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1. Introduction 

A seismogram synthesis is the theoretically calculated ground motion that would be 

recorded for a given crust structure and seismic source, which is an important tool that can 

be applied to the study of earthquake source from strong motion records. At the early stage 

of seismology, the reflectivity method [1] and the generalized ray method [2] were widely 

used for simulating seismic wave excitation and propagation, where a laterally 

homogeneous model is considered. The real Earth’s crust, however, is a laterally 

inhomogeneous structure indeed. To study the site effect of strong ground motion, a 

stratified structure with irregular interfaces is an eligible model for simulating seismic wave 

propagation. For the study of seismic waves propagating through a sediment filled basin in 

the case of rigid grains, the work [3-4] is noteworthy, where a model was proposed to 

reproduct a nonlinear effect experimentally observed for real seismic waves: site 

amplification decreases as the amplitude of the incident wave increases. 

In the last three decades, the study of seismic wave excitation and propagation in laterally 

inhomogeneous media has become extensively important in seismology and geophysics, 

including both analytical solutions and non-analytical results. The analytical solutions, 

however, only exist for a few special cases [5], such as the semi-cylindrical canyon and 

alluvial valleys, semi-elliptical canyon, and hemispherical canyon. The methods based on 

high-frequency approximation [6](such as asymptotic ray theory, Gaussian beam method, 

and so on) can give a proper solution by including the contribution from the neighboring 

rays but are only appropriate for handling body wave propagation under relatively high 

frequency. The methods based on plane wave decomposition (such as discrete wave number 

method [7-10]) can provide a complete wave field for any finite frequency but usually 

involve the truncation of matrices and vectors having an infinite dimension. Nowadays, the 
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major approaches to study a laterally inhomogeneous model mainly rely on numerical 

methods which include domain methods and boundary methods. The domain numerical 

methods (such as finite difference [11], finite element [12], pseudo-spectral method [13], and 

spectral element method [14]) have become the standard tools for seismic wave modeling, 

however, these methods do not explicitly consider the boundary continuity conditions 

between different formations. That disables the methods to sufficient accuracy for modeling 

the reflection/transmission across irregular interfaces. Furthermore, they have difficulties in 

dealing with a large-scaled model because they require the subdivision of the domain into 

elements, especially the case when the domain needs to be extended to infinity. Boundary 

numerical methods have emerged as good alternatives to the domain numerical methods in 

dealing with an infinite continuum model because the radiation condition at infinity is easily 

fulfilled. They also have an obvious advantage over the domain numerical methods: the 

dimensionality of the problem under consideration is reduced by one order, because only a 

boundary instead of a domain discretization is required. Among this type of methods, the 

boundary element method (BEM) has been extensively used in simulating seismic wave 

excitation and propagation [15]. However, for a stratified model with irregular interfaces, the 

dimension of the final system of simultaneous equations in the traditional boundary element 

metod is proportional to the production of the element number and the interface number, 

which leads to an exponential increase in computing time and memory requirement. In order 

to overcome that problem, different approaches have been tried, for example, Fu [16] proposed 

an improved block Gaussian elimination scheme and Bouchon et al. [17] introduced a sparse 

method. Recently, global matrix propagators were introduced to improve the efficiency of the 

traditional BEM for modeling seismic wave excitation and propagation in multilayered solids 

[18-19], which expects great savings in computing time and memory requirement. 

On the other hand, the seismoacoustic scattering due to an irregular fluid-solid interface 

must be considered when we model the seismic wave propagation in oceanic regions or gulf 

areas. This kind of problem is related to a wide range of seismic research conducted at or 

close to oceanic regions or gulf areas [20], such as deep ocean acoustic experiments, ocean 

bottom seismic observations, or the interpretation of the effects of water layer on the 

observed surface wave traveling through gulf areas. Many metropolitan cities all over the 

world are located at or close to seaside, so it is important to take into account the effect of 

the sea water when conducting the earthquake resistant design for high-rise buildings in 

such big gulf cities. Also, the underground structures beneath sea bottom are known to be 

strongly inhomogeneous. Therefore, it is necessary to simulate the seismoacoustic scattering 

in irregularly multilayered elastic media overlain by a fluid layer due to some scenario 

earthquake event. Furthermore, ocean bottom observations are a key feature in the modern 

world-wide standardized seismograph network [21]. Correct seismic wave modeling can 

help to obtain valid interpretation of the observed waveforms. In the past three decades, 

many techniques, classified into different categories [7, 18], have been developed for 

calculating seismic wave excitation and propagation in laterally inhomogeneous media. 

Among those methods, the finite difference method (FDM) [22-23] and the finite element 

method (FEM) [24] become very popular in modelling seismoacoustic scattering due to 

irregular fluid-solid interface because of their flexibility in modeling complex media. 
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However, there are still difficuilties in using these methods to simulate wave propagation in 

models with highly irregular topography since these methods do not explicitly consider the 

boundary and continuity conditions between different formations. That disables the 

methods to sufficient accuracy for modeling the wave reflection/transmission across 

irregular interfaces. Furthermore, the two methods usually require very large computational 

resources (i.e. a large amount of memory and long calculation time).  

To overcome the problem, the reflection/transmission matrices for the fluid-solid irregular 

interface [20] were developed based on the discrete wavenumber representation of the wave 

field, i.e. the Aki-Larner method [25]. But their method is only suitable for a long-

wavelength irregularity and becomes unstable at very steep interfaces (e.g. a vertical 

interface), which is due to the intrinsic feature of the method itself. On the other hand, BEM 

is more suitable than the other methods to model the seismoacoustic scattering at very steep 

irregular interfaces[26], especially in the cases when better accuracy is required near 

boundaries and sources. However, the traditional BEM requires a tremendous increase in 

memory capacity and computational time when it's used to model the wave propagation in 

multilayered media. Motivated by the work in [19-20], we develop a method based on the 

combination of the traditional BEM and a global matrix propagator to simulate the 

seismoacoustic scattering due to an irregular fluid-solid interface. This method takes the 

advantage of the global matrix propagator to suppress the tremendous increase in 

computational resources required for simulating wave propagation in multilayered media, 

but also retains the merits of the boundary element method. This implies that higher-

frequency seismoacoustic scattering in complex structures can be calculated with reduced 

computer resources.  

For simplicity, the Chapter is organized as follows: the mathematical formulation for an SH-

wave (Shear wave polarized in the horizontal plane) propagation in a multilayered solid is 

first presented in an easily-understood way in Section 2, where some simple examples are 

calculated to test the formulation in solid layers; then we gratually go deep into the full 

formulation for the fluid-solid scattering simulation in Section 3, where two irregular fluid-

solid models are used to test the validity of the fluid-solid formulation; based on the 

formulation in Section3, one of the two fluid-solid models is calculated to show the effects of 

water layer and the water reverberation in water layer in Section 4; finally summary is 

drawn in Section 5.  

2. SH-wave propagation modeling in mutilayered solids 

2.1. Methodology statement 

The problem to be studied is illustrated in Figure 1. In this model, there are L homogeneous 

layers (i) (i=1, 2, …, L) over a half-space, among which the ith layer is bounded by two 

irregular interfaces (i-1) and (i) (Throughout the section, the superscript with round brackets 

indicates layer index and the subscript with round brackets interface index). The uppermost 

interface is a free surface, and an arbitrary source is embedded in the sth layer. Assume each 

individual layer to be isotropic, linearly elastic material, so the tensor of elastic constants is 
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determined by two independent Lame constants because of the rotational and translational 

symmetry. For the two-dimensional SH case under consideration, the physical properties of 

each layer can only be described by the shear modulus (i) and mass density (i). This problem 

will be solved by a boundary element method with a global matrix propagator. In this section, 

we will present the formulations of the method in the solid layers.  

