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1. Introduction 

When investigating the nonlinear equations of the form 

( , ) ,A f f   

where the operator ( , )A f  nonlinearly depends both on the parameter   and the function

f , the formalistic approach, which is based on linearization, is applied. The application of 

this approach shows, that the branching points of equation can be only those values of 

parameter  , for which unit ( 1  ) is the eigenvalue of the corresponding linearized 

equation (see, eg, [20]) 

( )A f f   

with the operator-valued function : ( )A C X H  ( ( )X H  is a set of linear operators, C  

is the spectral parameter), nonlinearly depending on the parameter  . If the linearized 

equation linearly depends on the parameter  , i.e. Af f , then its eigenvalues will be 

the branching points of initial equation. In a general case the curves of eigenvalues ( )   

appears and then the branching points will be those values of parameter   of the 

problem 

( ) ( ) ,A f f    

for which ( ) 1.    

The theory of branching solutions of nonlinear equations arose in close connection with 

applied problems and development of its ever-regulated by the new applied problems. 
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Some of these problems is reflected in the monographs [3, 4, 20], as well as in several articles 

(see, eg, [5, 6] and references therein) 

Application of the cited above approach to the nonlinear integral operator arising at 

synthesis of the antenna systems according to the given amplitude directivity pattern, brings 

to the nonlinear two-parameter eigenvalue problem  

( , )T f f    

with an integral operator ( , )T    analytically depending on two spectral parameters   and 

 . 

The essential difference of the two-parameter problems from the one-parameter ones is that 

the two-parameter problem can not have at all the solutions or, on the contrary, to have 

them as a continuum set, which in the case of real parameters are the curves of eigenvalues. 

Such problems are still not investigated because there are still many open questions 

connected with this problem such as, for example, the existence of solutions and their 

number, and also the development of numerical methods of solving such spectral problems 

for algebraic, differential and integral equations. 

In the given work an algorithm of finding the branching lines of the integral equation 

arising in the variational statement of the synthesis problem of antenna array according to 

the given amplitude directivity pattern as, for example, in [2] is proposed. 

2. Preliminary. Nonlinear synthesis problem 

We consider the radiating system, which consists of identical and identically oriented 

radiators of the same for all radiators directivity pattern (DP), in which the phase centers are 

located on the plane XOY  (grid plane) of Cartesian coordinate system. We believe that the 

coordinates of radiators ( , )n mx y  form a rectangular equidistant grid, focused on the axes 

and symmetric with respect to these axes. Then the function that describes the DP (plane 

array factor) of equidistant plane system of radiators (plane array) has the form [2]. 

 
1 2

1 2

( )
( sin cos sin sin )

( )

( , ) ,n m

M M n
ik x y

nm
n M m M n

f I e      

 

    (1) 

where nmI  are the complex currents on the radiators, ,   are the angular coordinates of a 

spherical coordinate system ( , , )R    whose center coincides with the center of the Cartesian 

coordinate system XOY , 2( )M n  is the integer function that sets the number of elements 

2 2( ) 2 ( ) 1N n M n   in the n  th row of  the array. Thus, the number of elements N  in this 

array is equal to 
1

1

2(2 ( ) 1)
M

n M

M n


 . 

We introduce the generalized variables 

1 sin cos ,   2 sin sin    
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and denote by 1d  and 2d , respectively, the distance between adjacent radiators along the 

axes Ox  and Oy . Then the coordinates of the radiators are calculated as 

1 ,nx d n 2 ,my d m  

and the plane array factor (1) can be represented as 

 
1 2

1 1 2 2

1 2

( )
( )

1 2
( )

( , ) ,
M M n

i c n c m
nm

n M m M n

f I e    

 
  

     (2) 

where 

1 1 2 2, .c kd c kd    

Note that the function 1 2( , )f     is periodic with a period 12 / c   for the  variable 1  and 

with a period 22 / c   for the variable 2 . Denote by 2R  the region that corresponds to one 

period  2 1 1 2 2: / , /R c c        and assume that the required amplitude directivity 

pattern 1 2( , )F     is given in some region 2R  and is described by the function that is 

continuous and nonnegative in   and is equal to zero outside. 

We must find such currents nmI  on radiators that created by them directivity pattern will 

approach by the amplitude to the given directivity pattern 1 2( , )F     in the best way. To this 

end, we consider the variational statement of the problem as, for example, in [2] or [18]. 

2.1. Variational statement of the synthesis problem 

Thus, the synthesis problem we formulate as a problem of minimizing the functional [18] 

 
2

2 2

1 2 1 2 1 2 1 2 1 2
\

( ) ( , ) ( , ) ( , )
R

I F f d d f d d          
 

                (3) 

on the space 
N

IH C , i.e. 

( ) min , ,
I

nm I
I H

I I H


   

which characterizes the magnitude of mean-square deviation of modules of the given 

directivity pattern and the synthesized one in the region  . 

From the necessary condition of the functional ( )I  minimum, we obtain a nonlinear 

system of equations for the optimum currents on radiators  

1 1 2 2( )1 2
1 22

( , )
(2 )

i c n c m
nm

c c
I F e   


 



 
     

1 2

1 1 2 2

1 2

( )
( )

1 2
( )

exp arg ,
M M n

i c n c m
nm

n M m M n

i I e d d   

 

  
 
  

 
      



 

Nonlinearity, Bifurcation and Chaos – Theory and Applications 284 

 1 1 2 2( , )n M M m M M       (4) 

or the equation for the optimum directivity pattern, which is equivalent to (4) 

 1 2arg ( , )1 2
1 2 1 2 1 2 1 2 1 2 1 22

( , ) ( , ) ( , , , , , ) ,
(2 )

i fc c
f F K c c e d d          


 



      
                (5) 

where 

1 2

1 1 1 2 2 2

1 2

( )
[ ( ) ( )]

1 2 1 2 1 2
( )

( , , , , , )
M M n

i c n c m

n M m M n

K c c e           

 

    
           

is the kernel, which essentially depends on the coordinates of  antenna array. 

