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1. Introduction 

During the mechanical design and development of technical systems for power plants, in 

civil engineering, aerospace or mechanical engineering increasing demands are made 

concerning the performance, weight reduction and utilization of the material. The 

consequence is that the dynamical behaviour and the occurrence of vibrations of the load 

carrying parts, the so-called primary structures are becoming more and more important. It 

has to be avoided that undesired vibrations can disturb or even jeopardize the intended 

operation. Thus, the analysis of the dynamics and vibrations of structures is an important 

task. To perform dynamic analyses and to draw conclusions for possibly needed changes of 

the mechanical design several steps have to be carried out. 

First, the dynamic analysis requires computational models which may be setup with the Finite 

Element Method (FEM) or other adequate techniques. Second, the computational models have 

to be validated because otherwise no reliable theoretical predictions are possible which can be 

used for optimizing the mechanical design. For the validation of the computational models it is 

required to perform experiments on components, prototypes or the structures themselves. In 

many cases the structures can be considered as linear and thus linear structural dynamics 

methods and approaches can be applied for modelling and validation. However, in some cases 

non-linear effects are important and have to be taken into account (Awrejcewicz & Krysko, 

2008). If this is the case, it is not sufficient to include non-linearities only in the models. Also 

the experimental validation has to be able to identify, characterize and quantify non-linearities 

(Awrejcewicz, Krysko, Papkova, & Krysko, 2012), (Krysko, Awrejcewicz, Papkova, & Krysko, 

2012), (Awrejcewicz, Krysko, Papkova, & Krysko, 2012). 

Let us first consider the dynamic equations of structures with non-linearities, then take a 

look at experimental dynamic identification and modal analysis before we develop basic 

ideas for identifying non-linearities of structures. 
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2. Equations of motion for structures 

Most large and complex technical structures, or at least large parts of them, can be 

considered as elastomechanical systems. That means, the dynamic behaviour and the 

vibration characteristics are determined by the quantity and distribution of masses, stiffness 

and damping. In principle, all of these structures are assembled by continuous parts. 

However, an analysis of continuous structures is only possible if the geometry is rather 

simple. Beams, plates and shells can be analysed by using ordinary or partial differential 

equations. However, the coupling of the basic elements, which are described by differential 

equations, becomes difficult and impossible due to complicated boundary conditions if the 

number of elements is high. Under practical considerations it is appropriate to discretize the 

structures. Discrete points have to be defined at all suitable locations and the dynamic 

motions are described by motions of these discrete points. If a computational analysis with 

e.g. the Finite Element Method (FEM) is performed the nodal points are such discrete points. 

If an experimental analysis is carried out, suitable points have to be defined. Here, it is 

essential to select all structural points which are required to describe the dynamic motions 

with sufficient accuracy. The displacements, velocities and accelerations of the selected 

discrete points can then be assembled in the vectors    ,u u  and  u , the so-called 

displacement, velocity and acceleration vectors. 

The equations of motion can be setup with different methods. As most general method, 

Hamilton’s principle of least action (Williams, 1996), (Szabo, 1956), (Landau & Lifschitz, 1976) 

can be utilized. Hamilton’s principle states that the time integral 

  
2

1

,

t

t

L W dt    (1) 

which contains Lagrange’s function L  and the work of non-conservative forces W , reaches a 

stationary value for the actual dynamic motions of the structure. The meaning of Hamilton’s 

principle is that from all possible dynamic motions between two fixed states at points in 

time 1t  and 2t  the actual dynamic motions are those which cause a stationary value of the 

time integral of Eq. (1). Thus, arbitrary variations of Eq. (1) have to vanish and this leads to a 

method for setting up equations of motion (Williams, 1996). 

Lagrange’s L  function consists of the kinetic and potential energy of the structure and can be 

written as 

 .kin potL E E   (2) 

The work of non-conservative forces  F  can be computed with the displacements at 

discrete points  u  at two fixed states at points in time 1t  and 2t  to 

    
  

  2

1

.

u t
T

u t

W F d u   (3) 
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Let us now separate notionally the structure in a complete linear part and some non-linear 

elements. In this case the kinetic energy of the linear part can be written with the physical 

mass matrix M    and the velocities  u  as follows 

    1
.

