as

[D2
y + DxDt + D4

x]F · F = 0 (40)

In this case, we let

F = e−Ω(x+αt)−βy + b1 cos(p(x − αt) + βy) + b2eΩ(x+αt) (41)

Following the procedure of extended homoclinic test technique, we derive the periodic
kink-wave solution of PKP equation(see Fig.3)

u =
p[−e−p(x+11p2t) − b1 sin(p(x − 11p2t ± 3py)) +

b2
1

20 ep(x+11p2t)]

e−p(x+11p2t) + b1 cos(p(x − 11p2t ± 3py)) +
b2

1
20 ep(x+11p2t)

(42)

112 Wave Processes in Classical and New Solids



Spatio-Temporal Feature in Two-Wave and Multi-Wave Propagations 9

-2

0

2
x

-2

0

2

y

u

-2

0

2
x

Figure 3. The periodic kink-wave solution

It can be rewritten as

u =
p[ b1

2
√

5
ep(x+11p2t) − 2

√
5 sin(p(x − 11p2t ± 3py))− 2

√
5

b1
e−p(x+11p2t)]

b1

2
√

5
ep(x+11p2t) + 2

√
5 cos(p(x − 11p2t ± 3py)) + 2

√
5

b1
e−p(x+11p2t)

(43)

Specially, taking b1 = 2
√

5k and γ = ln k, k > 1, yields a periodic kink solution as follows

u(x, y, t) =
p[2 sinh(p(x + 11p2t) + γ)− sin(p(x ± 3py − 11p2t))]

2 cosh(p(x + 11p2t) + γ) + cos(p(x ± 3py − 11p2t))
(44)

It shows a periodic kink-wave whose speed is 11p2 and period is 2π/3p of space variable y. It
exhibits elastic interaction between a solitary wave and periodic wave with the same speed in
opposed direction each other. It is an interesting phenomenon in fluid mechanics (see Fig.3).

4. Kadomtsev-Petviashvili equation

The (2+1)-dimensional (two spatial and one temporal) generalization of Korteweg-de Vries
equation (KdV) was given by Kadomtsev and Petviashvili to discuss the stability of
(1+1)-dimensional soliton to the transverse long-wave disturbances, which is known as KP
equation or the (2+1)-dimensional KdV equation. There are two distinct versions of KP
equation, which can be written in normalized form as follows[4]:

ut − 3(u2)x − uxxx + s2∂−1
x uyy = 0 (∗)

with the operator ∂−1
x defined by

∂−1
x f (x) =

∫ x

−∞

f (ξ)dξ

The propagation property of solitons depends essentially on the sign of s2 in equation. The
coefficient is defined as follows: s = ±i, i2 = −1 for negative dispersion and s = ±1
for positive dispersion. Here u = u(x, y, t) is a scalar function, x and y are respectively
the longitudinal and transverse spatial coordinates, the subscripts x, y, t denote partial
derivatives. When s = ±i, it is usually called KPI, while for s = ±1, it is called KPII. KP
equation is the natural generalization of the well known KdV equation (ut − 6uux − uxxx = 0)

113Spatio-Temporal Feature in Two-Wave and Multi-Wave Propagations
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from one to two spatial dimensions. It arises naturally in many other applications, particularly
in plasma physics, gas dynamics, and elsewhere. Both KPI and KPII are exactly integrable
via the Inverse Scattering Transformation. Kadomtsev and Petviashvili have shown that the
line soliton of the KP equation is unstable in the case of positive dispersion and is stable for
the negative dispersion[3,22]. The solutions of KP equation have been studied extensively in
various aspects. The inclined periodic soliton solution and the lattice soliton solution were
expressed as exact imbricate series of rational soliton solutions to KP equation with positive
dispersion[22]. Resonant interaction of two-soliton among three obliquely oriented solitons
in higher dimension was first studied by Miles[26]. Y.Kodama and Dai have proved that the
KP equation provides line solitons in shallow water and these solitons can be of resonance[7,
27].