Next, consider the rectangular grid with geometric center at the origin, which consists of 

1 2 1 2(2 1)(2 1)N N N M M      elements. Here 2 2( ) constM M n  . We believe also that 

the amplitude directivity pattern 1 2( , )F     is given in the region 1 1 2 2:{| | ,| | }b b     . 

Denote by 12  and 22  the intervals of change of the angle   in the region   at 0  and 

/ 2  , respectively, and introduce new variables 

1 1 1/ sin ,    2 2 2/ sin .     

Then 1 2:{| | 1,| | 1}    , and the kernel in equation (5) is real and takes the form [2] 

1 2

1 1 1 2 2 2

1 2

[ ( ) ( )]
1 2 1 2 1 2( , , , , , )

M M
i c n c m

n M m M

K c c e           

 

    
1 2

1 1 1 2 2 2

1 2
1 1 2 2

sin ( ) sin ( )
2 2 ,

sin ( ) sin ( )
2 2

c c
N N

c c

   

   

  


  
 (6) 

where 1 1 1 2 2 2 1sin , sin ,c kd c kd N    and 2N  are the main parameters of the problem. 

Thus, equation (5) for optimal DP takes the form 

 1 2arg ( , )1 2
1 2 1 2 1 2 1 2 1 2 1 22

( , ) ( , ) ( , , , , , ) ,
(2 )

i fc c
f F K c c e d d          


 



        (7) 

and equation (4) for optimal currents takes the form 

1 1 2 2( )1 2
1 22

( , )
(2 )

i c n c m
nm

c c
I F e   


 



 
1 2

1 1 2 2

1 2

( )
1 2exp arg ,

M M
i c n c m

nm
n M m M

i I e d d   

 

  
 
  

   

 1 1 2 2( , ).n M M m M M       (8) 

Equivalence of equations (7) and (8) means that between the solutions of these equations 

one-to-one correspondence exists, i.e., to each solution of equation (7) corresponds the 

solution of equation (8) and vice versa. This means that if 1 1 2 2, , , , ,nmI n M M m M M     is 



Numerical Algorithms of Finding the Branching Lines  
and Bifurcation Points of Solutions for One Class of Nonlinear Integral Equations 285 

a solution of equation (8), the corresponding to it solution of equation (7) is determined by 

the formula 

 
1 2

1 1 2 2

1 2

( )
1 2( , ) ,

M M
i c n c m

nm
n M m M

f I e    

 
    (9) 

and if 1 2( , )f    is a solution of equation (7), the corresponding to it solution of equation (8) 

is determined by the relation 

 
1 2 1 1 2 2arg ( , ) ( )1 2

1 2 1 22
( , ) .

(2 )

i f c n c m

nm

c c
I F e d d

      


    



   (10) 

Since equations (7) and (8) are nonlinear equations (Hammerstein type), they may have 

nonunique solutions, the number and properties of which depend on the number of  

elements in the antenna array and their placement, and also on the properties of the given 

amplitude directivity pattern 1 2( , )F   . 

It is easy to see that one of possible solutions of equation (7) (call it trivial) is 

 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2( , , , ) ( , ) ( , , , , , ) .f c c F K c c d d         


        (11) 

Experimental results of numerical synthesis of the directivity pattern for different values of 

parameters 1c  and 2c  show that with growth of parameters 1c  and 2c  there are other 

solutions that branch off from a trivial solution and they are more effective in terms of the 

values of functional (3), from 0% to 75 % 

In particular, for the given directivity pattern 1 2( , ) 1F     the values of functional (3), which it 

takes on the optimal solution 1 2 1 2( , , , )f c c   for different values of the main parameters 1c  

and 2c  ( 1( )I  0.739543, correspond, to 1 2c c  0.57, 2( )I  0.719989 - 1 2c c  0.60, 

3( )I  0.644291 - 1 2c c  0.65, 4( )I  0.559552 - 1 2c c  0.70, 5( )I  0.493709 - 1 2c c 

0.75) is smaller than the values of functional (3) for the trivial solution 0 1 2 1 2( , , , )f c c   at the 

same parameter values 1c  and 2c  (
1

0( )I  0.739769, 0
2 ( )I  0.741211, 

3

0( )I  0.734128, 

4

0( )I  0.707903, 
5

0( )I  0.661929), respectively by 0.03%, 2.86%, 12.24%, 20.95% and 25.41%. 

Numerical examples of the trivial and branching solutions for the given directivity pattern 

1 2( , ) 1F     and the basic parameters of 1 2 0.75c c    are shown in Fig. 1 -- Fig. 4.  

In Fig. 1 shows the trivial solution, which creates a symmetrical inphase current distribution 

on the radiators of array (Fig. 2). The amplitude of the synthesized directivity pattern, which 

branches off from 0 1 2 1 2( , , , )f c c  , is shown in Fig. 3, and the optimal current on the 

radiators that it creates, is asymmetric and is shifted to the first quadrant relatively of the 

center of array (Fig. 4). 
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Figure 1. Amplitude directivity pattern of a trivial solution 0 1 2 1 2( , , , )f c c   

 

Figure 2. Current cophasal distribution on the radiators, which creates the diagram 0 1 2 1 2( , , , )f c c   
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Figure 3. Amplitude directivity pattern of the solution branched from 0 1 2 1 2( , , , )f c c   

 

Figure 4. Optimal current distribution on radiators, which creates the branched solution 
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Figure 5. Given amplitude directivity pattern 1
2( ) cos |sin |

2
F


   

The branching solutions are still more effective for directivity patterns that do not have 

central symmetry. For example, for the given directivity pattern 1
2( ) cos |sin |

2
F


   and 

the main parameters 1 21.0, 0.85c c  , which is shown in Fig. 5, numerical examples of the 

trivial and the branching  solutions are shown in Fig. 6 - Fig. 9. From these figures we see 

that the branching solution (the amplitude directivity pattern of which is shown in Fig. 8, 

and the optimal distribution of the current on the radiators that it generates is shown in Fig. 