 

Figure 1. A multilayered 2D model with irregular interfaces 

Consider the boundary element method problem in the ith layer, the scalar wave equation 

in frequency domain is given by (the details on the derivation of the SH-wave equation (1) 

and PSv-wave equation (29), which are suppressed here for brevity, refer to [27]) 

 ( ) 2 ( ) 2( , ) ( , ) ( , ) ,i i
siu u F         r r r                   (1) 

where u(r, ) is the seismic response at a position vector r in frequency domain, si = 1 for i = 

s and vanishes else, and F(r, ) is the seismic source in the sth layer.  

Suppose the seismic source distribution consists of a simple point source at a position vector 

s, i.e., 

 ( , ) ( ) ( ).F F   r r s                    (2) 

With the aid of the free-space Green’s function, Eq. (1) can thus be transformed into the 

following boundary integral equation for the displacement u on the boundary (i)+(i+1) 

 * * *( ) ( , ) ( )d ( ) ( , ) ( )d ( ) ( , ) ( , ),siCu T u U t U F 
 

          r r r r r r r r r r s r          (3) 

where r and r are the position vectors of “field point” and “source point” on the boundary 

, respectively. The coefficient C generally depends on the local geometry at r, t(r) are the 
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traction components, and U*(r, r) and T*(r, r) are the fundamental solutions for 

displacements and tractions, respectively,  
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and they satisfy the following equations 
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                (5) 

where i is the imaginary unit different from the italic i being index, k(i)=/c(i) with c(i) being the 

shear wave velocity in the ith layer,  represents a Dirac delta function which goes to infinity 

at the point r  r and is equal to zero elsewhere, and n denotes the outward normal vector of 

the surface on which the traction is acting. Please note that the position vectors r and r are 

now separately defined as “field point” and “source point” in the whole domain (i) bounded 

by the boundary Here, U*(r, r)  represents the displacement field at the “field point” r 

generated by a concentrated unit source acting at the “source point” r. The symbol H2 means 

the Hankel function of the second kind and its subscript indicates the order.  

To solve Eq. (3), we need to do discretization on the boundary. For simplicity, we discretize 

the boundary (i) and (i+1) each into N constant elements (the results in the case of linear 

element can be deduced by analog), so that the coefficient C is taken as 1/2 always. For a 

given element j (taken as the “source point”), Eq. (3) can be discretized as follows 

 
2 2

1 1

1
,

2

N N

j jk k jk k j si
k k

u H u G t F 
 

                         (6) 

where Hjk is an integral of T(rj, rk) over field element k, Gjk is an integral of U(rj, rk) over field 

element k, and Fj is the source term. When the source element goes from j = 1 to 2N, one can 

obtain a system of equations which can be expressed in matrix form 

 ( ) ( ) ,i i
si Hu Gt F                         (7) 

where the superscript (i) denotes the layer index. Obviously, the column vector u(i) of the 

dimension 2N1 consists of the element displacements on both the boundary (i) and the 

boundary (i+1), the same situation applies to the column vector t(i). And the coefficient 

matrices H and G are of the dimension 2N2N. 

The boundary and continuity conditions for the whole model under consideration are:  

1. the traction-free condition on the free surface,  

 (1)
(1) 0,t                      (8) 
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2. the continuity conditions of displacement and traction at the inner interfaces, 

 

( ) ( 1)
( 1) ( 1)

( ) ( 1)
( 1) ( 1)

,

i i
i i

i i
i i


 


 

 

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u u

t t
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3. the radiation boundary conditions imposed on the far-field behavior at infinity,  

 

( )
( 1)

( )
( 1)

0
,

0

L
L

L
L





 

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u

t
                                 (10) 

where the superscript denotes the layer index and the subscript denotes the interface index, 

which is followed as the same hereafter. And the minus sign in equation (9)2 is due to the 

definition of outward normal vector in boundary element method. Please note that the 

displacements and tractions in equations (8-10) are different from those in equation (7). The 

former are of the dimension N1 while the latter 2N1.  

In order to apply those boundary conditions to equation (7), we need to rewrite equation (7) 

into 

 

( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( 1) ( ) ( 1)( ) ( )
( 1) ( 1)

,

i i
i ii i i i

i i i i sii i
i i

 
 

   
             

   

u t
H H G G F

u t
            (11) 

where 	ܝ(௜)(௜) and 	ܝ(௜ାଵ)(௜)  are the element displacements separately corresponding to the upper 

interface and lower interface of the ith layer, similarly 	ܜ(௜)(௜) and 	ܜ(௜ାଵ)(௜)  are the element 

tractions corresponding to the upper interface and lower interface of the ith layer. 

Obviously, they are column vectors of the dimension N1. It should be pointed out that for 

one inner interface we should number the element displacements and tractions in the same 

order for the upper neighboring layer domain as that for the lower neighboring layer 

domain. Although this is a simple numbering, it is a common bug in computer programs. 

Look out for it! More attention should be paid to the coefficient matrices 	۶(௜)(௜) and 	۶(௜ାଵ)(௜) , 	۵(௜)(௜) and 	۵(௜ାଵ)(௜)  which are all of the dimension 2NN (except the case when i  L) and called 

matrix propagators. They will be used to form the global matrix propagators for the hybrid 

boundary element method being discussed in this paper.  

For the sake of convenient derivation, we first define the upward direction as the positive 

direction of the tractions in the whole model. Following this, we just need to make a minor 

change to Eq. (11) 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( 1) ( ) ( 1)
( 1) ( 1)

,
i ii i i i

i i i i si
i i

 
 

   
                 

u t
H H G G F

u t
          (12) 

where only one subscript index is needed to indicate the element displacement and traction 

vector at different interfaces, and the minus sign in the front of the matrix propagator 	۵(௜ାଵ)(௜)  
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is due to the above-defined positive direction. Equation (12) gives the relationship between 

the element tractions and the element displacements at the interfaces (i) and (i+1) which 

enclose the ith layer.  

From now on, we introduce the global matrix propagators which is the key to the 

introduced method under discussion. For completeness, we cite some formula directly from 

the work by Ge and Chen [18] with minor modification.  

The global matrix propagators ( )i
uuD  and ( )i

tuD  are separately defined as [18] 

 

( )
( ) ( 1)

( )
( 1) ( 1)

, 1,2, , 1,

i
i uu i

i
i tu i

i s


 

   


u D u

t D u
                 (13) 

for the layers above the source, and 

 

( )
( 1) ( )

( )
( ) ( )

, 1, 2, , ,

i
i uu i

i
i tu i

i s s L


    


u D u

t D u
                   (14) 

for the layers below the source.  

In Eqs. (13) and (14), the superscripts in the global matrix propagators denote the layer index, 

and the subscripts in the element displacements and tractions denote the interface index. Each 

layer has two global matrix propagators which function in different ways for the layers above 

the source and the layers below the source. For one arbitrary layer above the source, Duu 

transfers information of the element displacements from the upper interface to the lower 

interface in the layer whilst Dtu bridges the element tractions and the element displacements at 

the lower interface of the layer. However, for one arbitrary layer below the source, Duu 

transfers information of the element displacements from the lower interface to the upper 

interface in the layer whilst Dtu bridges the element tractions and the element displacements at 

the upper interface of the layer. That’s the main idea of the global matrix propagators which 

propagate information from “top and bottom” where the boundary conditions are known to 

“middle” where the source is located by the displacement and traction continuity conditions at 

inner interfaces. Both of the two matrices are of the dimension NN.  

