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1. Introduction 

The widest class of shells used in the civil and mechanical engineering is the class of shells 

with developable principal surface. The stress-strain state of shell structures under loads, 

which corresponds to buckling, is inhomogeneous, significantly bended, and nonlinear. 

Permanent interest of researchers in the problem of inhomogeneous compression of shells of 

zero Gaussian curvature has not led so far to a correct solution. Therefore, there is a need for 

the development and application of new methods that allow considering the problem in a 

complex setting, the most appropriate to study real behavior of structures. 

The approximate analytic integration of nonlinear differential equations of the theory of 

flexible elastic shells in most practical cases is based on the method of continuation of 

solution on the artificially introduced parameter. They can be satisfactorily applied only 

with an effective method of summation. The most natural analytical continuation method is 

that using Padé approximants (PAs). PAs effectively solves the problem of analytical 

continuation of power series, and this is a basis of their successful application in the study of 

applied problems. Currently, the method of PAs is one of the most promising non-linear 

methods of summation of power series, and the localization of its singular points. Recently, 

the method of PAs for single-variable functions has been successfully extended to the 

approximation of two variable functions (2D PAs). 

A method that provides polynomial asymptotics of the exact solution of the general form 

and its meromorphic continuation based on 2D Padé approximants is proposed in this 

work. Several examples of displacements, stability and vibration calculations for 

inhomogeneous loaded shells with developable principal surface are presented. The 

accuracy of 2D PAs theoretical results are confirmed by experiments with stainless steel 
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specimens based on holographic interferometry. It is shown that the application of PAs 

provides sufficient accuracy in the studied area that confirms the advantage of our proposed 

approach. 

2. Padé approximants 

Let us consider Padé approximants (1-D PAs) which allow us to perform somewhat the 

most natural continuation of the power series. Below, we are going to define the 1-D PAs [1] 

for a complex variable z : 
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where coefficients ,i ip q  are determined from the following condition: the first  1m n   

components of the expansion of rational function ( )nmF z  in the McLaurin series coincide 

with the same components of ( )F z  series. Then rational function nmF  is called [n/m] PAs or 

1-D [n/m] PAs. The set of nmF  functions for different m and n forms the so called Padé table. 

PAs make a meromorphic continuation of F due to the following theorem of Montessus de 

Ballore [10]: 

Theorem. Let function ( )F z  be meromorphic in a closed circle z r  with m different poles 

iz  of multiplicity i  in this circle 

 1 20 ... mz z z r       

of total multiplicity M, 
1

m

i
i

M


 . 

Then sequence ( )NMF z  converges uniformly to ( )F z  on compact subsets of this circle without 

poles, and iz  is attracting zeros of the Padé denominator according to its multiplicity: 

    lim , , , 1, .NM i
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F z F z z r z z i m


     ■ 

The most common generalization of PAs are two-dimensional PAs (2-D PAs). For complex 

variables 1 2,z z  let 
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be a holomorphic function near the origin. For any integer sets  1 2,n n n  and  1 2,m m m
, i.e. for any 2,n m Z , let 
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be the class of rational functions, i.e. the ratio of 2-D polynomials whose degrees do not 

exceed  1 2,n n n  and  1 2,m m m  for each variable. It may be written briefly as 

deg( ) ,deg( )p n q m  .  

Each rational function ( , )r R n m  may be identified with its power series that converges in 

some neighborhood of the origin. It should be mentioned that r p q R   depends on 

1 2 1 2( 1)( 1) ( 1)( 1) 1nm n n m m         parameters (the coefficients of p and q). 

The set of integer points   2,I n m Z  for fixed  1 2,n n n  and  1 2,m m m  is called the 

determinative (interpolation) set, if it has the following properties: 

1.  dim , nmI n m  ,  

2.      1 1 2 2,0 , 0, ,n m n m I n m    (this property guarantees that in the case when 1 0z   

(or 2 0z  ) one would have the classical 1-D rational approximation of Padé type), 

3.    1 2, ,n n n I n m  , 

4. if    1 2, ,k k I n m  then  0, ,k I n m    , where   2
1 20, , : 0 , 1,2j jk s s Z s k j         

– the rectangle rule, 

5.  1 1 2, ( , )n m m I n m   or  1 2 2, ( , )m n m I n m  . 

a. Two and only two possible variants of these sets satisfying requirements are: 

   1 , , :I n m i j  

1 2 1 1 1 2 2 2 20 ,0 1 ,0 0, 1 ,i n j n n i n m j m i n j n m                           

   2 , , :I n m i j  

1 2 1 2 2 2 1 1 10 ,0 0 , 1 1 , 0 ,i n j n i m n j n m n i n m j                           

The generalized PAs for given  1 2,n n n  and  1 2,m m m  are defined as the rational 

function  ,nmF R n m  for which   0ij nmT F F   for all    , ,i j I n m , where  ijT   are 

Taylor’s coefficients of the power series for function F. The rational function nmF  is called 

the 2-D PAs    1 1 2 2, / ,n m n m    of  1 2,F z z  which corresponds to the determinative set 

   , ,i j I n m . 

As in the 1-D case, the existence and uniqueness of PAs (in the sense of the above given 

definition) for 2C  require special type of analysis. It should be mentioned that PAs do not 

always exist in the sense of the given definition. 