9) more accurately than the trivial solution (11) (amplitude directivity pattern is shown in 

Fig. 6, which is created by symmetric inphase current (Fig. 7)) approximates  the  given  

directivity  pattern not only in the mean square approximation (in terms of the values of 

functional (3) - 0.050109 in comparison with  0.185960) to about 73%, but also with respect to  

the form. 

Thus, in most cases from the practical point of view the nontrivial solution, that branches off 

from 0 1 2 1 2( , , , )f c c   with growth of parameters 1c  and 2c  is interesting. 
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Figure 6. Amplitude directivity pattern of trivial solution 0 1 2 1 2( , , , )f c c   

 

Figure 7. Inphase current distribution on the radiators, which creates the diagram 0 1 2 1 2( , , , )f c c   
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Figure 8. Amplitude directivity pattern of solution branched off from 0 1 2 1 2( , , , )f c c    

 

Figure 9. Optimal distribution of current on the radiators, which creates the branching solution 



Numerical Algorithms of Finding the Branching Lines  
and Bifurcation Points of Solutions for One Class of Nonlinear Integral Equations 291 

2.2. Problem of finding the branching lines 

The points of possible branching of solutions of integral equation (7) are such values of real 

physical parameters   2
1 2,c c R , in which homogeneous integral equation [18] 

1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0 1 2 1 2

( , , , )
( , , , ) ( , ) ( , , , ) ( , ) ( , , , , , ) ,

( , , , )

u c c
u c c T c c u c c F K c c d d

f c c

 
           

 

 
      

   (12) 

obtained by linearization of equation (7), has solutions distinct from identical zero [20]. 

Thus, we have obtained the nonlinear (with respect to parameters 1c  and 2c ) two-

parameter eigenvalue problem 

  1 2 1 2 1 2( , ) ( , , , ) 0,T I u      
1 1 2 2, .c c    (13) 

It is easy to be convinced, that at arbitrary finite values 1 0c  , 2 0c  , the function 

0 1 2 1 2( , , , )f c c   is the eigenfunction of equation (12). From this it follows, that the operator 

1 2( , )T c c  has a spectrum, which coincides with the first quadrant of the plane 2R . 

The problem consists in finding such range of real parameters 1 1c   and 2 2c   of the 

problem (13), for which there appear the solutions different from 0 1 2 1 2( , , , )f c c  . 

It should be noted that in a special case, when it is possible to separate variables in the function 

1 2( , )F   , i.e. 1 2( , )F    to present as 1 2 1 1 2( , ) ( ) ( )F F F     , the equation (12), provided that 

function 1 2 1 2( , , , )u c c   can also be presented as 1 2 1 2 1 1 2 2( , , , ) ( , ) ( , )u c c u c u c     , 

decomposes in two independent one-parameter equations, i.e. 

( , ) ( ) ( , ) , 1,2,j j j j j j ju c T c u c j    

with operators 

1

01

sin ( )( )
2( ) ( , ) ( , ) ,

( , )
sin ( )

2

j
j j jj j

j j j j j j j
jj j

j j

c
NF

T c u c u c d
cf c

 
  


 


 


 1, 2.j  . 

The study of such equations is carried out in [2, 18], and it is possible to apply , for example, 

the algorithms of the work [11, 13, 15] to solution of such equations.  

In the given work the numerical algorithms to solve more complicated problem when the 

variables are not separated, are proposed. 

3. Basic equations 

First we will show that the kernel 1 2 1 2 1 2( , , , , , )K c c      (as in one-dimensional case [18]) in 

the region 1 2:{| | 1,| | 1}     for arbitrary 1 0c   and 2 0c   is a positive kernel of the 

integral operator 
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1 2 1 2 1 2 1 2 1 2 1 2( , ) ( , , , , , ) ( , ) .Af K c c f d d         


        

To this end, consider the scalar product 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ) ( , , , , , ) ( , ) ( , ) .Af f K c c f f d d d d           
 

           

Substituting the expression for 1 2 1 2 1 2( , , , , , )K c c      (6), we obtain 

( , )Af f 
1 2

1 1 1 2 2 2

1 2

( ) ( )

1 2 1 2 1 2 1 2( , ) ( , )
M M

i nc mc

n M m M

e f f d d d d
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  

 
        
 
 
  

1 2

1 1 2 2 1 1 2 2

1 2

( ) ( )
1 2 1 2 1 2 1( , ) ( , )

M M
i nc mc i nc mc

n M m M

f e f e d d d d             

   

       
  

   

1 2 1 2

1 1 2 2
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i nc mc
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f e d d I
c c

       

   

          

Obviously, the last inequality transforms into equality only when 

1 1 2 20, , , ,nmI n M M m M M     . From this it follows that 1 2 1 2 1 2( , , , , , )K c c      is 

positive, and positive operator A  leaves invariant a cone K  ( )A K K  of the continuous 

nonnegative functions on  . As a result, we obtain that 0 1 2 1 2( , , , )f c c   is positive on   

function. Taking it into account, we shall reduce the operator (12) to a selfajoint form by a 

standard method. Introducing a new function 

 1 2 1 2 1 2 1 2 1 2 1 2( , , , ) ( , , , ) ( , , , ),c c w c c u c c         (14) 

where 1 2 1 2 1 2 0 1 2 1 2( , , , ) ( , ) / ( , , , )w c c F f c c      , we obtain the integral equation 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2( , , , ) ( , , , , , ) ( , , , )c c c c c c d d           


        (15) 

with a symmetric kernel 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , ) ( , , , ) ( , , , ).c c K c c w c c w c c                   