2

T

kinE u M u      (4) 

In a similar way the potential energy of the structure’s linear part is given by the physical 

stiffness matrix K    and the elastic deformations  u  to 

    1
.

2

T

potE u K u     (5) 

The work of the non-conservative forces consists firstly of the work of the external forces 

 extF  and the related deformations  u  

    .
T

ext extW u F  (6) 

The damping of the elastomechanical structure can be taken into account by assuming 

discrete dampers, separating notionally the damping elements from the structure and 

considering the damping forces as external forces. Following this, the work of the damping 

forces is given for the structure’s linear part by the physical damping matrix C    and the 

velocities  u  to 

     ,
T

cW u C u       (7) 

where the minus sign indicates that the damping forces act into the opposite direction of the 

related velocities. 

At next, the non-linear part of the structure has to be taken into account. Here, all non-linear 

elements are considered as discrete elements, are notionally separated from the linear 

structure and it is assumed that the forces between the structure and the non-linear elements 

depend only from the deformations and velocities at the connection points 

        , .nl nlF F u u   (8) 

Thus, the non-linearties of the structure can be considered as the effect of external forces. 

Following this, the work of the non-linear forces is given by  

        
  

  2

1

,

u t

nl nl

u t

W F u u d u     (9) 

where the minus sign indicates that the non-linear forces act into the opposite direction of 

the related deformations and velocities. 

The work of the non-conservative forces can now be written as 
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  2

1

, .

u t
T T

ext c nl ext nl

u t

W W W W u F u C u F u u d u           (10) 

The variation of Eq. (1) 

    
2 2

1 1

0

t t

kin pot

t t

L W dt E E W dt             (11) 

leads with Eqs. (4), (5) and (10) to 

              , ,nlM u C u K u F u u F                 (12) 

which is the well-known basic equation of linear structural dynamics extended by a term 

accounting for non-linearities. 

3. Dynamic identification and modal analysis 

With the purpose to validate analytical models of complex technical structures it is required 

to perform measurements on components or prototypes and to identify the dynamic 

properties. The most important dynamic properties are the modal parameters. Their 

identification is the essential goal of experimental modal analysis (Maia & Silva, 1997), 

(Ewins, 2000). 

3.1. Modal parameters 

To explain the basic ideas, let us first assume that the structure undergoing a modal 

identification test is linear and that the damping matrix is proportional to the mass and 

stiffness matrix. In this case Eq. (12) simplifies to  

         ,M u C u K u F               (13) 

where it is assumed 

 
1 2 .C M K              (14) 

The eigenvalues und eigenvectors of the undamped structure are determined by the 

eigenvalue problem 

     2
0 0r r

M K          (15) 

and are of great practical importance. The values 0r  are the so-called eigenfrequencies and 

 
r

  are the eigenvectors of the undamped structure. A fundamental property of the 

eigenvectors  
r

  is the fact that the matrix of eigenvectors, the so-called modal matrix, 

diagonalises the mass and stiffness matrices 
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The terms 1 2, , , nm m m  are the so-called modal mass 

     ,
T

r r r
m M      (18) 

and in analogy, the terms 1 2, , , nk k k  are the so-called modal stiffness 

     .
T

r r r
k K      (19) 

In addition it is valid 

 0 ,r
r

r

k

m
   (20) 

 ,
2

r
r

r r

c

k m
   (21) 

where 

         1 2 .
T T

r r r r r
c C M K                   (22) 

and 

 
2

0 1 .r r r     (23) 

Using the above modal parameters it can be shown that the dynamic responses of a 

structure (13) due to an impulse or a release from any initial condition are 

       
1

sin cos .r r

n
t

r r r r r
r

u t A t B t e    



   (24) 
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This equation reveals that the free decay vibrations are determined by a superposition of 

eigenvectors with damped harmonic vibrations at the respective eigenfrequencies. The 

contribution of each eigenvector depends on rA  and rB , i.e. the initial conditions at time 

0t  . The time history of the vibrations is determined by the eigenfrequency r  for the 

harmonic part and by the modal damping value r  as well as the eigenfrequency r  for the 

decay part. 

Also it can be shown that the steady state dynamic responses of a structure to a harmonic 

excitation with frequency   

     ˆ i tF t F e   (25) 

is 

       
   

 2 2
1 0 0

ˆ
ˆ .