 

Nonlinearity, Bifurcation and Chaos – Theory and Applications 4 

Let   2
1 2,m m m Z   be fixed and let the class  
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be defined as a class of functions with the properties: 

  1 2,P z z  is an entire function; 

 deg mQ m , i.e.    1 1 2 2deg ,0 , deg 0,m mQ z m Q z m  ; 

  0,0 1mQ  ; 

 functions    1 2,0 , 0,P z P z  and polynomials    1 2,0 , 0,m mQ z Q z  are not equal to zero 

simultaneously. 

The most important theorem for using 2-D PAs for meromorphic continuation is the 

following Montessus de Ballore – type theorem [2]: 

Theorem. Let  1 2, mF z z M  be given by the power series,   2
1 2,m m m Z   be fixed and 

  2
1 2,n n n Z  . Then: 

1. For all  1 2' min ,n n n  that are large enough, there is a unique Padé approximant 

nm n nF P q  for each of the determinative sets  , , 1,2jI n m j  ; 

2. The sequence nmF  for  1 2' min ,n n n    converges uniformly to function  1 2,F z z  

inside the compact subsets of  2 \ 0mG C Q  . For any compact 2E C  the following 

relationships are true: 

1/ '

'

1/ '

'

lim 0,

lim 0,

n

m n En

n

nm En

Q q

F F





 
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where j = 1, 2 and * sup *
E

z E
 .■  

This is an analog of the classical Montessus de Ballore theorem for the convergence of the 

rows of Padé tables. 

3. Modified method of parameter continuation 

Let us introduce a formal definition of the proposed modified method of parameter 

continuation (MMPC) for systems of ODEs using the terminology of the perturbation 

method. It is known [3] that any ODE or system of ODEs may be represented by a normal 

system of ODEs of the first order in respect to unknown functions   
1

n

i i i
u u 


  in the 

vicinity of regular point in the interval : ]0,1[  :  
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d
Lu R u u N u u g L i n

d
  
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with the BCs on the bounds : 0 1    

 1( ,..., ) 0, 1,j nG u u j n


     (2) 

Here L and iR  are the linear differential operators, whereas iN  and jG  are the non-linear 

differential operators. We assume also that point 0 0   belongs to closure  , and iR , iN  

and jG  are the holomorphic functions for  
1

n

i i
u


. 

Considering   
1

n

i i i
u u 


  and their derivatives as independent arguments, we introduce 

operators iR , iN , F  and jG  as the multidimensional Taylor series  
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We also introduce the following power series 

 
0 0 0 0 0

, ,... , ,... , , 1, .r r r r r r r r i
ij ij ijp ijp j j jp jp i ij

r r r r j

N N N N F F F F g g i j p n    
    

    
            (5) 

To implement the MMPC, we introduce parameter   as follows 

 
0

,jM
i ij

j

u u 



   (6) 

     1 1,..., ,..., , 1, ,i i i n i nLu g R u u N u u i n      (7) 

1( ,..., ) 0, 1,j nG u u j n
  

   

where iR  and iN  are always the algebraic operators in this case. 

Substituting power series (6) into (7) and splitting it with respect to the powers of  , we get 
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Summation in (8) of the coefficients with the same degrees of   for 1   gives  
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Analysis of the obtained approximation suggests that it gives the exact value of coefficients 

in the power of the independent variable to the extent equal to the order of approximation 

(taking into account the expansion in power series of expressions in the equation). This 

guarantees stability of the computation with a limit-order approximation of the independent 

variable. 

One of the possible fields for application of the proposed approach are the nonlinear 

problems of plates and shells theory. The equations of statics of the geometrically nonlinear 

thin-walled structures can be reduced to the resolving equations which contain the products 

and squares of the desired functions and their derivatives [4]. In this case the solution of 

equation (9) becomes 
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n n n
r

irp p rl l rlq l q
p l q

g
N u N u N u u

     

            
    

0 0 0

1 1

1 1
...,

2 2 2!

n n
p

r pl l plq l q
l q

g
u N u N u u

    

              
  1, .i n  

The approximation thus obtained is converted to 1-D PAs in respect to   or 2-D PAs. 2-D 

PAs in the form proposed by V. Vavilov [2] is very promising for the use as an analytical 

continuation. This technique allows us to choose the coefficients of 2-D Taylor series for the 

construction of unambiguous 2-D PAs with a given structure of the numerator and 

denominator. It also ensures optimal PAs features in the sense of the theorem of Montessus 

de Ballore-type. This means homogenous convergence of PAs to the approximated function 

with an increase of the degree of the numerator and denominator in all points of its 

meromorphic area. It should be noted that direct application of 2-D PAs does not lead to the 

anticipated merging of 1-D approximations. This is due to the initial requirements of the 2-D 
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approximation to ensure its transition to 1-D in the case when the second variable is equal to 

zero [1]. At the same time it is necessary to ensure such a transition, when the parameter is 

equal to one. This can be achieved by combining this method with 2-D PAs from a 

converted parameter which maps the unit to zero. 