In this section, spatial-temporal bifurcation for KP equation is considered, several types
of exact solutions to KP equation were constructed by bilinear form and homoclinic test
approach. It is explicitly analyzed that the feature of the solitary wave is different on the
both sides of equilibrium solution u0 = − 1

6 , which is a unique periodic bifurcation point
for KPI and deflexion point of soliton for KPII. As for KPI, when the equilibrium u0 varies
from one side of − 1

6 to another side, two-solitary wave changes into doubly periodic wave.
Whereas, the y-periodic solitary wave changes into x − t-periodic solitary wave for KPII, the
propagation direction of periodic solitary wave occurs outstanding deflexion. In addition,
some new type of multi-wave solutions are obtained using three-wave method.

4.1. Spatiotemporal bifurcation and deflexion of the soliton

Kadomtsev-Petviashvili (KP) equation in normalized variable u(x, y, t) reads

uxt − uxxxx − 3(u2)xx − s2uyy = 0 (45)

where u : Rx × Ry × Rt → R. It is easily to note that u = u0 is an equilibrium solution of KP
equation, where u0 is an arbitrary constant.

Now, we consider KPI equation

uxt − uxxxx − 3(u2)xx − uyy = 0 (46)

Setting ξ = i(x − t) gives

uyy − uξξ − 3(u2)ξξ + uξξξξ = 0 (47)

Let u = u0 − 2(ln F)ξξ , Eq.(46) can be transformed into the following bilinear form

[D2
y − (1 + 6u0)D

2
ξ + D4

ξ − A]F · F = 0 (48)

Using "homoclinic test technique", we are going to seek the solution of the form

F = 1 + b1(e
ipξ + e−ipξ)eΩy+γ + b2e2Ωy+2γ (49)

where A, p, Ω, γ, b1 and b2 are all real.

Substituting Eq.(49) into Eq.(48) with Eq.(47) yields the exact solution of Eq.(47) of the form

u = u0 +
2p2[4b2

1 + b1(e
ipξ + e−ipξ)(b2eΩy+γ + e−Ωy−γ)]

[b1(e
ipξ + e−ipξ) + (b2eΩy+γ + e−Ωy−γ)]2

(50)
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where parameters satisfy

A = 0 Ω
2 = −p4 − (1 + 6u0)p2 b2

1 =
Ω

2b2

Ω2 − 3p4
(51)

It is obviously that u0 < − 1
6 is required so that the conditions Ω

2
> 0, b2

1 > 0 and p2
< − 1+6u0

4
can be satisfied and u0 is a free parameter.

In Eq.(50), taking ξ = i(x − t), we obtain the two-soliton solution of KPI equation (see Fig.4)

u1(x, y, t) = u0 +
2p2[4b2

1 + b1(e
p(x−t) + e−p(x−t))(b2eΩy+γ + e−Ωy−γ)]

[b1(e
p(x−t)+ e−p(x−t)) + (b2eΩy+γ + e−Ωy−γ)]2

(52)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u0 < − 1
6

p2
< − 1+6u0

4

Ω
2 = −p4 − (1 + 6u0)p2

b2
1 = Ω

2b2

Ω2−3p4

(53)
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Figure 4. The two-soliton solution for KPI equation as u0 = − 1
4

KPII equation is given by

uxt − uxxxx − 3(u2)xx + uyy = 0 (54)

Making a variable transformation ξ = x − t in Eq.(54), it can be transformed into the following
form

uyy − uξξ − 3(u2)ξξ − uξξξξ = 0 (55)

Letting u = u0 + 2(ln F)ξξ and using a similar way dealing with KPI, we take

F = 1 + b1(e
ipξ + e−ipξ)eΩy+γ + b2e2Ωy+2γ

By computing, the exact solution of Eq.(55) is given by

u = u0 −
2p2[4b2

1 + b1(e
ipξ + e−ipξ)(b2eΩy+γ + e−Ωy−γ)]

[b1(e
ipξ + e−ipξ) + (b2eΩy+γ + e−Ωy−γ)]2

(56)
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where parameters satisfy

Ω
2 = p4 − (1 + 6u0)p2 b2

1 =
Ω

2b2

Ω2 + 3p4
(57)

It is easily to see that u0 ≥ − 1
6 is available as long as p2 ≥ 1 + 6u0.