In the following part, how to obtain the global matrix propagators recursively will be briefly 

reviewed. Applying boundary condition (8) and Eq. (13) with i  1 to Eq. (12) gives 

 (1) (1) (1) (1) (1)
(1) (2) (2) (2) (2) (2) 0.uu tu  H D u H u G D u             (15) 

Because u(2) could be the displacement at the second interface excited by an arbitrary source, 

the necessary condition of Eq. (15) is that its coefficient matrix equals zero, which gives 

 
(1) 1

(1) (1) (1)
(1) (2) (2)(1)

.uu

tu

 
       

D
H G H

D
              (16) 
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Similarly, for the other layers above the source, i.e., i  2, , s1, we have 
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D
             (17) 

Substituting boundary condition (10) and Eq. (14) with i  L into Eq. (12) and considering the 

same reason as that giving rise to Eq. (16), we get 
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1
( ) ( ) ( )

( ) ( )

0
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L
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L L L
tu L L



 


   

D

D G H
                    (18) 

In Eq. (18)2, the matrix propagators 	۶(௅)(௅) and 	۵(௅)(௅) are of the dimension NN, which is 

different from the cases when i < L.  

Similarly, for the other layers below the source, i.e., i  L1, L2,, s1, we have 

 
( ) 1

( ) ( ) ( 1) ( ) ( )
( 1) ( 1) ( ) ( )( )

.
i

i i i i iuu
i i tu i ii

tu


 

 
         

D
H G D G H

D
               (19) 

So far, the global matrix propagators are obtained for all the layers except for the source 

layer. But the problem has not been solved yet. In order to get the final solution of the 

problem, we need to form the system of equations in the source layer, which can be easily 

done by setting i  s in Eq. (12) 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( 1) ( ) ( 1)
( 1) ( 1)

.
s ss s s s

s s s s s
s s

 
 

   
                 

u t
H H G G F

u t
             (20) 

Here the subscript s in the Fs vector just indicates the source layer index. One more step 

needed to solve the above equations is to substitute i  s1 and s1 separately into Eqs. (17) 

and (19), which gives 
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.
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s tu s

s
s tu s




 
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Then Eq. (20) can be rewritten into by Eq. (21) 

 
( )( ) ( ) ( 1) ( ) ( ) ( 1)

( ) ( ) ( 1) ( 1)
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ss s s s s s

s s tu s s tu s
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u
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          (22) 

which has the same number of unknowns and equations. Solving Eq. (22) by Gaussian 

elimination scheme, we can get the element displacements at the boundary of the source 

layer so that the element displacements and tractions at the other interfaces can be obtained 

by the following recursive equations 
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( ) ( 1) ( 1)

( ) ( )
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( 1) ( 1)
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Then the displacement at any observation points in the whole model can be obtained by the 

integral equation in the domain 

 * * * ( )( ) ( , ) ( )d ( ) ( , ) ( )d ( ) ( , ) ( , ),   ,i
siu T u U t U F 

 

           r r r r r r r r r r s r r        (25) 

which can be transformed into a summation of the element displacements and tractions 

obtained just now without extra effort. Usually, the displacements at the free surface is of 

the most interest. By taking the inverse Fourier transform on the above frequency domain 

solution, we can finally get the time domain solution, i.e., the synthetic seismogram. 

2.2. Numerical examples 

In the following, we present the calculated synthetic seismograms for some typical models 

for which exiting results are available. Throughout the following examples, the source time 

function of the synthetic seismograms is a Ricker wavelet defined as 

    2 2 2 2 2 2
0( ) 2 1 exp ,cu t f t f t                    (26) 

where f0 is the characteristic frequency of the wavelet and t is the time. Observation points 

are set along the free surface of all the models.  

2.2.1. Semi-circular canyon model 

The first model is a semi-circular canyon in an elastic homogenous half-space, as shown in 

Figure 2. Although the shape is too simple for a realistic canyon, the wave reflection and 

diffraction due to the topographical irregularity in time domain are quite complex, which 

can serve for an eligible test to the present method and our computation program. Here, we 

calculate the time-domain responses of the surface along the semi-circular canyon subject to 

incident SH waves. The shear velocity and mass density are taken as 1 km/s and 1 g/cm3 

respectively in our calculation.  

 

Figure 2. Semi-circular canyon half-space model 
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Figures 3 (a) and (b) separately show the antiplane responses of a canyon calculated by the 

present method due to incident SH waves with the angle of 0° and 30°. In the case of vertical 

incidence, the direct waves keep the same amplitude along the surface of the canyon except 

near the edges, where the destructive interference occurs. In the case of inclined incidence, 

the amplitudes of the direct waves inside the canyon decrease toward the rear-side edge. At 

the horizontal surface near the front-side edge, the peak amplitude becomes larger due to 

the constructive interference between the direct wave and the wave reflected at the canyon. 

The two seismograms were calculated by the discrete wavenumber method in [28]. The nice 

agreement can be seen between our results and those in [28].  

 

Figure 3. Time responses of the canyon model due to an SH wave incidence: (a) vertical incidence,  

(b) incidence with an angle of 30°. The characteristic frequency is 1.0 Hz.  

2.2.2. Mountain model 

Next, a mountain model with a point source is considered, as shown in Figure 4. The 

mountain shape topography is described by the equation 

 
 1 cos / 2,for 1

( ) ,
0,                                for 1

h x x
z x

x

       


                  (27) 

where h = 1 km and the elastic constant and the mass density are 1 km/s and 1 g/cm3, 

respectively.  
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Figure 4. Mountain topography and the surrounding homogeneous half-space 

Figure 5(a) shows the time responses along the mountain topography shown in Fig. 4 when 

the point source is plated right below the geometric center of the mountain; thus the synthetic 

seismogram has a symmetric feature about the center point. It can be seen from Figure 5(a) 

that the first arrival of seismic waves comes late at the locations on the mountain due to the 

higher altitude. We can also see strong diffracted waves produced by the mountain, i.e. the 

secondary phase. Figure 5(b) shows the time responses along the same topography as in 

Figure 5(a) but for the case when the point source is located at x = 1, z = 2 km. It can be seen 

from Figure 5(b) that although the first arrival of seismic waves has a nonsymmetric feature as 

expected, the diffracted waves are symmetric as that for the case shown in Figure 5(a). That 

indicates that the diffracted waves for both cases propagate along the free surface with the 

shear wave velocity of the media, and are produced by the mountain topography. The two 

seismograms were first calculated in [8] by using a global generalized reflection/transmission 

matrix method. Our calculated results show a good agreement with those in [8].  

 

Figure 5. Synthetic seismograms for the mountain model in which the point source is placed at (a) x = 0, 

z = 2 km, (b) x = 1, z = 2 km. The characteristic frequency is 2.0 Hz.  
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2.2.3. Deep basin model 

Consider the model configuration consisting of a deep basin structure, as shown in Figure 6. 

The basin has a trapezoidal shape with 1 km depth and 10 km width at the surface. The 

shear wave velocity of the basin-filling sediments and the half-space are 2.5 km/s and 1 

km/s, respectively, and the ratio of mass density is set to 1:1.  

 

Figure 6. Deep basin topography and the surrounding homogeneous half-space 

 

Figure 7. Time responses along the free surface of the basin in Figure 6 due to a vertically incident SH-

wave: (a) characteristic frequency fc is 0.25 Hz (4 sec), (b) fc is 0.5 Hz (2 sec) 

The time responses at the surface of the basin by a vertically incident SH wave are plotted in 

Figure 7(a). The characteristic frequency fc is 0.25 Hz (4 s). This figure shows the horizontally 

propagating waves generated by the edges of the basin. The amplitude of Love waves 

(horizontally polarized shear surface waves) is smaller than that of the direct wave. 