Since at arbitrary 1 0c   and 2 0c   the function 0 1 2 1 2( , , , )f c c   is the eigenfunction of the 

equation (12), then with regard for (14), the eigenfunction of the equation (15) at arbitrary 

1 0c   and 2 0c   will be the function  

0 1 2 1 2 1 2 0 1 2 1 2( , , , ) ( , ) ( , , , ) ,c c F f c c        

which corresponds to a spectrum of the operator (15), coinciding with the first quadrant of 

the plane 2R .  
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To find the solutions distinct from 0 1 2 1 2( , , , )c c   , we shall eliminate this function from 

the kernel 1 2 1 2 1 2( , , , , , )c c     , then the equation (15) will be reduced to the integral 

equation 

 1 2 1 2 1 2 1 2 1 2( , , , ) ( , ) ( , , , )c c T c c c c      
1 1

1 2 1 2 1 2 1 2 1 2 1 2
1 1

( , , , , , ) ( , , , )E c c c c d d        
 

        (16) 

with a symmetric kernel 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( , , , , , ) ( , , , ) ( , , , )E c c w c c w c c             

 0 1 2 1 2 0 1 2 1 2
1 2 1 2 1 2 2

0 1 2 1 2

( , , , ) ( , , , )
( , , , , , ) .

|| ( , , , )||

f c c f c c
K c c

c c

   
   

  

  
   

  
 (17) 

From Schmidt's lemma [20] it follows, that 0 1 2 1 2( , , , )c c    will not be the eigenfunction of 

equation (16) anymore. That is, we have eliminated a continuum set of eigenvalues from a 

spectrum of the operator (16), which coincides with the first quadrant of the plane 2R  that 

corresponds to the function 0 1 2 1 2( , , , )c c   . So, we obtain a self-adjoint generalized 

eigenvalue problem  

  1 2 1 2( , ) ( , ) 0,L T I        1 1 2 2, ,c c    (18) 

with the operator 1 2( , )T c c  which is a continuously differentiable with respect to the 

parameters 1c  and 2c . The existence of partial Frechet derivatives 1 2( , )

i

T c c

c




, 1,2i  , and 

2
1 2( , )

i j

T c c

c c


 

, , 1,2i j   at arbitrary points 1 2,c c    follows from the continuity of the 

kernel 1 2 1 2 1 2( , , , , , )E c c      on the set of its variables in the region   and the existence 

and continuity in   the derivatives 1 2 1 2 1 2( , , , , , )

i

E c c

c

    


, 1,2i   and 

2
1 2 1 2 1 2( , , , , , )

i j

E c c

c c

    
 

, , 1,2i j   which because of their bulky form, are not presented. 

Using the property of degeneracy of the kernel 1 2 1 2 1 2( , , , , , )K c c     , we will reduce 

equation (16) to an equivalent system of algebraic equations. 

Using the formula (6), we write the kernel 1 2 1 2 1 2( , , , , , )E c c      as 

1 2

1 2

1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , , , , , ) ( , , , ) ( , , , )

M M

nm nm
n M m M

E c c K c c K c c       
 

        
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1 2 1 2

1 2 1 2

1 1 2 2
1 2 1 2 1 2 1 2( , , , ) ( , , , ) ,

M M M M

nm nm nm nm
n M m M n M m M

K c c q K c c q   
   

  
    
  
  
     

where 

 1 1 2 21 21 1 2
1 2 1 2

0 1 2 1 2

( , )
( , , , ) ,

2 ( , , , )

i c n c m

nm

c c F
K c c e

f c c

  
 

  
   

 1 1 2 21 22 1 2
1 2 1 2

0 1 2 1 2

( , )
( , , , ) ,

2 ( , , , )

i c n c m

nm

c c F
K c c e

f c c

  
 

  
   

   
 

 

 1 1 2 21
1 2 1 2( , ) ,

i c n c m
nmq F e d d

      



      

 1 1 2 22
1 2 1 2( , ) .

i c n c m
nmq F e d d

    



   

Then equation (16) takes the form 

1 2

1 2

1
1 2 1 2 1 2 1 2( , , , ) ( , , , ) ,

M M

nm nm
n M m M

c c a c c b    
 

    

where 

2
1 2 1 2 1 2 1 2 1 2( , , , ) ( , , , ) ,nm nmb K c c c c d d      



        

1 2

1 2

1 1 1 1 2
1 2 1 2 1 2 1 2 1 2 1 2

1
( , , , ) ( , , , ) ( , , , ) ,

M M

nm nm st st nm
s M t M

a c c K c c K c c q q     
  

 
  
 
 
   

1 2

1 2

1 2 ,
M M

nm nm
n M m M

q q
 

    

and the unknown coefficients nmb  are determined as solutions of a homogeneous system of 

linear algebraic equations 

1 2

1 2

( )
1 2( , ) ,

M M
kl

kl nm nm
n M m M

b c c b
 

   1 1 2 2, , , ,k M M l M M     

where 

( ) 2 1
1 2 1 2 1 2 1 2 1 2 1 2( , ) ( , , , ) ( , , , ) ,kl

nm kl nmc c a c c a c c d d      


   
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1 2

1 2

2 2 2 2 1
1 2 1 2 1 2 1 2 1 2 1 2

1
( , , , ) ( , , , ) ( , , , ) .

M M

nm nm st st nm
s M t M

a c c K c c K c c q q     
  

 
  
 
 
   

So, we have obtained the two-parameter nonlinear (with respect to the spectral parameters ) 

matrix eigenvalue problem equivalent to (18) 

 ( , ) ( ( , ) ) 0N N N N N     D b A I b  (19) 

with symmetric matrix ( , )N  A  of dimension N N , NI  is the identity matrix of 

dimension N N , N
N Rb , 1 2,c c   . 

Thus, the problem of finding lines the branching of solutions of equation (7) is reduced to 

finding the eigenvalues curves of nonlinear two-parameter spectral problem (19). 