4. Stability investigation 

For the analytic continuation of meromorphic solutions to the region and acceleration of the 

convergence we use 2-D PAs. To do this, the resulting series are reconstructed in rational 

functions of the form 

    00

1 1 2 2

0 0 0 0

, 1,j jk k
ijk ijk i

m n m n

j k j k
i P P Q P Qu    

   
     

where P  is the parameter of loading. 

Since the proposed method is modified, all functions belonging to the boundary value 

problems can be expanded in powers of the independent variables and parameters. For 

1   we obtain 

3 1 4 2

0 0 0 0

.j jk k
ijk ijk

m n m n

j k j k
i P P Q Pu  

   
   

Rational functions have singular points which are determined by equating of the 

denominator to zero. According to the theory of bifurcation of solutions of ordinary 

differential equations, at these points either bifurcations or limit states are achieved. So we 

can get the estimation of critical point localization by solving equations of the form 

,

4 2

0 0

min : 0j k
ijk

i

m n

j k

P Q P



 

  . 

In practice this equation is transformed to its counterpart simpler form with respect to its 

characteristic point 0   (which usually corresponds to the point of maximum transverse 

displacement for thin shells) 

0

4 2

0 0

0j k
ijk

m n

j k

Q P 
 

  . 

Example  

Let us consider the computational aspects of the proposed approach. We consider three 

types of PAs with respect to the independent variable, on the specified parameters, and 2-D. 

A typical behavior of the approximations for the BVP is governed by the following problem 
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' 1,

(0) 0, 0 1, 0.

z z

z x




 
   

            (11) 

where natural small parameter   is the factor at the highest derivative, as shown in Fig. 1 

for  = 0.1. The exact solution of this BVP follows 

 
2

1 1
1 exp ... ( 1) ... .

2 !

n
nx x x x

z
n   

   
           

   
         (12) 

Eq. (12) shows that the exact solution is regular for all real positive x  for 0  . But the 

general term of power series (12) grows rapidly when x  , and we have to take into 

account many terms in (2) to obtain an acceptable and reliable approximation. Thus, the 

accuracy of the used truncated Taylor series is not uniform according to x  value. 

 

 

Figure 1. The exact solution (solid line) of Eq. (1) for  = 0.1 and approximate solutions (1 – three terms 

ADM, 2 – 
 1z


  for ADM, 3 – three terms HAM, 4 – 
 x

z  for HAM, 5 – 2-D PAs for MMPC, ADM and 

HAM). 

Let us introduce parameter 1  as follows 

 1

1
' ,

z
z 

 
     (13) 

and suppose 

 1
0

.i
i

i

z z 



    (14) 
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This way of introducing the parameter leads to a system of successive approximations of 

Adomian decomposition method (ADM, see [5,6]). Substituting power series (4) into Eq. (3) 

and splitting it with respect to the powers of 1 , yields 

0 '
1 0 0 0

1
: , (0) 0 ;

x
z z z

 
     

22
1 ' 10
1 1 1 12 2

1
: , (0) 0 ( 1) ;

2!2

z x x x
z z z

  
 

           
 

 

32 3
2 ' 21
1 2 2 23 3

1
: , (0) 0 ( 1) ;

3!6

z x x x
z z z

  
 

          
 

 

1
' 1

1

1 1 1
: ( 1) , (0) 0 ( 1) ;

( 1)! !

n n
n n nn

n n n

z x x
z z z

n n


   


      

                  
 

12 3
2

1 1 12 3

1
... ( 1) ... .

!2 6

n
n nx x x x

z
n

  
  


 

       
 

  

For 1 1   one gets power series (2), which corresponds to the results reported in [5]. To 

accelerate the convergence we use 1-D and 2-D PAs. One can use 1-D PAs [1/1] ( 1( ) ,z   when 

0x const   and ( ) ,xz  when 1 0const   ) or 2-D PAs [(1,1)/(1,1)] ( 1( , )xz  ). Using PAs one 

obtains (for 1  ) 

 1( ) 3
1

6 2

x x
z

x



 
 

   
,                                (15) 

 1( , )( ) 2

2

xx x
z z

x




 


.                                                         (16) 

R.h.s. of Eq. (15) contains singularity at point 0   in contrast to Eqs. (16). Thus, Eqs. (16) 

give the approximation with uniform accuracy when x  grows.  

Let us rewrite Eq. (11) in the following form 

 1' (1 (1 ) ').z z z                                                   (17) 

After substitution of the power series (14) in Eq. (17) one obtains a successive approximation 

of the homotopy analysis method (HAM) in the so called homotopy perturbation form 

(HPM, see [7]) 

0 '
1 0 0 0: 0, (0) 0 0;z z z      
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1 ' '
1 1 0 0 1 1: 1 (1 ) 1, (0) 0 ;z z z z z x          

2
2 ' '
1 2 1 1 2 2: (1 ) (1 ), (0) 0 (1 ) ;

2!

x
z z z x z z x                  

2
3 ' '
1 3 2 2 3

3
2 2

3

: (1 ) (1 ) (1 )( (1 )), (0) 0
2

(1 ) (1 ) ;
3!

x
z z z x x z

x
z x x

    

 

             

     

 

3 2
4 ' ' 2 2 2
1 4 3 3

4 3 2
2 3

4 4

: (1 ) (1 ) (1 ) (1 ) 2(1 ) (1 ) ,
6 2

(0) 0 (1 ) 3(1 ) (1 ) ;
4! 2 2

x x
z z z x x x

x x x
z z x

      

  

 
                 

 

         

 

We obtain the HAM approximation in the following form  

2 3
2 2 2 3

1 1 1(1 ) (1 ) (1 ) ... .
2! 3!

x x
z x x x x     

   
                

   
 

For 1 1   one obtains 

 

2 3 2 2

4
3

1 1
(1 (1 ) (1 ) (1 ) ...) (1 ) 3(1 ) ...