Taking ξ = x − t into Eq.(56), the exact solution to KPII equation is expressed as

u2(x, y, t) = u0 −
2p2[4b2

1 + b1cos(p(x − t))(b2eΩy+γ + e−Ωy−γ)]

[b1cos(p(x − t) + (b2eΩy+γ + e−Ωy−γ)]2
(58)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u0 ≥ − 1
6

p2 ≥ 1 + 6u0

Ω
2 = p4 − (1 + 6u0)p2

b2
1 = Ω

2b2

Ω2+3p4

(59)

Obviously, cos p(x − t) is periodic, so the solution given by Eq.(58) is a periodic soliton
solution with x − t-direction (see Fig.5).
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Figure 5. The x − t-periodic soliton solution for KPII equation as u0 = − 1
8

Comparing Eq.(47) with Eq.(55), it is easily to find that the Eq.(47) may be changed into Eq.(55)
and vice versa by using the temporal and spatial transformation (ξ, y) → (iξ, iy). Because the
solutions of KP equation are real functions, it is naturally to take specially b2 = 1, γ = 0.
Making variable transformation ξ → iξ, y → iy, i2 = −1 in Eq.(50) and Eq.(56) yields

u3(x, y, t) = u0 −
2p2[b2

1 + b1 cos(p(x − t)) cos(Ωy)]

[b1 cos(p(x − t)) + cos(Ωy)]2
(60)

It is noted that the solution given by Eq.(59) is a singular periodic solution to KPI equation. In
order to avoid the singularity, we set cos(p(x − t)) > 0 and cos(Ωy) > 0 (see Fig.6).

Besides, the y-periodic soliton solution to KPII is also given by

u4(x, y, t) = u0 +
2p2[4b2

1 + b1(e
p(x−t) + e−p(x−t))(eiΩy + e−iΩy)]

[b1(e
p(x−t)+ e−p(x−t)) + (eiΩy + e−iΩy)]2

(61)
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Figure 6. (a) The doubly periodic solution for KPI equation with x − t direction as u0 = − 1
8

(b) The doubly periodic solution for KPI equation with y direction as u0 = − 1
8

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u0 < − 1
6

p2
< − 1+6u0

4
Ω

2 = −p4 − (1 + 6u0)p2

b2
1 = Ω

2b2

Ω2−3p4

(62)

The solution given by Eq.(60) represents periodic soliton with y-direction (see Fig.7).
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Figure 7. The y-periodic soliton solution for KPII equation as u0 = − 1
4

According to above discussion, we get that u0 = − 1
6 is a unique periodic bifurcation point for

KPI and deflexion of soliton for KPII. Around the both sides at u0, the property of solutions
to KPI and KPII is all changed. As for KPI, when the equilibrium u0 varies from one side
of − 1

6 to another side, two-soliton solution changes into doubly periodic solution. Whereas,
the y-periodic soliton changes into x-periodic soliton for KPII. The double-soliton waves and
doubly periodic soliton waves of KPI, periodic soliton waves on different spatial variable of
KPII are interchanged around u0.

4.2. Exact multi-wave solution

Let
u = 2(ln f )xx (63)
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in Eq.(45), where f = f (x, y, t) is an unknown real function. Substituting Eq.(63) into Eq.(45),
we can reduce Eq.(45) into the bilinear form

(DxDt − D4
x − p2D2

y) f · f = 0 (64)