Obviously, in order the problem (19) to have a nonzero solution it is necessary that 

 ( , ) det ( , ) 0,N     D  (20) 

i.e. the eigenvalues of problem (19) are zeros of function ( , )   . 

4. Algorithm of finding the eigenvalue curves 

The main calculational part of algorithm proposed is the implementation method proposed 

in [14, 15] to compute all eigenvalues of the nonlinear matrix spectral problem  

 ( , ) 0,n nu  T  (21) 

belonging to some given range of the spectral parameter   at the given value of parameter  . 

In the problem (21) n
nu  , and ( , )n  T  is the real ( )n n  matrix whose elements depend 

nonlinearly on the parameters   and  . In order to detail how the method [15] is applied to 

the problem under consideration in this paper, we present the necessary results from [15]. 

Thus, we replace in the problem (21), for example, the parameter   by the expression 

     and consider the appropriate one-parameter problem 

 ( ) ( , , ) 0,n nu u    n nT T   (22) 

at the given fixed values   and  . Then, obviously, the eigenvalues of problem (21) are 

zeros of function 

( ) det ( ) 0,nf   T  

where ( )n T  is a real ( )n n  matrix whose elements depend nonlinearly on the parameter  . 

One should determine how many zeros of the function ( )f  , and, therefore, the eigenvalues 

of the problem are in some given range of change of parameter ,
k kc d    [ ]  and 

calculate each of them. 
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4.1. The argument principle of meromorphic function 

In the basis of algorithm of finding number of zeros and their approximations, which are in 

some areas G , is the statement that follows from the argument principle of meromorphic 

functions. 

Statement. Let the meromorphic function ( )f   have in the region G  m  zeros 1 2, , , m    (with 

regard for their multiplicity) and no zeros on the boundary   of region G , then the number m  is  

determined in accordance with the principle of the argument 

 0

( )1

2 ( )

f
m s d

i f




 


     (23) 

and relations 

 
1

( ) ,      1, ,
m

k
j k

j

s k m


     (24) 

are true, where 

 
( )1

,      0,1, .
2 ( )

k
k

f
s d k

i f


 

 


     (25) 

Thus, knowing ,  1,2, ,ks k m  , from the system (24)  we can find the zeros of functions 

( )f   that are in the region G . 

By putting the interval ,
t tc d [ ]  in the region G , such as a circle with center at 

0 ( ) 2
t t tc dr    /  and radius ( ) 2

t tt d c    / , and applying the above statement to the 

meromorphic function ( ) det ( )nf   T , you can find all the eigenvalues of problem (22), 

belonging to the given region G , i.e. to the given interval ,
t tc d [ ] . The integrals in (23) and 

(25) we can replace by some approximate quadrature formulas, such as rectangles at N  

points on  , and since   is a circle, then to calculate quantities , 0,1,2,ks k   , we obtain 

the relation 

 
1

( )21
( ) exp ,

( )

N
jk

k j t
j j

fj
s i

NN f


 



 
  

 
  (26) 

where 0

2
exp

tj t

j
r i

N


 

 
   

 
. The system itself (24) we solve using Newton's method, by 

choosing the initial approximation on the border   of the region G : 

 
(0)

0 0
0

2
exp ,      1,2, , .

tj t

j
r i j s

s


 

 
   

 
  (27) 
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The found eigenvalues can be refined, using them as initial approximations for Newton's 

method 

 1

( )
,      0,1,2,

( )
l

l l
l

f
l

f


 
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

  (28) 

or for one of bilateral analogies of Newton's method [15], for example, 

2 2
2 1 2 2

2 2 2

( ) ( )

( ) ( ) ( )

l l
l l

l l l

f f

f f f

 
 

  


 
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 2 1
2 2 2 1

2 1

( )
,         0,1,2,

( )
l

l l
l

f
l

f


 




 

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

      (29) 

The argument principle (23) and formula of the argument principle type (24), (25) were 

repeatedly applied in solving various spectral problems (see, for example, [1, 7, 9] and 

references therein), but the peculiarity of the proposed algorithm is to compute the values of 

function ( )f   and its derivatives basing on LU-decomposition of the matrix ( )n T . 

4.2. Numerical procedure of calculating the derivatives (the first and the second) 

for the matrix determinant 

Theorem.  If the elements of square matrix ( )D  are differentiable functions with respect to 

parameter  , then for any   for derivatives of determinant det ( ) ( )f D  of matrix ( )D  the 

relations  

 
1 1,

( ) det ( ) ( ) ( ),
nn

k k i i
k i i k

f v u   
  

      D  (30) 

 
1 1 1,1, 1, ,

( ) det ( ) ( ) ( ) ( ) ( ) ( ) ,
n nn n n

k k i i k k j j i i
k k j j ki i k i i k i j

f w u v v u      
       

         
 

   D  (31) 

are true, where ( ), ( )ii iiu v   and ( )iiw   are, respectively, the elements of  the upper triangular 

matrix ( )U , ( )V  and ( )W  in decompositions 

 ( ) ( ) ( ),  D L U  (32) 

 ( ) ( ) ( ) ( ) ( ),     B M U L V  (33) 

 ,                    C = N U + M V + L W  (34) 

and ( )L  is the lower triangular matrix with single diagonal elements. 
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Proof. It is known that matrix ( )D  of order n , which for any  has the major minorities of 

all orders from 1 to ( 1)n  , differen from zero, by using the LU-decomposition can be 

written as (32), where ( )L  is the lower triangular matrix with single diagonal elements, 

and ( )U  is the upper triangular matrix. Then 

1

( ) det ( )det ( ) ( ).
n

ii
i

f u   


 L U  

Since the elements of a square matrix ( )D  (and hence the matrix ( )U ) are differentiable 

functions with respect to  , then for any   we obtain that 

 
1 1,

( ) ( ) ( ),
nn

k k i i
k i i k

f u u  
  

   , (35) 

 
1 1 1,1, 1, ,

( ) ( ) ( ) ( ) ( ) ( ) .
n nn n n

k k i i k k j j i i
k k j j ki i k i i k i j

f u u u u u     
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 
      

 
 

    . (36) 

To find the values ( )i iu   we differentiate (32) with respect to  . We obtaine (33), i.e.  