2! 2

1 1
(1 ) ... ... .

3! 2 4!

z x x

x
x

    



 
                

 
 

      
 

   (18) 

Eq. (18) coincides with Eq. (12) after expanding the coefficients of Eq. (12) in the vicinity of 

1.   

For the obtained approximations we use PAs as described above and get the following 

results:  

1 1( ) ( , ) 2
,

2

x x
z z

x

 


 


 

 
 

2

( ) 2 2
.

2 2
x x

z
x






 

 

Let us introduce parameter 1  in such a way that 

 1

1
' .

z
z 




                                                (19) 
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After substitution of the power series (14) in Eq. (19), one obtains a new system of successive 

approximations: 

 

0 '
1 0 0 0: 0, (0) 0 0;z z z      

 

1
1 ' 20
1 1 1 1

1 1 1
: , (0) 0 ( 1) ;

1!

z x x
z z z

   
  

        
 

 

 

22
2 ' 31
1 2 2 22 2

1
: , (0) 0 ( 1) ;

2!2

z x x x
z z z

  
 

           
 

 

 

1
' 1 11

1 2

1 1 1
: ( 1) , (0) 0 ( 1) ;

( 1)! !

n n
n n nn

n n

z x x
z z z

n n


   


       

                  
 

 

2 3
2 3

1 1 1

1 1
... .

2! 3!

x x x
z   

  
   

      
   

 

For 1 1   one obtains PAs as follows: 

1 1( ) ( , )( ) 2

2

xx x
z z z

x

 


  


. 

The coincidence of these approximations demonstrates their proximity to a unique function 

representing the exact solution in the fractional-rational form. 

The ADM approximation describes well the exact solution only for a distance which is 

comparable with the value of natural small parameter  . Despite the fact that the error of 

solutions of HAM is substantially less than the ADM, HAM does not accurately reflect the 

nature of solutions, namely the phenomenon of boundary layer in the vicinity of zero. At the 

same time, PAs for the ADM approximations for independent variable and PAs for the 

MMPC (1-D and 2-D) give satisfactory qualitative and quantitative results.  

Similar results are provided by the analysis of approximations of BVP of the following 

problem 

 
' ,

(0) 2, 0 1, 0,

z xz x

z x




 
   

                              (20) 
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whose coefficients are given depending on the variable for  = 0.2. Its graphs are presented 

in Fig. 2.  

 

 

Figure 2. The exact solution (solid line) of Eq. (20) for  = 0.2 and approximate solutions (1 – three terms 

ADM, 2 – 
 1z


  for ADM, 3 – three terms HAM, 4 – 
 x

z  for HAM, 5 – 2-D PAs for MMPC, ADM and 

HAM). 

Fig. 3 shows the graphs of approximations for strongly non-linear BVP of the form 

 
 

2' ,

1 1, 0 1, 0.

z z x

z x




 

   
                         (21) 

The graphs show that the solution is well described by the HAM approximation and 

MHAM-Padé «in average», and badly – in the boundary layer. The ADM approximation 

and MADM-Padé, on the contrary, is in good agreement with the behavior of solution in the 

vicinity of zero and in the bad one – on the stationary part. At the same time, 1-D and 2-D 

PAs, based on approximations of the MMPC, well describe the solution in the whole 

interval. 

5. Calculation of nonlinear deformation and stability of shells  

The proposed MMPC method has been applied to calculate the deformation and stability of 

a long flexible elastic circular cylindrical shell of radius R  with half the central angle 0  in 

the case of cylindrical bending under uniform external pressure with a simple support of the 

longitudinal edges. The corresponding system of resolving equations in the normal form is 

given in [8]. Dependences of "dimensionless intensity of pressure P  – deflection /w R " for 
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the top cross-section of the shell at different angles and dimensionless flexibility 410С   are 

shown in Fig. 4. The dependence of the dimensionless intensity of limit load *P  on the size 

of half angle 0  is shown in Fig. 5. 

 

 

Figure 3. Approximate solutions of Eq. (18) for  = 0.2 (1 – three terms ADM, 2 – 
 1z


 for ADM, 3 – 

 x
z  for ADM, , 4 – three terms HAM, 5 – 

 x
z  for HAM, 6 – 

 1z


 for HAM and MMPC, 7 – 
 x

z  and 

2-D Padé for MMPC). 

For comparison, Fig. 4b also shows the dependence of the critical loads for inextensible shell 

obtained by S.P. Timoshenko [8]. We see that dependences are in good agreement, while 

consideration of deformation of the longitudinal axis substantially affects the value of 

critical loads of the construction. 

 

Figure 4. The dependence of the intensity of pressure P  versus deflection /w R  for different values of 

0  (the value of 0  is indicated by curves). 
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The proposed method can be used in a combination with the known asymptotic method. 