In order to obtain three wave solution of KP equation, we provide that

f = cos(γ1) + a−1 exp(−δ1) + a1 exp(δ1) + a2 sinh(ξ1) (65)

where γ1 = p1(x − α1t), δ1 = p3(x + β3y + α3t) and ξ1 = p2(x + β2y + α2t). Substituting
Eq.(65) into Eq.(64)and equating the coefficients of all powers of sinh(ξ1), cos(γ1), sinh(ξ1),
exp(δ1), sinh(ξ1) exp(−δ1), cosh(ξ1), sin(γ1), cosh(ξ1) exp(δ1), cosh(ξ1) exp(−δ1), sin(γ1)
exp(δ1), sin(γ1) exp(−δ1), cos(γ1) exp(δ1), cos(γ1) exp(−δ1) to zero, we can obtain a set of
algebraic equations for a−1, a2, a1, α1, α2, α3, β2, β3, p1, p2 and p3, then by solving these set
of algebraic equations and let p1 = p2, we obtain the breather two-solitary wave (three wave)
solution of KPI as follows:

u1(x, y, t) = 2(
a2
√

a1a−1((A1 − p1)
2 sinh(δ2 + ξ2)− (A1 + p1)

2 sinh(δ2 − ξ2))

(cos(γ2) + 2
√

a1a−1 cosh(δ2) + a2 sinh(ξ2))2

+
4a1a−1 A2

1 − a2
2 p2

1 + 2
√

a1a−1(A2
1 − p2

1) cosh(δ2) cos(γ2)

(cos(γ2) + 2
√

a1a−1 cosh(δ2) + a2 sinh(ξ2))2

+
2p1(a2 p1 cosh(ξ2) + 2

√
a1a−1 A1 sinh(δ2)) sin(γ2)− p2

1

(cos(γ2) + 2
√

a1a−1 cosh(δ2) + a2 sinh(ξ2))2
)

where

a1a−1 > 0, θ1 = ln(

√

a1

a−1
), γ2 = p1(x − C1t)

δ2 = A1(x + D1y + B1t) + θ1, ξ2 = p1(x + β2y + C1t)

A1 =

√

2p2
1β2

2 + 12p4
1

β2
, B1 = − (4p2

1 + β2
2)β2

2 + 96p4
1

2β2
2

C1 = − 4p2
1 − β2

2

2
, D1 = − 12p4

1 − β2
2

2β2

Here, a−1, a2, p1 and β2 are free parameters.

In the case of a1a−1 < 0, the breather two-solitary wave solution of KPI can be expressed as

u2(x, y, t) = 2(
a2
√

γ((A1 − p1)
2 cosh(δ2 + ξ2)− (A1 + p1)

2 cosh(δ2 − ξ2)) + 4γA2
1 − a2

2 p2
1

(cos(γ2) +
√

γ sinh(δ2) + a2 sinh(ξ2))2

+
2
√

γ(A2
1 − p2

1) sinh(δ2) cos(γ2) + 2p1(a2 p1 cosh(ξ2) + 2
√

γA1 cosh(δ2)) sin(γ2)− p2
1

(cos(γ2) +
√

γ sinh(δ2) + a2 sinh(ξ2))2
)

where γ = −a1a−1.
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Similarity, the breather two-solitary wave solutions of KPII equation also obtained as follows

u3(x, y, t) = 2(
a2
√

a1a−1((A2 − p1)
2 sinh(δ3 + ξ3)− (A2 + p1)

2 sinh(δ3 − ξ3))

(cos(γ3) + 2
√

a1a−1 cosh(δ3) + a2 sinh(ξ3))2

+
a1a−1 A2

2 − a2
2 p2

1 + 2
√

a1a−1(A2
2 − p2

1) cosh(δ3) cos(γ3)

(cos(γ3) + 2
√

a1a−1 cosh(δ3) + a2 sinh(ξ3))2

+
2p1(a2 p1 cosh(ξ3) + 2

√
a1a−1 A2 sinh(δ3)) sin(γ3)− p2

1

(cos(γ3) + 2
√

a1a−1 cosh(δ3) + a2 sinh(ξ3))2
)

where γ3 = p1(x − C2t), δ3 = A2(x + D2y + B2t) + θ3 and ξ3 = p1(x + β2y + C2t) as a1a−1 >