Although these Love waves make the total duration longer, the time interval between the 

direct wave arrival and the Love wave arrival is less than 10 sec near the edges. Each arrival 

of reflected Love waves is well separated. Figure 7(b) shows the time responses for the same 
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basin model as in Figure 7(a) but for a Ricker wavelet of characteristic frequency fc = 0.5 Hz 

(2 s). Very similar phenomena to that shown in Figure 7(a) can be seen, but the amplitude  

of the Love wave is larger in this case. The X-shaped pattern of the surface-wave arrivals  

is more clearly shown for high-frequency incident waves, but the maximum amplitude of 

the Love wave decreases because energy splits into the fundamental mode and the other 

higher mode. The two seismograms were calculated first by the discrete wavenumber 

method in [29]. And nice agreement between our calculated and those in [29] can be 

observed.  

2.2.4. Two-layer model with irregular interface 

Finally, a two-layer model with an irregular interface is considered to have a point source, 

as shown in Figure 8. The irregular interface is described by  

   (1)

,                                      for 

( ) 1 cos / 2 / 2,for 3 ,

  0,                                      for 3

h x d

z x h x d d h d x d

x d



 
         



              (28) 

where h(1) = 2.0 km, h = 0.5 km, and d = 0.5 km. The material parameters are 1 km/s and 1 

g/cm3 for the top layer, and 1.5 km/s and 1 g/cm3 for the bottom layer, respectively.  

The synthetic seismograms for the two-layer model are shown in Figure 9. It can be seen 

from Figure 9 that all the seismic phases can be divided into two groups of hyperbolas, 

namely, a group of hyperbolas with a center point of x = xs and another group of hyperbolas 

with a center point of x = 0. The latter ones are due to the reflections by the flat free surface 

and the flat part of the interface. The former ones, however, are due to the diffractions by 

the irregular part of the interface. This model was first calculated by the global generalized 

reflection/transmission matrices method in [8]. Our result shows a nice agreement with that 

in [8].  

 

 
 

Figure 8. A two-layer model with an irregular interface: the source is at (2 km, 1 km) 
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Figure 9. Synthetic seismograms for the model in Figure 8. The characteristic frequency is 1.0 Hz.  

3. Seismoacoustic scattering modeling in mutilayered media 

3.1. Methodology statement 

The problem to be considered is illustrated in Figure 10. In this model, there are L 

homogeneous layers (i) (i=1, 2, …, L) over a half-space, among which the ith layer is 

bounded by two irregular interfaces (i-1) and (i) (Throughout the section, the superscripts 

with round brackets are used for layer index and the subscripts with round brackets for 

interface index). The uppermost layer is water which is assumed to be linear liquid without 

viscosity. An arbitrary seismic source is embedded in the sth layer. The properties of an 

arbitrary solid layer (i) are described by the elastic constants (i), (i) and mass density (i). 

This problem will be solved by a boundary element method with a global matrix 

propagator. In this Subsection, we will present the formulations of the method in the solid 

layers and the fluid layer respectively.  

 

Figure 10. A multi-layered water/solid model with irregular interfaces 
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3.1.1. Formulations in solid layers  

Consider the boundary element problem in a region, where the elastic wave equation in 

frequency domain is given by 

ܝଶ∇ߤ  + ߣ) + ∇∇(ߤ ∙ ܝ + ܝଶ߱ߩ =  (29)                        ,܎−

in which u is the seismic displacement response in frequency domain, and f is the seismic 

source. Suppose the seismic source distribution consists of a simple point source at a 

position vector s. With the aid of the free-space Green’s function, Eq. (29) can thus be 

transformed into the following boundary integral equation for the displacement uj(r) on the 

boundary  of the region  [30]

 (ܚ)௞ݑ(ܚ)∆ + ׬ (′ܚ)௝ݑ ௝ܶ௞୻ ,ܚ) (′ܚ ݀Γ(ܚ′) = ׬ (′ܚ)௝ݐ ௝ܷ௞୻ ,ܚ) (′ܚ ݀Γ(ܚ′) + ௝݂ ௝ܷ௞(ܚ, (ܛ
where j and k can be 1, 2. r and r are the position vectors of  “field point” and  “source 

point” on the boundary , respectively. The coefficient (r) generally depends on the local 

geometry at r, tj(r) are the traction components, and Ujk(r, r) and Tjk(r, r) are the 

fundamental solutions for displacements and tractions, respectively. The source exciting 

direction can be controlled arbitrarily by changing one of two components fj. Application of 

Eq. (30) in domain (i) and discretization of interfaces (i) and (i+1) each into N elements (for 

simplicity, we use constant element) give rise to 

 ۶(௜)ܝ(௜) = ۵(௜)ܜ(௜) +  ௜௦,                            (31)ߜ۴

where H(i) and G(i) are the coefficient matrices obtained by integrating the fundamental 

solutions Tjk and Ujk over elements at both interfaces (i) and (i+1), and u(i) and t(i) are vectors 

containing element displacements and tractions at both interfaces (i) and (i+1), respectively. 

Obviously, H(i) and G(i) are of the dimension 4N4N, and u(i) and t(i) are of the dimension 

4N1. In the multilayered medium (as shown in Figure 10), considering the continuity 

conditions of displacements and tractions at inner interfaces, Eq. (31) needs to be rewritten 

into  

 ቂ۶(௜)(௜) ۶(௜ାଵ)(௜) ቃ ൥ (௜)(௜ାଵ)ܝ(௜)(௜)ܝ ൩ = ቂ۵(௜)(௜) ۵(௜ାଵ)(௜) ቃ ൥ (௜)(௜ାଵ)ܜ(௜)(௜)ܜ ൩ +  ௦௜,                 (32)ߜ۴

where u(i) and t(i) with subscripts (i) and (i+1) corresponds separately to the element 

displacements and tractions at (i) and (i+1). Similarly, the subscripts (i) and (i+1)  

in H(i) and G(i) indicate the integration over elements at (i) and (i+1), respectively.  

Obviously, the matrices H(i) and G(i) with subscripts (i) or (i+1) are of the dimension  

4N2N.  

For the same purpose as in Section 2, the upward direction is defined as the positive 

direction for tractions so that they have unique values at each interface [18]. Eq. (32) thus 

becomes 
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 ۶(௜)(௜)ܝ(௜) + ۶(௜ାଵ)(௜) (௜ାଵ)ܝ = ۵(௜)(௜)ܜ(௜) − ۵(௜ାଵ)(௜) (௜ାଵ)ܜ +  ௦௜,           (33)ߜ۴

where only one subscript index is needed to distinct element displacements and tractions at 

different interfaces, and the minus sign in front of ۵(௜ାଵ)(௜)
 is due to the defined positive 

direction for tractions.  

The global matrix propagators in the layers above the source are defined as 

 ൝ (௜)ܝ = ۲௨௨(௜)ܝ(௜ାଵ)ܜ(௜ାଵ) = ۲௧௨(௜)ܝ(௜ାଵ),			݅ = 2,3,⋯ , ݏ − 1,                          (34) 

in which one should note that the layer index i does not start from 1 but 2 since the first 

layer is a fluid layer in our model. Substitution of Eq. (34) into Eq. (33) yields 

 ۶(௜)(௜)۲௨௨(௜)ܝ(௜ାଵ) +۶(௜ାଵ)(௜) (௜ାଵ)ܝ = ۵(௜)(௜)۲௧௨(௜ିଵ)۲௨௨(௜)ܝ(௜ାଵ) − ۵(௜ାଵ)(௜) ۲௧௨(௜)ܝ(௜ାଵ).        (35) 

Since u(i+1) in Eq. (35) could be the displacement along the lower interface excited by an 

arbitrary source, the necessary condition of Eq. (35) is that its coefficient matrix equals zero, 

which leads to  

 ቆ۲௨௨(௜)۲௧௨(௜)ቇ = − ቂ۶(௜)(௜) − ۵(௜)(௜)۲௧௨(௜ିଵ), ۵(௜ାଵ)(௜) ቃିଵ۶(௜ାଵ)(௜) ,			݅ = 2,3,⋯ , ݏ − 1.	        (36) 

Once the global matrix propagator ۲௧௨(ଵ)	in the fluid layer is obtained, those for the layers 

above the source can be obtained recursively from Eq. (36). For the moment, we have not 

known the expression of the global matrix propagator in the fluid layer yet. 