2

T
n

ri t i t

r
r r r r r

F
u t u e e

m i

 



    

 
 

  (26) 

This equation shows that the steady state harmonic vibrations are defined by a 

superposition of eigenvectors with frequency dependent amplification or attenuation 

factors. The contribution of each eigenvector depends on the so-called modal force    ˆT

r
F , 

the modal mass rm  and the relationship of the excitation frequency   to the respective 

eigenfrequency 0r . Near the resonance frequencies, where   approaches 0r , i.e. 0r  , 

the modal damping r  becomes important and limits the vibration amplitudes to finite 

values. 

Considering Eqs. (24) and (26) shows that the complete dynamic behaviour of a complex 

structure is determined by a set of modal parameters  0 , , ,r r rr
m   . Thus, the 

experimental identification of these parameters is of great practical importance and allows a 

detailed insight into the dynamic behaviour. 

3.2. Experimental modal analysis 

Since the 1970s numerous methods for experimental modal analysis have been developed 

(Maia & Silva, 1997), (Ewins, 2000), (Fuellekrug, 1988). In addition to the classical Phase 

Resonance Method (PhRM) a large number of Phase Separation Techniques (PhST) 

operating in the time or frequency domain has been developed and can be applied 

nowadays as a matter of routine during modal identification tests. 

For the practical performance of high quality modal identification tests several concerns 

have to be accounted for. First, in many cases several hundred sensors are required to 

achieve a sufficient resolution of the spatial motions of all structural parts. Second, the 

excitation requires several large exciters which have to be operated simultaneously in order 

to excite all vibration modes. Third, the results have to be of high quality and accuracy since 

they are used for the verification and validation of analytical models. Therefore it has to be 
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assured that all modes in the requested frequency range are identified and that the accuracy 

of the modal parameters is as high as possible. 

All these demands lead to the fact that a highly sophisticated concept for the modal 

identification is required (Gloth, et al., 2001). During the modal identification testing of large 

complex structures also the possible non-linear behaviour has to be investigated. Usually, 

linear dynamic behaviour of the structure is assumed in the applied modal identification 

methods. However, in practice most of the investigated and tested structures exhibit some 

non-linear behaviour. Such non-linear behaviour can occur for example as a result of free 

play and different connection categories (e.g. welded, bolted) within joints or e.g. from 

hydraulic systems in control surfaces of aircraft. 

4. Non-linear modal identification 

The classical procedure for the modal identification is to perform normal-mode force 

appropriation with the Phase Resonance Method (PhRM). The structure is harmonically 

excited by means of an excitation force pattern appropriated to a single mode of vibration. 

However, the exclusive application of the Phase Resonance Method (PhRM) is time-

consuming. Thus, an improved test concept is required which combines Phase Resonance 

Method (PhRM) with Phase Separation Techniques (PhST). 

The core of such an optimized test concept applied e.g. to aircraft as Ground Vibrations 

Tests (GVT) is to combine consistently Phase Separation Techniques and the Phase 

Resonance Method with their particular advantages (Gloth, et al., 2001), see Figure 1. After 

the setup the GVT starts with the measurement of Frequency Response Functions (FRFs) in 

optimized exciter configurations. Second, the FRFs are analysed with Phase Separation 

Techniques. Hereafter the Phase Resonance Method is applied for selected vibration modes, 

e.g. for modes that indicate significant deviations from linearity, for modes known to be 

important for flutter calculations (if an aircraft is tested), or for modes which significantly 

differ from the prediction of the finite element analysis. Optimal exciter locations and 

amplitudes can be calculated from the already measured FRFs in order to accelerate the 

time-consuming appropriation of the force vector. The calculated force vector is applied and 

the corresponding eigenvector is tuned. Once a mode is identified, the classical methods for 

identifying modal damping and modal mass are applied. Also, a linearity check by simply 

increasing the excitation level is performed. During this linearity check, a possible change of 

the modal parameters with the force level can be investigated, see (Goege, Sinapius, 

Fuellekrug, & Link, 2005). 