0. Here

A2 =

√

2p2
1β2

2 − 12p4
1

β2
, B2 = − (β2

2 − 4p2
1)β2

2 + 96p4
1

2β2
2

, C2 = − 4p2
1 + β2

2

2
, D2 =

12p4
1 + β2

2

2β2

a−1, a2, p1 and β2 are free parameters. And

u4(x, y, t) = 2(
a2
√

a1a−1((p3 − p1)
2 sinh(δ4 + ξ4)− (p3 + p1)

2 sinh(δ4 − ξ4))

(cos(γ4) + 2
√

a1a−1 cosh(δ4) + a2 sinh(ξ4))2

+
4a1a−1 p2

3 − a2
2 p2

1 + 2
√

a1a−1(p2
3 − p2

1) cosh(δ4) cos(γ4)

(cos(γ4) + 2
√

a1a−1 cosh(δ4) + a2 sinh(ξ4))2

+
2p1(a2 p1 cosh(ξ4) + 2

√
a1a−1 p3 sinh(δ4)) sin(γ4)− p2

1

(cos(γ4) + 2
√

a1a−1 cosh(δ4) + a2 sinh(ξ4))2
)

where γ4 = p1(x − C3t), δ4 = p3(x + D3y + B3t) + θ3, ξ4 = p1(x + A3y + C3t), with

A3 = 2
√

3p3, B3 = −2(3p2
1 + p2

3), C3 = −2(3p2
3 + p2

1), D3 =

√
3(p2

3 + p2
1)

p3
, θ3 = ln(

√

a1

a−1
)

a−1, a2, p1 and p3 are free parameters.

5. Kadomtsev-Petviashvili equation with positive dispersion

The purpose of this section is to investigate the fission and fusion interactions of the
breather-type multi-solitary waves solutions to the KP equation with positive dispersion.

By transformation of independent variable t → −t, y →
√

3y in (*), KP equation with positive
dispersion can be written as

ut + 6uux + uxxx − 3∂−1
x uyy = 0 (66)

By the transformation of a dependent variable u

u = 2(ln f )xx (67)

Eq.(66) can be transformed into the bilinear form

F(Dx, Dy, Dt) f · f = (DxDt + D4
x − 3D2

y) f · f = 0 (68)

where f (x, y, t) is a real function.
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5.1. Fission and fusion of multi-wave

In the following, by using generalized three-wave type of Ansätz approach, we study the
interaction and spatiotemporal feature of three-wave of KP equation with positive dispersion.
Now we suppose the solution of Eq.(68) as

f (x, y, t) = eξ1 + δ1 cos ξ2 + δ2 cosh ξ3 + δ3e−ξ1 (69)

where ξ1 = a1x + b1y + c1t + θ1, ξ2 = a2x + b2y + c2t + θ2, ξ3 = a3x + b3y + c3t + θ3 and
aj, bj, cj, δj, j = 1, 2, 3 are some constants to be determined. Substituting the Ansätz Eq.(69)
into Eq. (68) will produce the following relations:

a3 = − b2a1 − a2b1

a2
2 + a1

2
, c3 =

∆1

(a2
2 + a1

2)
3

c1 = − a1
5 − 2 a1

3a2
2 + 3 b2

2a1 − 3 b1
2a1 − 3 a2

4a1 − 6 a2b1b2

a2
2 + a1

2

b3 =
2 a1

3a2
3 + a2

2b1b2 + a1
5a2 − a1

2b1b2 + a2
5a1 + b1

2a1a2 − b2
2a1a2

(a2
2 + a1

2)
2

δ3 =
∆2

4 (a2
2 + a1

2)
3
(a1

3 + a2b1 + a1a2
2 − b2a1) (a1

3 + b2a1 + a1a2
2 − a2b1)

c2 = − 3 a1
4a2 + 2 a1

2a2
3 − 3 b2

2a2 + 3 b1
2a2 − a2

5 − 6 b1b2a1

a2
2 + a1

2

∆1 = 3 b2a1
7 + 3 a2b1a1

6 + 9 a2
2b2a1

5 + 9 a2
3b1a1

4 + 9 a1
3a2

4b2 − 3 a1
3b1

2b2

+a1
3b2

3 + 3 a1
2a2b1

3 − 9 a1
2a2b1b2

2 + 9 a1
2a2

5b1 + 3 a1a2
6b2 − 3 a1a2

2b2
3

+9 a1a2
2b1

2b2 + 3 a2
3b1b2

2 − a2
3b1

3 + 3 a2
7b1

∆2 = −
(

b2
2a1

2 − 2 a2b1b2a1 + a2
2b1

2 + a1
4a2

2 + 2 a2
4a1

2 + a2
6
)