Consider free vibrations of a flexible elastic circular cylindrical shell of radius R , thickness 

h  and length L , backed by a set of uniformly distributed stringers having a simple support 

at the ends.  

The calculation is based on mixed dynamical equations of the theory of shells after splitting 

them in powers of natural small parameters [9]. The shape of radial deflection w  satisfies 

the boundary conditions given in the form 

2
1 1 1 2 2 2 1 1( )sin cos ( )sinw f t s x s x f t s x  . 

Here 1 2,f f  functions depend on time and are related by the condition of continuity of 

displacements  

1 2 2
2 2 10,25f R s f , 

where 1
1 2,s ml s n    are the parameters characterizing the wave generation along the 

generator and directrix, respectively.  

The governing equations can be reduced by the Bubnov – Galerkin method to the Cauchy 

problem with respect to 1 /f R   on 2
1 1t t B R  (all symbols are taken in accordance 

with [9]) 

 

 
 

2 3 5
1 2 3

1
1

0,

, 0 : , 0

A A A

d
t f

dt

      

 

        
 

     
 



  


  (22) 

 

 

 

Figure 5. The dependence of limit loads bP  versus 0  (1 - data [8], 2 - calculation). 
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The application of the proposed method of parameter continuation to the Cauchy problem 

(22) gives approximation of the second order for the artificial parameter for frequency   of 

nonlinear oscillations in the form 

   
 

2 4
2 1 3 1/ /

.
1

1 f A A f A A

f
 

 


. 

It is seen that the oscillations are not isochronous. This agrees well with previous results 

reported in reference [9] (Fig. 6). However, our approach allows for a significant reduction 

of the computation time (in [9] to obtain similar results the approximation of the fourth 

order is taken). 

 

Figure 6. Amplitude of the initial disturbance versus oscillation frequency of stringer shell  

(1 – according the proposed method, 2 – data [9]). 

6. Experimental technique 

In solving various kinds of problems of modern development and improvement of thin-

walled machine elements operating under the conditions of intensive manufacturing 

process, the use of a holographic interferometry method should be emphasized [10,11,14]. It 

allows for a more accurate and complete investigation of shell structures under complex 

stress-strain state. The accuracy of interpretation of holographic interferograms is mainly 

determined by the number of support points of the design used for the construction 

regarding displacements and stresses. Improvement of the accuracy requires a large amount 

of routine preparations for writing the coordinates of points and their corresponding 

numbers of lines when developing data on a computer, which is particularly important in 

the case of an experiment. The existing methods of automated data entry and processing of 

interferograms yield, as a rule, the specific configuration of the optical system and the types 

of strain state (flat, one-dimensional, etc.), making them difficult to use in this case. In 

addition, although several authors proposed methods of interpretation [10], they did not 

fully take into account the statistical nature of input data. For cylindrical shells a method for 
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automated processing of the results of the holographic research has been proposed, which 

eliminates the above drawbacks [12]. Next, we have extended this technique to study the 

motion of shell structures of zero Gaussian curvature which is based on modern means of 

an interactive data processing. The surface of zero Gaussian curvature can be approximated 

with sufficient accuracy with respect to the system of flat rectangular panels whose sides are 

segments close to the case which occurred during the analysis of generators. To determine 

all components (points) of the displacement vector, three holograms of a circuit design 

interferometer based on a reference beam is used. The interferometer is shown schematically 

in Fig 7. 

 

Figure 7. The scheme of the interferometer (1 – laser generator, 2 – mirror, 3 – expanding lens, 4 – 

studied object, 5 – camera) 

After registering the two exposures, i.e. unloaded and loaded state of the object, we get a 

flat image of the interference pattern corresponding to the observation of points 

 , ,i нi нi нiM x y z , 1,3i  . Let us enter the order line using a computer in the following 

manner. The photos of interferograms are scanned and entered into the computer 

memory in the form of graphic files with the extension, for example, jpg, which is the 

most popular choice of compression of graphic information on all platforms, or 

equivalently in other file formats. Next, the file is displayed on the screen in a specially 

designed box on the toolbar image processing. The information produced is removed by a 

successive mouse click on the corresponding image points at the request of a specially 

created database. Algorithms for further processing of the data are widely described in 

[12]. In the X O Y    coordinate system (Fig. 8) associated with the imaging plate, base 

point  ,B B BM x y   and a segment of the OY  axis of the XOY coordinate system, whose 

direction coincides with the vertical axis of the projection, are given. Further calculations 

are performed in the XOY  system in which the entered coordinates of the points of lines 

of equal order are transformed by the formulas 

,cos sin , cos sinB Bx x y x y y x y             
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where  is the angle of rotation of the XOY  system with respect to X O Y    

cos sin , sin cos .B B B B B Bx x y y x y            

 

 

Figure 8. The scheme of approximation of the surface by the system of folds  

While computing the physical coordinates, the approximation of the mentioned shell surface 

by the system of folds is applied (Fig. 8). In this case, the physical coordinates of point 

( , , )M r z   in the i  fold ( 1, )i n  are defined by 

 1
1 1

1

i i
i i

i i

x x
x x

 
 

 



  


 

    
 2, 1 2, 2, 1 2, 1 2, 2, 1

1 2 1
1, 2,

/
,

i i i i i i

i i

y y y y x x x x
z z z z

y y

   
        


 

where , ,r z  are the coordinates of a point in the cylindrical coordinate system associated 

with the axis of the shell, and the shape of the surface is analytically given by equation 

( , )r r z ; , ,i j kr z  are the physical coordinates of corner points of the considered fold; 

u 

v 
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 1, 1,;i ix y ,  2, 2,;i ix y  are the coordinates of corner points of the projection of the folds into 

the XOY  system (Fig. 8). 