The identified eigenvectors are compared with the prediction of the finite element model 

and by themselves during the measurement in order to check the completeness of the data 

and its reliability. Multiply identified modes are sorted out. Additional exciter 

configurations have to be used and certain frequency ranges need to be investigated if not 

all expected modes are experimentally identified or if the quality of the results is not 

sufficient. 
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Figure 1. Test concept for modal identification of complex structures in a Ground Vibration Test (GVT) 

4.1. Detection and identification of non-linearities 

The above test concept allows the identification of non-linearities if some conditions are 

fulfilled: The response to harmonic excitation should be dominated by the excitation 

frequency and the mode shapes of the associated linear system should remain nearly 

unchanged at different force levels. 

In order to characterize the non-linearities of a large complex structure, it is first required to 

detect the non-linearities. This can be done by simply increasing the force level. However, 

more detailed investigations are beneficial. The book (Worden & Tomlinson, 2001) gives a 

broad survey of non-linearities in structural dynamics. The detection, identification and 

modeling is described in great detail. Numerous suitable methods are presented and 

elucidated. The article (Gloth & Goege) proposes some methods for the fast detection of 

non-linearities within the described advanced modal survey test concept. 

The step following the detection is the identification of the non-linearities. For complex 

lightly damped structures with weak non-linearities, the mode shapes can be divided into 

different groups as shown in (Wright, Platten, Cooper, & Sarmast, 2001): 

 Linear proportionally damped modes, which are well separated in frequency. 

 Linear proportionally damped modes, which are very close or identical in frequency. 

 Linear non-proportionally damped modes, which are usually fairly close in frequency 

(significant damping coupling) 
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 Uncoupled modes, which are influenced by non-linear effects. 

 Coupled modes, which are influenced by non-linear effects. 

Most of the modes of real structures behave linear so that an identification using the 

classical linear methods and the test concept described above is still possible. Nevertheless, 

some modes show significant non-linear behaviour, which makes it impossible to adopt 

linear theory. A solution to this problem is a non-linear identification which can be based on 

the Masri-Caughey approach (Masri & Caughey, 1979), the force-state mapping (Crawley & 

Aubert, 1986) and a variant of it (Al_Hadid & Wright, 1989). The idea and basics of the non-

linear resonant decay method (NLRDM) (Wright, Platten, Cooper, & Sarmast, 2001), 

(Platten, Wright, Cooper, & Sarmast, 2002), (Wrigth, Platten, Cooper, & Sarmast, 2003), 

(Platten, Wrigth, Worden, Cooper, & Dimitriadis, 2005), (Platten, Wrigth, Dimitriadis, & 

Cooper, 2009) appear to be an appropriated method for applying it to large and complex 

structures. 

4.2. Basic equations for non-linear modal identification 

In this section the theoretical background of the non-linear analysis of structures is outlined. 

The basic equations are established and a way for the modal identification in case of single 

non-linear modes and coupled non-linear modes is described. 

The equations of motion for an elastomechanical system with linear and non-linear restoring 

forces are given according to Eq. (12) by 

              , ,nl extM u C u K u F u u F                 (27) 

where, as above, M   , C    and K    are the mass, damping and stiffness matrices, and  u , 

 u  and  u  are the vectors of physical displacements, velocities and accelerations. The 

non-linear restoring forces are given by      ,nlF u u , and  extF  is the vector of the 

external excitation forces. 

The equations of motion Eq. (27) can be transformed from physical to modal space by using 

the modal matrix     of the associated linear undamped system 

       
1

( ) ( )
n

rr
r

u t q t q t 


      (28) 

where  ( )q t  is the vector of (generalized) modal coordinates, which represent modal 

degrees of freedom (DoF). Substituting the modal expansion of Eq. (28) into the equations of 

motion and pre-multiplying by the transposed of the modal matrix 
T

    yields 

              , .
T T T T T

nl extM q C q K q F u u F                                                        (29) 

This equation can be rewritten as 
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           ,extm q c q k q f                (30) 

where m   , c    and k    are the (generalized) modal mass, damping and stiffness 

matrices. The modal mass and stiffness matrices m   , k    are diagonal since the real 

normal modes  
r

  of the associated undamped system are orthogonal with respect to the 

physical mass and stiffness matrices M    and K   . In case of so-called proportional 

damping also the modal damping matrix c    is diagonal.  ( )t  is the vector of modal non-

linear restoring forces, which includes stiffness and damping non-linearities, and  ( )extf t  is 

the vector of (generalized) modal excitation forces. 