( ) ( ) ( ) ( ) ( ),     B M U L V  

where ( ) ( ) B D , ( ) ( ) M L , ( ) ( ) V U , and ( ) ( )i i iiv u   are the elements of 

matrix ( )V . Now, differentiating the last equality with respect to  , we obtain (34), 

namely: 

,                    C = N U + M V + L W  

where ( ) ( ) ( )    C B D , ( ) ( ) N M , ( ) ( ) ( )    W V U , and а 
( ) ( ) ( )i i ii iiw v u      are the elements of matrix ( )W . Thus, from (33) and (34) we obtain 

(35) and (36), i.e. (30) and (31). Theorem is proved. 

Therefore, to calculate, ( )mf  , ( )mf   and ( )mf   it is necessary to calculate  

D = LU  

 B = MU + LV  (37) 

,C = NU + 2MV + LW  

at a fixed m  , from which 
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1 1 1,1, 1, ,
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n nn n n
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Elements of matrices in the decompositions (37) can be calculated using the recurrent 

relations 
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r
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
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  
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1

1

( 2 ) , , ... , ,
r

rk rk rj jk rj jk rj jk
j

w c n u m v l w k r n



      

1

1

( 2 ) 2 / , 1, ... , .
r

ir ir ij jr ij jr ij jr ir rr ir rr rr
j
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



 
        
  

  

If some of the principal minors of the matrix of order 1j n   are zero, then the 

decomposition (32) may not exist or, if it exists, it is ambiguous. 

In practice, the best way to establish the possibility of LU-decomposition is to try to calculate 

it. It may happen that 0rru   ( r  is the order of the main minor of the matrix, which is zero). 

To avoid this, in the process of decomposition one may use a series of permutations of rows 

(and/or columns) of matrix D  with a choice of principal element. In this case the 

decomposition (37) can be written as 

 PD = LU  (39) 

 PB = MU + LV  (40) 

PC = NU + 2MV + LW  
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where P  is a permutation matrix, moreover det ( 1)q P , where q  is a number of 

permutations (for example, rows ). In this case the relations (38) take the form 

 
1

( ) ( 1) ,
n

q
m i i

i

f u


  
1 1,

( ) ( 1) ,
nn

q
m k k i i

k i i k

f v u
  

      (41) 

1 1 1,1, 1, ,

( ) ( 1) ( 1) .
n nn n n

q q
m k k i i k k j j i i

k k j j ki i k i i k i j

f w u v v u
       

 
     

 
 

     

Since in the relations (38) the value of function and its derivative is calculated only on the 

boundary region G , i.e. at the given points , 1, ... ,j j N  , then for their calculation we use 

the same numerical procedure of decomposition of matrices (37). As a result, to calculate the 

values , 0,1,2, ... ,ks k   we obtain the relation 

   2

1 1

1
exp( ) ,

N nk j r r

k j t N
j r r r

v
s i

N u

 
 

 
 
 
 

   (42) 

where ,kk kku v  are the elements of matrices U , V  in decomposition (37) at fixed j  . 

Now, if we know some approximation to the eigenvalue, then the correction 

( ) / ( )l l lf f     to construct the successive approximations for Newton's method (28) 

assumes the form 
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1 / ,
n

kk
l

k kk

v

u



   0,1, ... ,l   (43) 

and bilateral analogue of Newton's method (29) takes the form 
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2 1 2
1 1

2 2 2 1
1

/ ,

1 / ,

n n
kk kk kk

l l
k kkk kk kk

n
kk

l l
k kk

v v w

u u u
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 

 


 

 


                     


 


 


0,1,2, ... ,l  , (44) 

where , ,kk kk kku v w  are the elements of matrices U , V  and W  in the decompositions (37) 

at fixed 2l  , and ,kk kku v  are the elements of matrices U , V  in the decompositions (37) 

at fixed 2 1l   . 

Thus, the algorithm of finding the eigenvalue curves of the problem (19) consists of the 

following steps. 

Algorithm 1. 

Step 1. Determine the interval ,c d   [ ] , where we find the eigenvalues of problem (21). 

This can be a single-spaced interval or a sequence of intervals ,
t tt c d   [ ]  such that 
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t   . For this purpose we put this interval t  in a circle (area G ), setting the center 

of the circle 0 ( ) 2
t t tc dr    /  and radius ( ) 2

t tt d c    / , and also the number of 

points of partition N  of the boundary   of the region G , i.e. the circle. 

Step 2. Determine the value of parameter k k      giving the next meaning for the 

values k  and k . 

Step 3. Using the decomposition (37) for complex values  , we determine the number of 

eigenvalues that are in the selected area G , by the formula 

0
1 1

21
exp ,

N n
rr

t
j r rr

vj
m s i

N N u




 

 
   

 
   

and their approximate values we find by solving the system of equations (24), after 

calculating the right part of the formula (42). 

Step 4. Using the decomposition (37) for real values  , we refine all eigenvalues that fall 

in the area G , using the Newton method 

1
1

1 / ,
n

rr

r rr

v

u
 



 
    

 
   

or bilateral analogue of Newton's method (44). As initial approximation we take the 

approximate values obtained in Step 3. 

Step 5. Go to Step 2. 

Step 6. If necessary, we correct the area G  by changing it center and / or radius and go to 

Step 2, otherwise go to Step 7. 

Step 7. The end. 

Application of modification of algorithm for linear two-parameter problems was considered 

in [16]. 