Similarly, the global matrix propagators in the layers below the source are defined as 

 ൝ܝ(௜ାଵ) = ۲௨௨(௜)ܝ(௜)ܜ(௜) = ۲௧௨(௜)ܝ(௜) ,			݅ = ݏ + 1, ݏ + 2,⋯ ,  (37)                .ܮ

Substituting Eq. (37) into Eq. (33) and considering the same reason as in Eq. (36), we have 

 ቆ۲௨௨(௜)۲௧௨(௜)ቇ = − ቂ۶(௜ାଵ)(௜) + ۵(௜ାଵ)(௜) ۲௧௨(௜ାଵ), −۵(௜)(௜)ቃିଵ۶(௜)(௜),			݅ = ܮ − 1, ܮ − 2,⋯ , ݏ + 1,        (38) 

where ۲௧௨(௅) is the global matrix propagator	in the bottom layer which can be obtained by 

using the radiation condition at infinity, i.e. u(L+1)=0 and t(L+1)=0, as follows 

 ቐ ۲௨௨(௅) = 0۲௧௨(௅) = ቂ۵(௅)(௅)ቃିଵ۶(௅)(௅).               (39) 

So far, we have only defined the global matrix propagators for all the solid layers. The 

global matrix propagator in the fluid layer will be given next.  
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3.1.2. Formulations in fluid layer 

The pressure (i.e. the infinitesimal pressure perturbation) is used as the variable to treat the 

interaction between the elastic waves and the acoustic waves in the fluid layer [20]. Thus the 

acoustic wave equation in frequency domain in a homogeneous isotropic fluid layer is given 

by   

 ∇ଶ݌ + ݇ଶ݌ = 0,                                (40) 

where p is the fluid pressure and k = ω/V is the wavenumber with ω and V being the angular 

frequency and the acoustic wave velocity, respectively. Using the fundamental solution of 

Helmholtz equation, we can replace Eq. (40) by the following boundary integral equation for 

the fluid pressure p(r) on the boundary  surrounding the fluid area 

 c(ܚ)(ܚ)݌ + ׬ ୻(′ܚ)݌ డீ(ܚ,ܚᇱ)డ௡ܚᇲ ݀Γ(ܚ′) = ׬ ୻(′ܚ)ݍ ,ܚ)ܩ (′ܚ ݀Γ(ܚ′) (41)

where c(ܚ) generally depends on the local geometry at a point r, and ܚ)ܩ,  is known as the (′ܚ

Green’s function of acoustics which physically represents the effect observed at the point ܚ 

of a unit source at the point (′ܚ)ݍ .[31] ′ܚ = ങ೛(ܚᇲ)ങ೙ܚᇲ , where the terminology ങ∗ങ೙ܚᇲ represents the 

partial derivative of the function * with respect to the unit outward normal at the point ܚ′ on 

the boundary . Applying Eq. (41) in the uppermost layer (1) and discretizing the interfaces 

(1) and (2) each into N elements (still constant element), we yield the matrix equation of the 

form  

 ۶(ଶ)(ଵ)ܘ(ଶ) = ۵(ଵ)(ଵ)ܙ(ଵ) + ۵(ଶ)(ଵ)ܙ(ଶ),                  (42) 

where p and q with subscripts (1) and (2) correspond separately to the element pressure and 

its normal derivative at (1) and (2) (p(1) in Eq. (42) is suppressed since it’s always equal to 

zero due to the free surface condition). Obviously, they are the vectors of the dimension 

N1. Follow the rule in the solid layers, we first define the global matrix propagators in the 

fluid layer as  

 ൝ܙ(ଵ) = ۲௤௤(ଵ)ܙ(ଶ)ܘ(ଶ) = ۲௣௤(ଵ)ܙ(ଶ),                               (43) 

where the first definition is actually unnecessary since we focus on the solution at the fluid-

solid interface and ignore the normal derivative of the pressure at the free surface. 

Substitution of Eq. (43) into Eq. (42) yields  

 ۶(ଶ)(ଵ)۲௣௤(ଵ)ܙ(ଶ) = ۵(ଵ)(ଵ)۲௤௤(ଵ)ܙ(ଶ) + ۵(ଶ)(ଵ)ܙ(ଶ).                  (44) 

Since q(2) in Eq. (44) could be the normal derivative of the pressure at the fluid-solid interface 

excited by an arbitrary source, the necessary condition of Eq. (44) is that its coefficient matrix 

equals zero, which leads to 
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 ൭۲௤௤(ଵ)۲௣௤(ଵ)൱ = ቂ−۵(ଵ)(ଵ), 	۶(ଶ)(ଵ)ቃିଵ G(ଶ)(ଵ)
,                           (45) 

where one point noted here is that the global matrix propagators obtained in Eq. (45) have 

the dimension NN which is different from those in Eqs. (34) and (37). Therefore, we need  

to extend the global matrix propagators defined for the fluid layer into the same dimension 

as those defined for the solid layers, i.e., from NN to 2N2N, by using the continuity 

conditions at the fluid-solid interface. They are : 1) the tangential traction (not stress,  

be careful with the terminology) is zero; 2) the normal traction is continuous; and 3) the 

normal displacement is continuous, which can be expressed in frequency domain as follows  

[20, 32] 

 

ܜ ∙ ܛ = ܜ0 ∙ ܖ = ܝ݌− ∙ ܖ = ୤ݑ− = − ଵఘ౜ఠమ  (46)                    ,ݍ

where ܝ and ܜ are the element displacements and tractions of the solid layer at the fluid-

solid interface. And the ܖ and ܛ are the unit outward normal vector and the inplane 

tangential vector of the solid layer neighboring the fluid layer. f is the mass density of the 

fluid layer. The displacement of the fluid uf is along the normal direction but points to the 

neighboring solid layer (i.e., the opposite direction of the normal vector n), which leads to 

the minus sign in front of uf.  

Now, the global matrix propagators obtained in Eq. (45) can be extended into the same 

dimension as those defined in the solid layers, i.e. 2N2N, by  

  ۲௧௨(ଵ) = f߱ଶߩ ൥۲௣௤(ଵ) ∙ Nଵୣ ∙ (Nଵୣ)୘ ۲௣௤(ଵ) ∙ Nଶୣ ∙ (Nଵୣ)୘۲௣௤(ଵ) ∙ Nଵୣ ∙ (Nଶୣ)୘ ۲௣௤(ଵ) ∙ Nଶୣ ∙ (Nଶୣ)୘൩,              (47) 

where the matrices Nଵୣ and Nଶୣ	are defined as follows:  

 Nଵୣ = ێێێۏ
ଵeభ݊ۍ ݊ଵeమ݊ଵeభ ݊ଵeమ 					⋯ ݊ଵeಿ⋯ ݊ଵeಿ⋮ ⋮݊ଵeభ ݊ଵeమ 					⋱ ⋮⋯ ݊ଵeಿۑۑۑے

ې
 , Nଶୣ = ێێێۏ

ଶeభ݊ۍ ݊ଶeమ݊ଶeభ ݊ଶeమ 					⋯ ݊ଶeಿ⋯ ݊ଶeಿ⋮ ⋮݊ଶeభ ݊ଶeమ 					⋱ ⋮⋯ ݊ଶeಿۑۑۑے
ې
 ,                (48) 

in which ݊ଵୣ೔ and ݊ଶୣ೔ 	are the two components of the unit outward normal vector of the 

neighboring solid layer at the element ‘ei’, i = 1, 2, 3,…, N. Note that the multiplication 

between matrices in Eq. (47) is operated in the sense of ‘element to element’.  