If the damping is proportional Eq. (30) simplifies to 

 , 1,2, , .r r r r r r r rm q c q k q f r n        (31) 

In case of ( ) 0r t  , the dynamic equation for mode r  is in the form of a single degree of 

freedom system. When the Phase Resonance Method according to the above described test 

concept is used, the excitation forces are appropriated to the specific mode and the whole 

structure vibrates in the linear case as a single DoF system. However, if non-linearities are 

present the modal DoF r  may be coupled with other modal DoF. This is because the vector 

of the non-linear modal restoring forces  ( )t  is, according to Eqs. (30) and (29), a function 

of all physical displacements and velocities 

        ( ) , .
T

nlt F u u       (32) 

And thus, in the general case, the non-linear modal restoring forces ( )r t  can be a function 

of all modal coordinates 

 
1 2 1 2( , , , ; , , , ).r r n nq q q q q q       (33) 

The basic idea of the non-linear modal identification is to use time domain data of the modal 

DoF and to perform a so-called direct parameter estimation (DPE) in the modal space 

(Worden & Tomlinson, 2001) as well as to apply ideas of the non-linear resonant decay 

method (NLRDM) (Wright, Platten, Cooper, & Sarmast, 2001), (Platten, Wright, Cooper, & 

Sarmast, 2002), (Wrigth, Platten, Cooper, & Sarmast, 2003), (Platten, Wrigth, Worden, 

Cooper, & Dimitriadis, 2005), (Platten, Wrigth, Dimitriadis, & Cooper, 2009). 

When the excitation forces are appropriated the whole structure vibrates in the linear case as 

a single DoF system. Thus, the analysis in modal space offers an effective way of identifying 

the non-linear damping and stiffness properties. Such a non-linear identification requires 

the previous identification of the linear modal parameters mass rm , damping rc  and 

stiffness rk . Also, it is required to determine the time histories of the modal coordinates 

( )rq t  and the modal forces ( )rf t
 
. 

The rearrangement of Eq. (31) delivers 

 ( ) ( ) ( ) ( ) ( ).r r r r r r r rt m q t c q t k q t f t        (34) 
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Here, rm , rc and rk  are experimentally identified e.g. from vector polar plot curve fit, 

evaluation of real part slopes or from the complex power method, see (Niedbal & 

Klusowski, 1989). The modal coordinate ( )rq t  is calculated from the physical acceleration 

responses  ( )u t  and the modal matrix     by solving Eq. (28) e.g. with least squares: 

      1
( ) ( ) .

T T
q t u t  


              (35) 

    in Eq. (35) represents the experimental modal matrix. This modal matrix contains the 

eigenvectors in the frequency band of interest, which were previously determined from 

linear modal analysis. If significant modal responses for other than the investigated mode of 

vibration are observable, coupling terms between the investigated modes and other modes 

exist. 

The modal velocities ( )rq t  and modal displacement responses ( )rq t  of the mode can be 

obtained by an integration of the modal acceleration responses. Prior to the integration, a 

band-pass filtering of the data is required in order to avoid a drift of the time domain 

signals. The modal excitation force ( )rf t  is calculated from measured eigenvectors and 

excitation forces according to 

    ( ) ( ) .
T

r r
f t F t  (36) 

With the purpose of identifying the non-linear parameters it is required to use an analytical 

expression which is able to describe the non-linear behaviour. If the modal DoF r  is non-

linear in the stiffness and depends only on the modal coordinate ( )rq t , a polynomial 

function like 

 3 5
1 3 5( ) ( ) ( ) ( )r r r rt q t q t q t        (37) 

can be used. The coefficient 1  describes the linear part of the stiffness and 3 , 5 ,. 

characterize the cubic and higher polynomial parts of the stiffness. 

The coefficients i  of the function can be computed by writing Eq. (37) for several time 

steps jt  

 

3 5
1 1 11 1

3 5
2 32 2 2

5

3 5

( ) ( ) ( )( )

( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )

r r rr

r r r r

r r r r

q t q t q tt

t q t q t q t

t q t q t q t

 
 




    
    
        

    
            




    



 (38) 

The vector on the left hand side of the equation can be computed from Eq. (34) by inserting 

values for the modal parameters, rm , rc , rk  and time domain data at time steps jt  with 

1,2, ,j     of the modal coordinates ( ), ( ), ( )r j r j r jq t q t q t   , and the modal force ( )r jf t . The 

matrix on the right hand side is formed by time domain data of the modal coordinate ( )r jq t . 
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The solution of Eq. (38) with least squares or any other appropriate method delivers the 

coefficients 1 3 5, , ,    . Care is needed for the appropriate number of time steps in Eq. (38) 

because too few or too many time steps can cause problems. 