5. Algorithm of finding the bifurcation points of eigenvalue curves 

Note that if two eigenvalue curves intersect at some point, this point is called the point of 

bifurcation (or branch the point). Sufficient criterion for the existence of such points have 

been known long ago (see, for example, [8]) and consists in that the point ( , )b b   is a 

bifurcation point of equation 

 ( , ) det ( , ) 0,nf D      (45) 

if conditions 
( , )

0
f  






, 

( , )
0

f  






 are satisfied, and the second order partial derivatives 

are different from zero. But this criterion was not often used in practical calculations, 

because it requires calculation of derivatives of the determinant of matrix. 
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Using the algorithm of computing derivatives of the determinant of the matrix proposed in 

section 2 this criterion can be effectively used to calculate the bifurcation points of equation 

(45). 

Thus, the problem consists in determining such parameters   and   which are the 

solutions of two nonlinear algebraic equations 

 

( , )
det ( , ) 0,

( , )
det ( , ) 0.

n

n

f
D

f
D





 
 


 

 


    
    

 (46) 

Note that, with some approximation to solution of (46), for its solution the iterative process 

of Newton's method can be applied as in [12] 
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0,1, ...m   (47) 

where 
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f f
J

f f

 
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 (48) 

Further we assume that the determinant of matrix of the second derivatives (48) whose 

elements are calculated at point different ( , )m m   from zero. 

Thus, at each step iterative process to compute the function ( , ) det ( , )f     Τ  and its partial 

derivatives (first and second) only for fixed values of the parameters   and  . This can be 

realized in a numerical procedure using the LU-decomposition of matrix ( , ) T , namely: 
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1,2 1 2
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where 
'1 ( , ) ( , )ii iiv u
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       , 
'2( , ) ( , )ii iiv u


       , 
'

1,1 1( , ) ( , )ii iiw v


       , 
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
       , 

'
1,2 1( , ) ( , )ii iiw v



       , 
'

2,1 2( , ) ( , )ii iiw v


        are the diagonal 

elements of matrices 1( , )V   , 2( , )V   , 1,1( , )W   , 2,2( , )W   , 1,2( , )W    and 2,1( , )W    

in decompositions 
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From this it follows that to calculate ( , )m mf   , ( , )m mf   , ( , )m mf   , ( , )m mf   , 

( , )m mf    and ( , )m mf    it is necessary for fixed m   and m   to calculate 
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from which 
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The elements of matrix from decomposition (49) can be calculated directly using the 

recurrent relations 
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



 
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  
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1
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r
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j
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1
2,2 2,2 2,2 2 2 2,2 2 2 2,2

1

( 2 ) 2 / ,
r

ir ir ij jr ij jr ij jr ir rr ir rr rr
j

n c n u m v l w m v l w u




 
      
  

 1, ... , ,i r n   

1
1,2 1,2 1,2 1 2 2 1 1,2

1

( ) , , ... , ,
r

rk rk rj jk rj jk rj jk rj jk
j

w c n u m v m v l w k r n



       

1
1,2 1,2 1,2 1 2 2 1 1,2 1 2 2 1 1,2

1

( ) / ,
r

ir ir ij jr ij jr ij jr ij jr ir rr ir rr ir rr rr
j

n c n u m v m v l w m v m v l w u




 
        
  

 1, ... , ,i r n   

1
2,1 2,1 2,1 2 1 1 2 2,1

1

( ) , , ... , ,
r

rk rk rj jk rj jk rj jk rj jk
j

w c n u m v m v l w k r n



       

1
2,1 2,1 2,1 2 1 1 2 2,1 2 1 1 2 2,1

1

( ) / ,
r

ir ir ij jr ij jr ij jr ij jr ir rr ir rr ir rr rr
j

n c n u m v m v l w m v m v l w u




 
        
  

 1, ... , ,i r n  , 

which are generalization of recurent relations of  Section 3.2.  

Thus, the algorithm of finding of the bifurcation points of eigenvalue curves of two-

parametric spectral problem consists of the following steps. 

Algorithm 2. 

Step 1. To set the accuracy of calculations: with respect of the parameters - p  and with 

respect of the function - f  

Step 2. Initialize 0 0,   

Step 3. for m =1,2, … up to achievement of accuracy p  do 

Step 4. Calculate the matrix ( , ) ( , )n nD T I     ,  1( , ) ( , )nB D


        , 

2( , ) ( , )nB D


         and 1,1( , ) ( , )nC D


        , 2,2( , ) ( , )nC D


        , 

1,2( , ) ( , )nC D


        , 2,1( , ) ( , )nC D


         for  ,m m     . 
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Step 5. Using the decomposition (49) and relations (50) we calculate ( , )m mf   , 

( , )m mf   , ( , )m mf   , ( , )m mf   , ( , )m mf    and ( , )m mf    and construct the 

matrix of the second derivatives of (48). 

Step 6. Compute the next approximation to   and   by the formula (47) 

Step 7. end for  m 

Step 8. if ( , )m m ff     then go to Step 10. 

Step 9. else Initialize a different initial approximation to the bifurcation point and go to 

Step 3. 

Step 10. The end 

6. Analysis of numerical results 

In conducting a series of numerical experiments on the synthesis of antenna arrays, 

Algorithms 1 and 2 were used to find the curves of eigenvalues for two-parameter 

eigenvalue problem, which are the branching lines of solutions of nonlinear synthesis 

equation (7) and their bifurcation points. Numerical calculations were carried out as for the 

problems in which in the function 1 2( , )F    that describes the given directivity pattern of the 

array, the variables are separated and are not separated.  

In Fig. 10 - Fig. 13 are shown the curves of eigenvalues for four problems, in which the given 

directivity patterns are defined by the formulas 1 2( , ) 1F    , 1 2 1 2( , ) cos |sin |
2

F
     , 

2 2
1 2 1 2( , ) 1 ( ) / 2F        and  2 2

1 2 1 2( , ) cos
2

F
     , respectively. 