3.1.3. Solution in source layer  

We have clearly obtained the global matrix propagators for all the layers except for  

the source layer which is the place to finally solve the problem. Setting i = s in Eq. (33), we  

have [19] 
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 ۶(௦)(௦)ܝ(௦) + ۶(௦ାଵ)(௦) (௦ାଵ)ܝ = ۵(௦)(௦)ܜ(௦) − ۵(௦ାଵ)(௦) (௦ାଵ)ܜ + ۴,             (49) 

in which both the element displacements and tractions are unknowns, however, they cannot 

be solved from the present form of Eq. (49) yet. From the aforementioned definitions of the 

global matrix propagators, i.e., take i = s1 in Eq. (34) and i = s+1 in Eq. (37), we can get the 

relationship between the traction and displacement at the sth and (s+1)th interfaces as [19]  

(௦)ܜ  = ۲௧௨(௦ିଵ)ܝ(௦), (௦ାଵ)ܜ = ۲௧௨(௦ାଵ)ܝ(௦ାଵ).                   (50) 

Substitution of Eq. (50) into Eq. (49) gives rise to [19]  

 ቂ۶(௦)(௦) − ۵(௦)(௦)۲௧௨(௦ିଵ)ቃ (௦)ܝ + ቂ۶(௦ାଵ)(௦) + ۵(௦ାଵ)(௦) ۲௧௨(௦ାଵ)ቃ (௦ାଵ)ܝ = ۴,            (51) 

which has the same number of unknowns and equations and can be solved without 

question.  

Once the displacements at the interfaces enclosing the source layer are solved, the 

displacements at the fluid-solid interface can be obtained by 

(ଶ)ܝ  = ۲௨௨(ଶ)۲௨௨(ଷ)⋯۲௨௨(௦ିଵ)ܝ(௦),                        (52) 

which is the displacement solution in frequency domain at the fluid-solid interface. By 

applying the inverse Fourier transform to Eq. (52), one can get the solution in time domain, 

i.e., the synthetic seismograms. A general procedure of applying the introduced approach to 

calculate a seismic ground motion in an irregularly multilayered media lain by a fluid layer 

is summarized as follows.  

Step 1. Calculate the global matrix propagators in the uppermost layer, i.e. the fluid layer, 

by Eq. (45).  

Step 2. Extend the global matrix propagators obtained in Step 1 by Eq. (47).  

Step 3. Use the extended global matrix propagator in Step 2 to calculate the global matrix 

propagators in the solid layers above the source layer by Eq. (36).  

Step 4. In case of a plane wave incidence problem or a seismic source located at the bottom 

layer, skip this step and jump to Step 5. Otherwise, calculate the global matrix 

propagators in the solid layers below the seismic source layer by Eqs. (38-39).  

Step 5. Substitute all the global matrix propagators obtained in the above steps into the 

simultaneous matrix equation in the seismic source layer and solve the problem by Eq. 

(51).  

Step 6. Obtain the displacement solutions at the fluid-solid interface by Eq. (52). 

Step 7. Execute the Inverse Fourier Transform on the displacement solutions obtained in 

Step 6 to get the seismic ground motion in time domain finally.  

The above-mentioned procedure is for the case when the fluid layer is the top layer. In case 

that the fluid layer is not the uppermost layer of the model under consideration, such as a 

fluid layer surrounded by two solid layers, the treatment similar to Eq. (47) can be also 

applied at the two fluid-solid interfaces. The only difference of the solution procedure is the 
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order of calculating the global matrix propagators in the fluid layer and the solid layer, the 

details of which are suppressed here.  

Although the boundary element method is known as the best way to model wave 

propagation problems in unbounded media, it is still necessary to make some special 

treatment on the truncation edges of the model in order to avoid the appearance of some 

unphysical waves. For such purpose, many different techniques [33-40] applicable to the 

boundary element method have been developed.  

3.2. Numerical examples 

In this subsection, we conduct the numerical implementation of the fluid-solid formulation 

of the introduced method. Three examples are calculated for validity testing, considering 

both plane wave incidence and SV-wave source excitation. Although the models used in this 

subsection seem very simple, they are often used as examples for validity testing of some 

seismogram synthetic method.  

We first calculate the case of a plane P-wave (Primary or pressure wave) vertically incident 

onto irregularly layered fluid-solid structures in the two models, as shown in Figure 11. The 

reason for the selection of the two models is because the synthetic results of seismoacoustic 

scattering due to the irregular fluid-solid interface are available in [20]. The existing results 

for the two models calculated by the reflection/transmission matrix method in [20] were 

validated in detail by the finite difference method [20], which concluded that the 

reflection/transmission matrix method could give more accurate results. Therefore, we will 

compare our results with those calculated by the reflection/ transmission matrix method.  

 

Figure 11. The two models used to test the fluid-solid formulation: (a) Model 1; (b) Model 2 [20] 

In order to make our comparison convincing, not only are the model parameters set to be 

the same as those used in [20] but also the time function of the input plane wave is selected 

as  

(ݐ)݂  = ቊ ඥߨ/ߙexp(−ݐߙଶ), − ௦ܶ/2 ≤ ݐ ≤ ௦ܶ/2		0,																								ݐ ≥ ௦ܶ/2	, ݐ ≤ − ௦ܶ/2	,                (53) 
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where the pulse duration TS is set to 4.2 s and α is set to 2.1. Eq. (53) is exactly the same as 

the Eq. (88) in [20] and its shape and spectrum are shown in Figure 12.  

 

Figure 12. The time function (a) and its Fourier spectra (b) used for the two models in Figure 11 

3.2.1. Model 1 subjected to a plane wave incidence 

Figure 13 shows the displacements of both horizontal and vertical components along the 

fluid-solid interface of Model 1. The one on the left is calculated by the 

reflection/transmission matrix method in [20]. And the one on the right is calculated by the 

present method. Inside the irregular part of the model, i.e., the basin structure, the large-

amplitude multiple reflections in the water basin are well observed in the synthetic 

waveforms calculated by both our method and the reflection/transmission matrix method. 

Both the scattered P wave (P) and Rayleigh wave (R), which are indicated in the left plot, can 

be well and clearly observed in our calculated seismograms.  