The quality of the non-linear identification can be checked by comparing the restoring force 

( )r t  of Eq. (34), which is based on measured data, and the recalculated restoring force, 

which is computed from Eq. (37) with the identified coefficients i . However, in cases of 

weak non-linearities (small non-linear restoring forces) the deviations may be high, 

although the agreement for the modal coordinates is very good. For this reason it is better to 

compare the modal accelerations of the measurement ( )rq t  with the recalculated modal 

accelerations ( )rq t , which are computed from the rearranged Eq. (34) 

  1
( ) ( ) ( ) ( ) ( ) ,r r r r r r r

r

q t f t c q t k q t t
m

      (39) 

where ( )r t is computed from Eq. (37). A qualitative comparison can be performed by 

visualizing the time histories of ( )rq t  and ( )rq t . In addition, a quantitative comparison can 

be obtained by the root mean square (RMS) values of the measured acceleration signal and 

the deviation between measured and recalculated signals. 

4.3. Single mode identification 

If the non-linearity in the modal DoF r  is solely caused by displacements ( )rq t  and 

velocities ( )rq t  of the same DoF r , the problem of non-linear identification is reduced to a 

single DoF problem. 

To model stiffness non-linearities a polynomial with even and odd powers of the 

displacements ( )rq t  can be used 

  
max

,
0

( ).
i

i
k r i r

i

t q t 


   (40) 

The involvement of terms with even powers in Eq. (40) allows for possible non-symmetric 

characteristics of the overall restoring force. If only terms with odd powers were employed, 

the overall restoring force would be completely anti-symmetric. Of course, the number of 

terms i  and the associated coefficients i  determine whether the overall force , ( )k r t  

always acts into the opposite direction of the respective displacements and has really the 

physical meaning of a restoring force. 

In a quite similar way, the damping non-linearities can be modelled by the function 

  
max

,
0

( ).
i

i
c r i r

i

t q t 


    (41) 
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Here as well, the involvement of terms with even powers in Eq. (41) allows for possible non-

symmetric characteristics of the restoring forces. If only terms with odd powers would be 

employed, the overall restoring force would be completely anti-symmetric. 

If stiffness and damping non-linearities occur together the functions of Eqs. (40) and (41) can 

be combined. In some cases it may also be appropriate to use mixed terms with 

displacements and velocities. 

By modelling the non-linearities with functions of Eq. (40), Eq. (41) or an appropriate 

combination the non-linear identification is reduced to the estimation of the coefficients i  

and i . The computation of the coefficients is in all cases based on an equation like Eq. (38). 

The article (Goege, Fuellekrug, Sinapius, Link, & Gaul, 2005) describes in detail the 

identification of the non-linear parameters for a single mode of vibration. In addition, the 

paper shows a way of characterizing the identified non-linearities. The Harmonic Balance is 

used, and on the basis of the identified non-linear parameters i  and i  the dependency of 

eigenfrequency r  and damping r  versus the excitation level can be calculated and 

visualised in graphs, the so-called modal characterizing functions. 

4.4. Coupled mode identification 

In the case of coupled modes the function of Eq. (40) has to be extended by the contribution 

of other modal coordinates ( )sq t . If two modes r  and s are coupled with respect to the 

stiffness, the polynomial function 

  
max max

,
0 0

( ) ( )
i j

ji
k r ij r s

i j

t q t q t 
 

    (42) 

can be used. As above, the involvement of terms with even powers in Eq. (42) allows for 

possible non-symmetric characteristics of the restoring forces. 

To model damping non-linearities the polynomial function 

  
max max

,
0 0

( ) ( )
i j

ji
c r ij r s

i j

t q t q t 
 

      (43) 

can be used. For more general cases the functions of Eqs. (42) and (43) can be combined. In 

some cases it may also be appropriate to use mixed terms with displacements and velocities. 

If three or more modes are non-linearly coupled the functions of Eqs. (42) and (43) can be 

extended accordingly. Also, the identification is not generally restricted to polynomial 

functions. Any other function may be used where it is appropriate. The important fact is that 

the function has to contain parameter coefficients, which can be computed from measured 

data by using a suitable identification equation. 