(
(

a2
2 + a1

2
)3

δ1
2 −

(

a2b1 − b2a1 + a1
3 + a1a2

2
) (

a1
3 − a2b1 + b2a1 + a1a2

2
)

δ2
2)

(70)

where a1, δ1, δ2, a2, b1, b2 are some free constants and a1 �= 0, a2 �= 0. Now we can explicitly
write down the three-wave solutions using

u(x, y, t) = 2
2a1

2
√

δ3 cosh
(

ξ1 − ln
√

δ3

)

− δ1a2
2 cos ξ2 + δ2a3

2 cosh ξ3

2
√

δ3 cosh
(

ξ1 − ln
√

δ3

)

+ δ1 cos ξ2 + δ2 cosh ξ3

−2

(

2
√

δ3a1 sinh
(

ξ1 − ln
√

δ3

)

− δ1a2 sin ξ2 + δ2a3 sinh ξ3

)2

(

2
√

δ3 cosh
(

ξ1 − ln
√

δ3

)

+ δ1 cos ξ2 + δ2 cosh ξ3

)2

(71)

where aj, bj, cj, δj (j = 1, 2, 3) satisfy Eq.(70). It is called the breather type multi-solitary waves
solutions. Fig.8 is the plot of the spatial structure with the parameters selected as

(

a1 b1 δ1

a2 b2 δ2

)

=

(

0.1 1 0.5

1.1 0.1 10−4

)
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Fig.8 is the process of interaction for two solitons solutions with the evolution of time, where
s1 and s2 are the different two solitons, and s12 represents the interaction between s1, s2 and
the periodic wave cos(ξ2). The phenomena of soliton interaction are clearly presented. It
shows that the two soliton experience interaction, they will fusion with few oscillations and
later travel ahead continuously. The value of δ2 will determine the length of resonant soliton.
Obviously, the solitons s1 and s2 can not approach each together closely from picture. They
interact produce the breather wave.

Usually, the interactions between solitons for a lot of integrable or non-integrable system are
considered to be completely elastic. That is to say, the amplitude, velocity and wave shape of
a soliton do not change after the nonlinear collisions. However, for several nonlinear partial
differential equations, completely nonelastic interactions will occur. On the other hand, two
or more solitons will fusion to one soliton. These two types of phenomena was called soliton
fission and soliton fusion, respectively. Now we demonstrate soliton fission and fusion of the
Kadomtsev-Petviashvili equation with positive dispersion.
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Figure 8. The plot of the space structure of the breather-type multi-solitary waves solutions and contour
plot map of u in (x, y)-plane.

In Eq.(70), let δ3 = 0, then

∆ ((a1
3 + a2b1 + a1a2

2 − a1b2)(a1
3 + a1b2 + a1a2

2 − a2b1)δ2
2 − (a1

2 + a2
2)3δ1

2)

4(a1
2 + a2

2)3(a1
3 + a1b2 + a1a2

2 − a2b1)(a1
3 + a2b1 + a1a2

2 − a1b2)
= 0

where ∆ = a2
2
(

a2
2 + a1

2
)2

+ (a2b1 − b2a1)
2, a1 �= 0 and a2 �= 0.