3.2.2. Model 2 subjected to a plane wave incidence  

Figure 14 shows the displacements of both horizontal and vertical components at the fluid-

solid interface of Model 2. This model is a little bit more complicated than Model 1. The flat 

fluid layer on both sides of Model 2 will cause multiple reflections of the incident plane P-

wave easily. The multiple reflections will be interfered by the waves scattered by the 

irregular fluid-solid interface, which leads to the complexity of the wave field. In this case, 

the ‘observation points’ are all located at the fluid layer bottom. The one on the left is 

calculated by the reflection/transmission matrix method in [20]. And the one on the right is 

calculated by the present method. Again, the synthetic seismograms calculated by both 

methods agree with each other very well. The periodic multiple reflections at the flat portion 

of the fluid layer are clearly observed and interfered by the scattered waves from the inside 

of the irregular part of the model, which are modeled very well by both methods.  
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Figure 13. Time responses along the fluid-solid interface of Model 1: the one on the left calculated in 

[20], and the one on the right calculated by the present method 

 

Figure 14. The same as Figure 13, but for Model 2  
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3.2.3. Model 1 subjected to an SV-wave point source 

The above two testing calculations show the validity of the present method and the 

correctness of our computational program, respectively. However, the two numerical 

examples are only plane wave incidence cases. To validate the present method further, we 

show one more example using an SV-wave (Shear wave polarized in the vertical plane) 

excitation source as [23] 

௫௭ܯ  = ௭௫ܯ− =  (54)                        ,(ݖ)ߜ(ݔ)ߜ(ݐ)݂ܯ−

where the source function f(t) is a Ricker wavelet with central frequency 0.25 Hz. The model 

used for the calculation is similar to Model 1 but with a width of 80 km in total, and the 

basin-like fluid-solid interface having a width of 60 km and thickness of 2.1 km. The 

material properties of the model is little different from Model 1, details of which can refer to 

[23]. The SV-wave source is located at (distance, depth) = (0.1 km, 4.1 km). As for this case, 

the results calculated by the discrete wavenumber method are available in [23] so that we 

can make a full waveform comparison.  

 

Figure 15. Time responses along the basin-like fluid-solid interface: the one on the left calculated in [23] 

with a time offset of 8 seconds, and the one on the right calculated by the present method.  

Figure 15 shows the displacements of both horizontal and vertical components along the 

basin-like fluid-solid interface due to the SV-wave source presented in Eq. (54). The one on 

the left is calculated by the discrete wavenumber method in [23]. And the one on the right is 

calculated by the present method. It can be clearly seen that the large-amplitude multiple 

0 5

1
 0

1
 5

2
 0

2
 5

3
 0

3
 5

4
 0

U
 x

T i m e ( s )

-4
 0

0
4
 0

0 5

1
 0

1
 5

2
 0

2
 5

3
 0

3
 5

4
 0

U
 z

D
 i
 s
 t
 a

 n
 c
 e

 (
 k

 m
 )

T i m e ( s )



 
Wave Processes in Classical and New Solids 148 

reflections in the fluid-solid basin part are well observed in the synthetic waveforms 

calculated by both the present method and the discrete wavenumber method. Furthermore, 

the first scattered P-waves, the first scattered Rayleigh waves, and the secondary scattered 

Rayleigh waves, which are separately indicated as P, R and R2 in the plot on the left, can be 

well and clearly observed in our calculated seismograms. Considering the time offset used 

in [23], the very good agreement between the results by the two methods further confirms 

the validity of the present method and the correctness of the fluid-solid formulation.  

Up to now, we have validated the fluid-solid formulation by three examples, which results 

in the conclusion that the introduced approach can accurately cover the seismoacoustic 

scattering due to an irregular fluid-solid interface. In the next Section, we will show how to 

use the introduced approach to simulate the effects of a fluid layer on the synthetic 

seismograms and the water reverberation by three preliminary examples, respectively. 

4. Water effects and water reverberation modeling 

4.1. Water effects on seismogram synthesis 

In this Subsection, we show the effect of a fluid layer on synthetic seismogram by using one 

of the testing models. In practice, seismologists or geophysicists are interested in the seismic 

ground motion at land in gulf areas where the fluid layer plays an important role in the 

recorded seismograms. Therefore, it is necessary and significant to simulate the 

seismoacoustic scattering in irregularly multilayered elastic media lain by a fluid layer due 

to some scenario earthquake event. Here, we select the first model used in Subsection 3.2 to 

show water layer effects due to the two reasons: a) this model is very simple and its 

calculated results are relatively easy to interpret; b) this model is kind of close to a practical 

gulf area although the solid layer is considered as an elastic half space. For the same model, 

we take into account two cases: the first case of a vertically incident plane P wave, as shown 

in Figure 16, the second case of an explosive source located in the solid half-space. We will 

show the calculated results of the two cases one by one in the following.  

 

Figure 16.  The model used to show the effect of a fluid layer on the synthetic seismograms due to a 

vertically incident plane P wave: (a) with a fluid layer; (b) without a fluid layer.  
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4.1.1. Plane wave incidence 

Figure 17 shows the time responses of the horizontal and vertical motions along the irregular 

solid interface due to a vertically incident plane P wave for the models with and without a 

fluid layer, respectively. It can be seen from Figure 17 that the direct waves appearing on the 

vertical component keep the same amplitude along the solid interface, regardless of the 

existence of the uppermost fluid layer. Outside the irregular part of the interface, later arrivals 

on the vertical component are mainly due to the wave reflection at the upper part of the 

irregular interface but they seem to contain some contribution of the diffracted waves since 

their amplitude changes very slowly. Judging from their particle motions and apparent 

velocities, we can say that they appear to become Rayleigh waves soon after the departure from 

the edges of the irregular part of the interface. Comparison between the results for the models 

with and without the fluid layer can be clearly seen in Figure 17. For the model shown in 

Figure 16(a), although the later arrivals on the vertical component inside the irregular part of 

the interface seem complicated, the multiple later arrivals outside the irregular part of the 

interface due to the multiple reflections caused by the fluid layer are clearly observed. In the 

case of the absence of the fluid layer, i.e. the model shown in Figure 16(b), there is only one 

later arrival on the vertical component, even the previous complicated later arrivals appearing 

inside the irregular part of the interface in the case of the presence of the fluid layer completely 

disappear, which appears to be very interesting results.  

 

Figure 17. Time responses along the irregular solid interface in the models shown in Figure 16 due to a 

vertically incident plane P wave: (a) with a fluid layer; (b) without a fluid layer.  
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The earlier arrivals on the horizontal component generated by the impact and subsequent 

reflection of the incident plane P wave at the irregular part of the interface grows as the 

incident wave propagates upward and reaches its maximum at the edges, regardless of the 

existence of the uppermost fluid layer. Those diffracted waves gradually separate into P 

waves and Rayleigh waves with the increasing distance away from the irregular part edges. 

The difference between the results on the horizontal component for the models with and 

without the fluid layer can also be clearly seen, no matter inside the irregular part or outside 

the irregular part of the interface. Inside the irregular part of the interface the diffracted 

waves for the model with the fluid layer have much more complicated features than those 

for the model without the fluid layer. Different from the vertical component, multiple 

diffracted waves inside the irregular part of the model with the fluid layer can be clearly 

observed as well. For the model without the fluid layer, however, no multiple diffracted 

waves can be observed inside the irregular part of the surface. Outside the irregular part of 

the interface, the multiple arrivals of P waves and Rayleigh waves on the horizontal 

component can be seen for the model with the fluid layer, although it is difficult to 

distinguish them clearly. While for the model without the fluid layer, no more later arrivals 

present on the horizontal component, which is similar to the observation on the vertical 

component. But the amplitude of the first diffracted waves outside the irregular part of the 

surface of the model without the fluid layer (i.e. P waves) is a little bit larger than that of the 

model with the fluid layer, which is due to the energy dissipation by the fluid layer. 

4.1.2. Explosive source  

Besides the plane wave incidence, let us see what happens if we have an explosive source 

located in the solid layer. The source time function is a Ricker wavelet with central 

frequency 0.25 Hz. Figure 18 shows the time responses of the horizontal and vertical 

motions along the irregular solid interface due to an explosive source located at (distance, 

depth) = (32 km, 4 km) in the solid layer for Model 1 with and without a fluid layer, 

respectively. It can be seen from Figure 18 that the direct arrivals appearing along the 

irregular interface come from the explosive source directly and separate into two waves 

with the distance away from the center, regardless of the existence of the uppermost fluid 

layer. Those can be recognized as P and Rayleigh waves. The main difference of the results 

for the model with and without the fluid layer exists in the later multiple arrivals, which can 

be clearly observed from the comparison between Figure 18 (a) and (b). For the model with 

the fluid layer, the multiple reflections inside the basin-like fluid-solid interface can be 

clearly seen to generate the later multiple Rayleigh wave arrivals along the solid surface 

outside the irregular interface. While for the model without the fluid layer, no such multiple 

arrivals appear since it’s just a half-space. Those phenomena resemble the case of plane 

wave incidence.  