Therefore, the so far obtained arrays of point coordinates of the lines of equal order 

corresponding to the three noncoplanar directions of observation allow us to approximate the 

surface bands. The most appropriate method to do this is the structural analysis of 

extrapolation (MSEA) [6] using step by step the best choice of the model. Indeed, the 

formalization of the input source data for inhomogeneous stress-strain state requires a large 

number of points. 

The above method allows us to determine the coordinates of the centers of bands up to 0.1 

mm without any additional devices. This procedure is used to significantly increase the 

number of input points (up to 200-400 for each direction of observation). The use of spline 

functions for smoothing requires the enumeration of all coordinates of control points for 

each calculation of the order of the band. This slows down the calculation and requires a 

significant memory space. In addition, these disadvantages are compounded by the 

increasing number of control points. The use of MSEA allows each step to obtain unbiased 

estimates of the effective coefficients of the model to ensure a maximum plausible value of 

the order of the reference points [11]. This eliminates the problem of choosing a smoothing 

parameter, with the number needed to calculate the coefficients one order of magnitude 

smaller than the number of coordinates of reference points. In addition, the incremental 

method allows us to formalize the process of selecting the optimal order of approximating 

polynomial based on the assessment of the significance of the model and the adequacy of its 

source data. Note that in this case the number of points is much larger than the number of 

estimated parameters, which suggests a considerable power of the statistical tests (like those 

of Student's, Fisher and Durbin-Watson), and indicates the validity of hypotheses taken in 

selecting the best model. An increase of the number of points improves a regression model, 

and a loss of accuracy in the summation can be successfully overcome by standardizing the 

original data according to the known methods. 

Because the shape of the surface is analytically given by equation ( , )r r z , it is possible to 

obtain two-dimensional regression models for the line of the i -order for the direction of 

observation in the form 

( )( )

0 0

.
n jn i

j k
i jki

j k

N b z
 

  

Displacements are defined by the equation [4]: 

,MU N  

where: M  – optic matrix;  , ,U u v w  – vector of displacement;   – length of the laser 

wave;  3

1i i
N N


  – vector of lines order. 

Further transformation of movements, according to the Cauchy relations and equations of 

state of the environment, can also yield the stress state at the point. Performing the 
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calculation of the stress-strain state parameters to form and direct the shell with a certain 

step, it is possible to obtain data for plotting the distribution of displacements and stresses. 

7. Experimental justification of MMPC 

Loading capacity of cylindrical shells is significantly affected by the unevenness of 

deformation caused by the ovality ends of the shell [13]. Imperfections in face of shells 

usually occur as a result of their deformation either under their own weight or during the 

mechanical handling, storage, as well as installation and assembly of the shells as individual 

elements. In the case of welded shells, the end face has the form of an oval with a  and b  

axes and /a b  compression ratio (or the actual ovality). At the same roundness of the upper 

end (a/b)B may be different from the roundness of the bottom one (a/b)H because of the 

conditions introduced by a collection with other elements of the design. In all cases the 

shape of each end should be within the required tolerances, and roundness introduced by 

the collection process should not be reduced by more than 0.8. 

Another form of imperfections arising from the inaccuracy of the assembly is associated 

with a weak taper angle characterized by forming the membrane to its axle  . A number of 

studies [14] consider that a small taper with 13    has no significant effect on the 

magnitude of critical loads of axial compression. However, the results of stability studies of 

technologically imperfect cylindrical shells based on the multivariate approach [15,16] 

suggest that an increase of   to the value of 3  often leads to a significant change in 

carrying capacity, and in some cases the interaction with the oval and other factors yields an 

increase of the critical loads. These studies have shown the need for a more correct approach 

in establishing the correspondence between the magnitude of these abnormalities and the 

level of carrying capacity. As a consequence, it is necessary to study the nature of 

deformation of shells with different ratios of the parameters of roundness and taper. 

In order to solve this problem, two-factor second-order experiments on two levels of   and 

a/b, and also on two levels of a/b at lower and upper ends when α° = 1 (when the taper is 

small the difference between the lower and upper end is missing) have been implemented. 

Welded specimens with radius R = 71.5 mm and length L = 200 mm, made from plate steel of 

the mark 18 9H N n  and with thickness δ = 0.25 mm have been tested. The use of a multi-

factor approach allows one to solve correctly the problem of the nonlinear joint influence of 

defects on the loading capacity of the shell. 

Tests on the stability of prototypes carried out on a UME-10TM machine showed that the 

exhaustion of loading capacity of the shell took place at one stage by reaching a limit point.  