For a2
2
(

a2
2 + a1

2
)2

+ (a2b1 − b2a1)
2 can not be zero, then the condition must be satisfied:

(a1(a
2
1 + a2

2 − b2) + a2b1)(a1(a
2
1 + a2

2 + b2)− a2b1)δ
2
2 − (a2

1 + a2
2)

3δ2
1 = 0

So, we obtain the following solution:

u(x, y, t) =
2(a1

2eξ1 − δ1a2
2 cos ξ2 + δ2a3

2 cosh ξ3)

eξ1 + δ1 cos ξ2 + δ2 cosh ξ3

−
2
(

a1eξ1 − δ1a2 sin ξ2 + δ2a3 sinh ξ3

)2

(

eξ1 + δ1 cos ξ2 + δ2 cosh ξ3

)2

(72)
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where ξ1 = a1x + b1y + c1t, ξ2 = a2x + b2y + c2t, ξ3 = a3x + b3y + c3t and aj, bj, cj, j = 1, 2, 3,
and δ1, δ2 with the following relations:

c2 = − 3 b1
2a2 − a2

5 − 3 b2
2a2 + 2 a1

2a2
3 + 3 a1

4a2 − 6 a1b1b2

a1
2 + a2

2

c1 = − a1
5 − 3 a2

4a1 − 6 a2b1b2 − 2 a1
3a2

2 − 3 b1
2a1 + 3 b2

2a1

a1
2 + a2

2

c3 = (3 b2a1
7 + 3 a2b1a1

6 + 9 a2
2b2a1

5 + 9 a2
3b1a1

4 + 9 a1
3a2

4b2 + a1
3b2

3

] − 3 a1
3b1

2b2 − 9 a1
2a2b1b2

2 + 9 a1
2a2

5b1 + 3 a1
2b1

3a2 + 3 a1a2
6b2 − 3 a1a2

2b2
3

+9 a1a2
2b1

2b2 + 3 a2
3b1b2

2 − b1
3a2

3 + 3 a2
7b1)(

(

a1
2 + a2

2
)3
)−1

a3 =
a2b1 − b2a1

a1
2 + a2

2

b3 =
a2a1

5 + 2 a2
3a1

3 − a1
2b1b2 + a1b1

2a2 + a1a2
5 − a1b2

2a2 + b1b2a2
2

(a1
2 + a2

2)
2

δ2
2 =

(

a1
2 + a2

2
)3

(a1
3 + a2b1 + a1a2

2 − b2a1) (a1
3 + b2a1 + a1a2

2 − a2b1)
δ1

2

Fig.9 shows the plot of two kinds of interaction behavior between two single solitons with
different parameters and a breather wave, where

(

a1 b1 δ1

a2 b2 δ2

)

=

(−1.5 1 0.05

−1.1 1.2 2

)

and

(

a1 b1 δ1

a2 b2 δ2

)

=

(

1.5 −1 0.05

−1.1 1.2 2

)

respectively. From the first picture of Fig.9, we can see that two single solitons interact strongly
to make a resonance breather-wave solution from a point at which two incident solitons meet
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Figure 9. Contourplot of the breather-type multi-solitary waves solutions with the different parameters.
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together. This phenomena is called soliton fusion. However, in the right figure it is found that
the breather wave with the period oscillation can split up into two smaller line solitons with
different directions. This phenomena is called the soliton fission.

6. Conclusion

Using Homoclinic test approach, Extend Homoclinic test approach, Three-wave method
and Introducing parameters and small perturbation method, we obtain novel solutions of
Potential Kadomtsev-Petviashvili equation and Kadomtsev-Petviashvili equation such as
periodic solitary wave,breather solitary wave, breather homoclinic wave, breather heteroclinic
wave, cross kink wave,kinky kink wave, periodic kink wave, two-solitary wave, doubly
periodic wave, doubly breather solitary wave. Moreover, we observed that there were
differently spatiotemporal features in two-wave and multi-wave propagations including the
degeneracy of soliton, periodic bifurcation and soliton deflexion of two-wave, fission and
fusion of breather two-wave and so on. In future, we intend to study the stability and
the interactions patterns of N-wave solutions in KP equation. What’s more, can we obtain
similar results to another integrable or non-integrable system? How can one use the soliton
fission and fusion of models to study the practically observed soliton fission and fusion in the
experiments?
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