The above two examples clearly show the difference between the synthetic seismograms for 

the model with and without a fluid layer in the cases of plane wave incidence and explosive 



 
An Efficient Approach for Seismoacoustic Scattering Simulation Based on Boundary Element Method 151 

source excitation, from which we can say that the method presented in this Chapter can be 

used to study the effect of fluid layers on the seismic ground motions at land and ocean 

bottom seismic observations. Next, we will consider the case when we put the explosive 

source in a fluid layer and see how the introduced method can be used to simulate the water 

reverberation.  

 

 

Figure 18. Time responses along the irregular solid interface in Model 1 due to an explosive source 

located at (distance, depth) = (32 km, 4 km): (a) with a fluid layer; (b) without a fluid layer. 

4.2. Water reverberation modeling 

4.2.1. Formulation when source is located in fluid layer 

So far, we have given the formulation for seismic excitation in a multi-layered solid half-

space overlain with a fluid layer. Readers may ask if the method can be applied to obtain 

strong ground motion at land when we have the source located in the fluid layer. The 

answer is definitely positive. For doing so, there are two key steps. The first one is to form 

the solution matrix equations in the fluid layer, which can be done from Eq. (42) as follows 

 ۶(ଶ)(ଵ)ܘ(ଶ) = ۵(ଵ)(ଵ)ܙ(ଵ) + ۵(ଶ)(ଵ)ܙ(ଶ) + ۴,                      (55) 

where p and q with subscripts (2) are connected by Eq. (43). In order to solve Eq. (55), we 

need to use the global matrix propagator ۲௣௤(ଵ) defined in Eq. (43) to change Eq. (55) into  
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 ቀ−۵(ଵ)(ଵ) ۶(ଶ)(ଵ)۲௣௤(ଵ) − ۵(ଶ)(ଵ)ቁ ൭ܙ(ଵ)ܙ(ଶ)൱ = ۴,                          (56) 

which has the same number of unknowns and equations and can be solved without 

problem. What is left is to get the global matrix propagator ۲௣௤(ଵ) , which is the other key step. 

We understand that the global matrix propagator ۲௧௨(ଵ) in the solid layer right neighboring the 

fluid layer can be obtained recursively from the lowermost layer by using Eqs. (38-39). Then the 

continuity conditions at the fluid-solid interface Eq. (43) are used to obtain ۲௣௤(ଵ) from ۲௧௨(ଵ) as  

 ۲௣௤(ଵ) = ૚ఘfఠమ Σ۲௧௨(ଵ)/ሾNଵୣ ∙ (Nଵୣ)୘ + Nଶୣ ∙ (Nଵୣ)୘ + Nଵୣ ∙ (Nଶୣ)୘ + Nଶୣ ∙ (Nଶୣ)୘ሿ,            (57) 

where the matrices Nଵୣ and Nଶୣ	are defined as Eq. (48). The symbol	Σ in Eq. (57) means the 

summation of the four quarters of ۲௧௨(ଵ), and the multiplication and division of the matrices 

are operated in the sense of ‘element to element’. The general solution steps can be 

summarized into the following. 

Step 1. Calculate the global matrix propagators ۲௧௨(ଵ) in the lowermost layer by Eq. (39).  

Step 2. Calculate the global matrix propagators in all the solid layers above the bottom 

layer by Eqs. (38-39).  

Step 3. Reduce the global matrix propagators obtained in the solid layer right neighboring 

the fluid layer into the one in the fluid layer by Eq. (57).  

Step 4. Substitute the reduced global matrix propagator ۲௣௤(ଵ) obtained in Step 3 into the 

solution matrix equation (56) and solve for the normal derivative of pressure.  

Step 5. Obtain the pressure solutions at the fluid-solid interface by Eq. (43). Then obtain 

the traction solutions at the fluid-solid interface by the first two in Eq. (46).  

Step 6. Obtain the displacement solutions at the fluid-solid interface by ۲௧௨(ଵ).  
Step 7. Execute the Inverse Fourier Transform on the displacement solutions obtained in 

Step 6 to get the ground motion in time domain finally. 

4.2.2. Numerical example 

First consider the same model as Model 1, with an explosive source located at (distance, depth) 

= (32 km, 0.5 km) and receivers along the fluid-solid interface. The time function of the source 

is a Ricker wavelet with central frequency 0.25 Hz. The calculated time responses of 

displacements are shown in Figure 19(a), from which we can clearly see the multiple 

reflections inside the water basin and the generated multiple arrivals along the solid surface 

ourside the basin part. The second calculation taken into account is also for Model 1 but with 

the water width enlarged to 30 km, results of which are shown in Figure 19(b) and the time 

responses of the displacements along the fluid-solid interface ressembles those in Figure 19(a). 

The main difference between the two calculated results exists in the time difference between 

the multiple arrivals, which is due to the enlarged width of the water basin area. This example 

implies that the present method can be used to simulate the water revibaration in the sea, 

which is of importantly practical significance to deep ocean acoustic experiments and so on.  
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Figure 19. Time responses along the fluid-solid interface due to an explosive source located at 

(distance, depth) = (32 km, 0.5 km) in: (a) Model 1 and (b) Model 1 with a water width of 30 km.  

5. Summary 

In this Chapter, we presented an efficient approach based on the combination of the 

traditional boundary element method and the global matrix propagators for seismoacoutic 

scattering simulation in multilayered fluid-solid media. To make readers understand the 

introduced method easily, we first gave the mathematical formulation for SH-wave 

propagation simulation in multilayered solids, followed by some examples to test the 

validity of the formulation in solids. Then, we gradually went deep into the seismoacoustic 

scattering simulation due to an irregular fluid-solid interface, where the fluid pressure was 

used as the variable inside the fluid layer and the global matrix propagators defined in the 

fluid layer were extended successfully to connect the pressure wave with the elastic wave by 

using the standard continuity conditions at the fluid-solid interface (i.e. zero tangential 

traction, continuity of normal traction, and continuity of normal displacement). The 

synthetic waveforms in time domain for some selected models calculated by the present 

method agree well with those calculated by the reflection/transmission matrix method and 

those calculated by the discrete wavenumber method. The effects of a fluid layer on the 

synthetic seismograms can be exactly covered by the present method, and the water 

reverberation in the sea can also be simulated as well. The introduced method is especially 

suitable to simulate seismoacoustic scattering in a multilayered elastic structure overlain by 

a fluid layer. Since the global matrix propagators can be calculated recursively, the 
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computer memory required for a multilayered model is the same as that for a two-layer 

model. In case of the application of dynamic allocation of matrices and saving the global 

matrix propagators on hard drive, the array size assigned for calculating a two-layer model 

is sufficient for a multilayered model. In that case, the advantages of the boundary element 

method can be preserved, which implies that seismoacoustic scattering synthesis due to a 

high-frequency excitation can be modelled with reduced computer resources.  

Furthermore, if a calculated model is only partially modified, such as increasing the number 

of layers below the uppermost fluid layer in the case of a plane wave incidence or changing 

the free surface profile in the case of a point source excitation, not all the matrices need 

recalculating. That is due to the two merits of the present method: the global matrix 

propagators for the layers above the source are calculated downwards; and the global 

matrix propagators for the layers below the source are independent of the rest of the model.  
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