The loss of stability of a conical shell with the same low ovality ends (Fig. 9a) is in general 

related to a form close to its own form of stability loss of oval cylindrical shells under the 

action of uniform axial compression [17], but shifted to a larger shell butt. On one side of the 

shell there are two or three belt dents located at the larger end. They cover the smaller 

curvature of the plate and are shifted to the side of panel larger curvature. Local dents have 

a relatively large size and do not form a regular closed form buckling. 
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The increase of taper and roundness of the ends leads to a shift of the zone of wave 

generation into the longitudinal direction to a lower end (Fig. 9b) while maintaining the 

overall character of buckling. 

 

Figure 9. Forms of supercritical wave generation of the shell with a small taper and the same low 

ovality of ends (a); with a large taper, and the same large oval ends (b); with a large taper, and a large 

oval of the lower extremity (c); with a large taper, and a large oval upper end (d) 

At high cone (within a given experiment) increased roundness of the lower end, while 

maintaining the shape of the upper longitudinal, increases the localization of buckling (Fig. 

9c) shifting the dents closer to the lower end, while maintaining the variability in the 

circumferential direction. Conversely, the prevalence of high cone-roundness of the upper 

end leads to a significant shift of dents to the end of a large oval (Fig. 9d).  

Results of the experiment allow us to derive mathematical models of the form 
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     / / / :
Н В

a b a b a b 
      0,379 0,0029 0,012 / 0,014 / ;K a b a b    

    

1 :         0,346 0 017 / 0 0033 / 0,013 / / ,, ,
Н В Н В

K a b a b a b a b   
   

 

where (...)° is the standardized value; 
22

crТK
E 

 is the dimensionless ratio of the critical 

stress; crТ  is the critical compressive load; E  is the Young's modulus. 

The resulting models are adequate to the experimental data by Fisher criteria at the 5% 

significance level. The presence of significant second-order terms indicates a significant non-

linearity of the relationship between the parameters, and, therefore, incorrect to separate 

consideration of the parameters and the placement of single-factor experiments.  

Let us investigate the derived mathematical models. The corresponding surface of the pair 

interactions are shown in Fig. 10 and 11. They demonstrate good agreement between 

calculation results of MMPC and experimental data. 

Analysis of the surface in Fig. 10 shows that the increase in single imperfections significantly 

reduces the carrying capacity of the shell. In addition, in these limits roundness has a greater 

impact on the setting than the taper. This is consistent with the single-factor experiments 

reported in [13,14]. But the analysis of Fig. 10 also shows that the simultaneous increase in 

taper and ovality can lead to an increase in carrying capacity to a level corresponding to the 

defect of a free shell. This is essentially a nonlinear effect, which could not be found by 

single-factor experiments. 

Further study of the nonlinear interaction of defects (Fig. 11) showed that in the developed 

cone-of-roundness of the lower shell end has a more significant impact on the setting of 

critical effort than the roundness of the upper end. The joint increase in roundness of ends 

leads to an increase in carrying capacity, which is also an essentially nonlinear effect and is 

in good agreement with the results shown in Fig. 10.  

Subcritical deformation has been studied in thin-walled shells with an oval on the lower and 

upper end being equal to 0.84 and 0.96, respectively, and taper equal to 0o56' and 2o16', 

respectively. The selected values  ,  /a b ,  /
В

a b  and  /
Н

a b  correspond to 

characteristic points of the models [13,14]. 

A qualitative analysis of the effect of displacement fields on the results of the holographic 

experiment suggests an important role played by the strain state of shells under non-

uniform roundness in the district and in the longitudinal direction (Fig. 12). 

With the increase of   up to 2o16' heterogeneity of the radial deflection is shifted to the 

lower end. A comparison of interferograms obtained at different load levels shows that an 

increase in the last number of fringes decreases with equal values of the additional load, and 

this indicates the hardening of structures, possibly caused by high deformability of the shell 
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at the beginning of loading. The deformation of the shell in the experiment depends on the 

character of ends, and imperfections differ significantly on the panels of varying curvature. 

 

Figure 10. The surfaces of the pair interactions of imperfections   and :a b  (two-factor model (a), 

comparison between model, single-factor experiment [13] (rhombus) and MMPC calculations (circles) (b). 

 

Figure 11. Surfaces of pair interactions with imperfections    / , /
Н В

a b a b
 

. 

 

Figure 12. Interferogram envelope with the taper and ovality of the small curvature of the panel (a), the 

joint panel zone (b), and the larger curvature of the panel (c). 
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Figure 13. The deformation of the shell with ovality and taper. Solid curves correspond to the middle of 

panels: black – large curvature, gray – small curvature, dash – forming at the junction of the panels; 

positive direction goes toward the center of curvature 

The change of  /
Н

a b  from 0.96 to 0.84 significantly (1.2-1.4 fold) increases compliance of 

the membranes, while maintaining the overall picture of the distribution of displacements in 

the circumferential direction and increasing heterogeneity in the longitudinal direction. 

The field of displacements was explained semi-automatically on the basis of the above 

algorithm. The forms of the radial deflection of some shell generatrixes are shown in Fig. 13. 

8. Conclusions 

A modified method of the parameter continuation (MMPC) is proposed. This method 

enables simplification of the calculations both at the stage of constructing the model, and 

also within its continued use due to precise values of the Taylor coefficients for the solution 

of the degree not exceeding the number of approximation. 