In conducting numerical experiments the interval of changing of parameter    is divided 

into sequence intervals, each of which is puted in a circle of corresponding radius with  

respective center. Number of points partition of boundary of each circle was constant and 

equal 512N  . On the step 2 of algorithm the values of   was selected with the interval 

[0,7 1,5]  with a step 0,05   as well 0  . 

Table. 1 presents the bifurcation points for four directivity patterns 1 2( , )F   , when the 

variables are separated and  three directivity patterns when the variables are not separated. 

For the first four diagrams a bifurcation point is shown also, which can be obtained by other 

methods, provided that in the function 1 2( , )f    the  variables are separated. 

The Table shows that when the variables in the functions 1 2( , )F    and 1 2( , )f    are 

separated, the results obtained by different approaches (reduction of one-parameter 

problems to the transcendental equations and solving them [2], by methods of descent [18] 

and also by bilateral methods proposed  in [11, 13, 15]) are the same. 

Note that the bifurcation points (at least their rough estimates) may be obtained graphically 

from Fig. 10 - Fig. 13, and may be clarified by the Algorithm 2. 
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Figure 10. Eigenvalue curves for ( , ) 11 2F     

 

Figure 11. Eigenvalue curves for ( , ) cos |sin |1 2 1 22
F


      
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Figure 12. Eigenvalue curves for 2 2( , ) 1 ( ) / 21 2 1 2F        

 

Figure 13. Eigenvalue curves for  2 2( , ) cos1 2 1 22
F


      
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1 2( , )F    
Bifurcation point 

( , )b b i   
Bifurcation point, 

obtained by other methods 

const 1  1 2

3

( , ) ( , )

( , ) (2.832715, 2.832715)
b b b b

b b

   
 

 
 

 1( , ) (2.832715, 2.832715)b b    

1 1cos cos
2 2

 
  1 2

3

( , ) ( , )

( , ) (4.207065, 4.207065)
b b b b

b b

   
 

 
 

 1( , ) (4.207065, 4.207065)b b    

1 2sin sin   1 2

3

( , ) ( , )

( , ) (2.855425, 2.855425)
b b b b

b b

   
 

 
 

 1( , ) (2.855425, 2.855425)b b    

1
2cos sin

2


  1 2

3

( , ) ( , )

( , ) (4.207065, 2.855425)
b b b b

b b

   
 

 
 

 1( , ) (4.207065, 2.855425)b b    

2 21
1 22

1 ( )    

1

2

3

( , ) (3.064250, 3.064250)

( , ) (3.064250, 3.186696)

( , ) (3.186696, 3.064250)

b b

b b

b b

 
 
 







 - 

2 21
1 22

1 ( )    
1

2

3

( , ) (3.302395, 3.302395)

( , ) (3.302395, 3.565660)

( , ) (3.565660, 3.302395)

b b

b b

b b

 
 
 







 - 

2 2
1 22

cos     1( , ) (4.503957, 4.503957)b b    - 

Table 1. Bifurcation points for different types of the given directivity pattern 

7. Concluding remarks 

Numerical experiments with the calculation of eigenvalues and eigenvectors, realized for 

certain specified types of directivity pattern by the proposed algorithms, and comparison 

them with existing results obtained by other methods shows their efficiency (in terms of 

bilateral approximations and convergence rate). Developed and implemented algorithms for 

numerical finding of the branching lines of nonlinear integral equations, the kernels of 

which nonlinearly depend on two spectral parameters and their bifurcation points, yielded 

the new results, namely: 

 We have found all valid solutions (the curves of eigenvalues) of the problem (19), which 

fall in the interval of modified parameters   and  , that we are interested in. 

 For the problems in which the function 1 2( , )F    admits separation of variables, another 

solution to the problem (19) has been found (for example, for 1 2( , ) 1F     and 

1 2 1 2( , ) cos |sin |
2

F
      this is 3( )  , what is shown in Fig. 10 and Fig. 11, 

respectively), which corresponds to the synthesized directivity patterns in which the 

variables are not separated. 
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 For the problems in which the function 1 2( , )F    does not allow separation of variables, 

we have found the solutions to the problem (19) (for example, for 

2 2
1 2 1 2( , ) 1 ( ) / 2F        and  2 2

1 2 1 2( , ) cos
2

F
      are 1( )   and 2( )  , 

shown in Fig. 12 and Fig. 13, respectively), which are supposed to exist only for the 

diagrams, where the variables are separated. 

 We have calculated the bifurcation point of eigenvalue curves for the problems in which 

the function 1 2( , )F    does not allow separation of variables (eg, 2 2
1 2 1 2( , ) 1 ( ) / 2,F        

2 2
1 2 1 2( , ) 1 ( ) / 2F        and  2 2

1 2 1 2( , ) cos
2

F
     ). For these diagrams there are 

no known results. The results have been obtained for the first time. 

Since the spectral parameters are the geometric and electromagnetic characteristics of 

radiating systems, the solution of this problem makes it possible to obtain the necessary 

information at the design stage, choosing the optimal ones with respect to the size and 

electrodynamic characteristics of the radiating system. 

Note that such two-dimensional problem was studied also in the works [10, 17, 19], but 

there numerical results obtained for some directivity patterns 1 2( , )F    are not  reliable. 

To complete we shall mark, that the offered algorithm of calculation of derivatives of matrix 

determinant can be used and in the approach in which basis the implicit function theorem 

is. In such approach it is necessary to solve the Cauchy problem 

 

 1 1

det ( , )
,

det ( , )

,

n

n

Td

d T





 
  

  

  
 

  


 (51) 

for which the right part of equation (51) can be calculated by the algorithm of calculation of 

derivatives of matrix determinant. Besides by the algorithm, given in this paper, it is 

possible numerically to define a number of eigenvalues, and, therefore, the eigenvalue 

curves, which are in the given range of spectral parameters and to calculate the initial value 

for Cauchy problem for each curve. 
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