The expression to calculate approximations by the MMPC in the general case and with the 

nonlinearity type of products and squares of the desired functions is presented. 

The application of fractional-rational transformation for the polynomial approximation in 

the form of the 1-D and 2-D PAs used for increasing the degree of convergence and for the 

analytical continuation of the approximation in the region of its meromorphy was analyzed. 

It was concluded that such a transformation is justified if it is applied to polynomials which 

depend on the variable of integration. We used 2-D PAs for the independent variable and 

for the artificial parameter applying the scheme proposed by V. Vavilov. In this paper it is 

shown that this transformation provides a satisfactory quality for the approximation 

behavior and minimizes its error, in spite of the fact that the use of 2-D PAs requires a 

further theoretical justification. 

The estimation of stability using MMPC approximation is also proposed. A study of 

numerical results was conducted by applying the methods for three model examples which 
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were perturbed with a natural small parameter. It is shown that the application of PAs 

provides them with sufficient accuracy in the studied area. This paper shows the advantage 

of approximations which were obtained based on the MMPC. 

Calculations of nonlinear deformation and stability of elastic flexible circular cylindrical 

shell under uniform external pressures and of free oscillations of simply supported stringer 

shell demonstrated the efficiency and accuracy of the proposed method. 

The methodology and results of a holographic experiment with thin low-conical shells 

having oval ends are presented. They show good agreement with calculation results. 

Author details 

Igor Andrianov 

Institute of General Mechanics, RWTH Aachen University, Templergraben, Aachen, Germany 

Jan Awrejcewicz 

Lodz University of Technology, Department of Automation and Biomechanics, Stefanowski Str., 

Lodz, Poland 

Victor Olevs’kyy 

Ukrainian State Chemistry and Technology University, Gagarina av., 8, UA-49070, 

Dnipropetrovs’k, Ukraine 

Acknowledgement 

J. Awrejcewicz input to this chapter was supported by the Alexander von Humboldt Award. 

9. References 

[1] Baker GA Jr, Graves-Morris P (1996) Padé Approximants. Encyclopedia of Mathematics 

and Its Applications. Cambridge: Cambridge University Press, 2nd ed., v. 59.  

[2] Vavilov VV, Tchobanou MK, Tchobanou PM (2002) Design of multidimensional 

recursive systems through Padé type rational approximation, Nonlinear Analysis: 

Modelling and Control, 7(1): 105-125. 

[3] Wasov W (1965) Asymptotic Expansions for Ordinary Differential Equations. New 

York: John Wiley & Sons.  

[4] Obraztsov IF, Nerubaylo BV, Andrianov IV (1991) Asymptotic Methods in Structural 

Mechanics of Thin-Walled Structures. Moscow: Mashinostroyenie.  

[5] Adomian G (1989) A review of the decomposition method and some recent results for 

nonlinear equations. Comp. Math. Appl., 21: 101-127. 

[6] Abassy TA, El-Tawil MA, Saleh HK (2007) The solution of Burgers’ and good 

Boussinesq equations using ADM–Padé technique. Chaos, Solitons and Fractals, 32: 

1008-1026.  



 

Nonlinearity, Bifurcation and Chaos – Theory and Applications 26 

[7] He JH (2008) Recent developments of the homotopy perturbation method. Top. Meth. 

Nonlin. Anal., 31: 205–209. 

[8] Grigolyuk EE, Shalashilin VI (1991) Problems of Nonlinear Deformation: The 

Continuation Method Applied to Nonlinear Problems in Solid Mechanics. Dordrecht: 

Kluwer.  

[9] Andrianov IV, Kholod EG, Olevsky VI (1996) Approximate non-linear boundary value 

problems of reinforced shell dynamics. J. Sound Vibr., 194(3): 369-387. 

[10] Vest Ch (1979) Holographic interferometry. New York: John Wiley & Sons. 

[11] Mossakovskii VI, Mil'tsyn AM and Olevskii VI (1990) Deformation and stability of 

technologically imperfect cylindrical shells in a nonuniform stress state. Strength of 

Materials, 22(12): 1745-1750. 

[12] Mossakovskii, V.I. Mil'tsyn AM, Selivanov YuM and Olevskii VI (1994) Automating the 

analysis of results of a holographic experiment. Strength of Materials, 26(5): 385-391. 

[13] Krasovsky VL (1997) On buckling mechanism of real thin-walled cylinders at axial 

compression. Proc. of the VIII Symposium on Stability of Structures. Zakopane 

(Poland): 145-150. 

[14] Preobrazhenskiy IN, Grishchak VZ (1986) Stability and Vibration of Conical Shells. 

Moscow: Mashinostroyenie.  

[15] Mil’tsyn AM (1992) The influence of technological imperfections on the stability of thin 

shells (multivariate approach) Ch. I. Mechanics of Solids, 6: 181-188. 

[16] Mil’tsyn AM (1993) Nonlinear interaction of technological imperfections and their 

influence on the stability of thin shells (multivariate approach), Ch. II. Mechanics of 

Solids, 1: 178-184. 

[17] Andreev LV, Obodan NI, Lebedev AG (1988) Stability of Shells under Nonaxisymmetric 

Deformation. Moscow: Nauka. 208 p. 