The estimation of the coefficients of the functions in Eq. (42) or Eq. (43) always leads to the 

solution of an over-determined set of linear equations like 
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     ,Q       (44) 

where    contains the values of the non-linear restoring forces ( )t  at discrete time steps 

(computed according to Eq. (34)), Q    is comprised by time domain data of the modal 

coordinates ( ), ( ), ( ), ( )r r s sq t q t q t q t   and vector    is assembled by the unknown coefficients 

,ij ij  . The solution of Eq. (44) can be obtained by using least squares. However, also other 

appropriate parameter estimation methods can be applied. 

4.5. Summarization of steps for non-linear modal identification 

The steps for performing a non-linear modal identification according to the above theory 

can be summarized as follows: 

 Identify the linear modal characteristics of the tested structure with the Phase 

Resonance Method or Phase Separation Techniques. 

 Detect the modes that behave non-linear. 

 Excite the non-linear modes with appropriated exciter forces at different force levels 

and use harmonic or sine sweep excitation. Measure time domain signals of forced 

vibrations alone, or signals of forced and free decay vibrations. 

 Compute the participation of the modal coordinates according to Eq. (35) and check if 

modes are coupled. 

 Perform single mode non-linear identification for the uncoupled modes. 

 Perform coupled non-linear mode identification for the coupled modes. 

 Check the quality of the identification by comparing the measured and recalculated 

modal signals. 

5. Illustrative analytical example 

In this section the non-linear identification is applied to an analytical vibration system with 

3 DoF. The purpose is to illustrate the principles of and to demonstrate the applicability. 

The vibration system is shown in Figure 2. The non-linearity consists of a non-linear spring 

with a cubic characteristic ( 3
2nl nolinF k u  ). The non-linear spring is attached parallel to the 

medial spring 2k . The eigenfrequencies of the associated linear undamped system are 

located at 2.845 Hz, 3.774 Hz and 8.954 Hz. The modal matrix of the associated linear 

undamped vibration system is 

      
1 2 3

1 1 0.216

0.432 0 1 ,

1 1 0.216

   
  
         
  

 (45) 

where the columns of the modal matrix are the eigenvectors   , 1,2,3
r

r   with 

components at the 3 masses 1 2 3, ,m m m . Due to the position of the non-linear spring, only 

modes 1 and 3 behave non-linear while mode 2 is completely linear. The reason is that mode 

2 has no deformation at the attachment point of the non-linear spring nolink . 
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Figure 2. Vibration system with 3 Dof 

For the simulation of 'measured' data the vibration system is excited with two single forces 

at mass 2 and mass 3. As excitation signal a sine sweep is used, which runs in 10 s linearly 

from 2 Hz to 12 Hz. 

For the non-linear analysis the 10 s of the sine sweep excitation and 10 s of the following free 

decay vibrations are used. The time domain integration of the 'measured' acceleration 

signals is realized by applying a digital band-pass filter to the accelerations and by 

integrating them once. The resulting velocities are also digitally band-pass filtered and then 

integrated to obtain displacements. Thus, no drift occurs during time domain integration. 

The force signals are also digitally high-pass filtered twice with the purpose to retain the 

correct phase relationship between the input and the output of the system. 

Figure 3 shows the structural displacement responses following the above sine sweep 

excitation. 20 s of the time histories of the modal coordinates 1 2( ), ( )q t q t  and 3( )q t are 

displayed. Figure 4 shows the mode participation of the modal coordinates as scaled root  

 

Figure 3. Time histories of the modal displacements 
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mean square (RMS) values. From the figures it can be seen that the above sine sweep excites 

clearly the modal DoF 1 and 3, whereas DoF 2 responds only very weakly. 

 

Figure 4. Mode participation 

With the purpose to investigate the influence of measurement noise and errors in the data, a 

random signal with an RMS-value of 5 % is added to the clean signals of excitation forces 

and responses prior to the non-linear identification. For the modal parameters ,r rm c  and 

rk which are required for the computation of the non-linear restoring forces ( )r t according 

to Eq. (34), the correct values are used. Also, for the eigenvectors  
r

  the correct data are 

used. A careful modal analysis at an appropriate excitation level should be able to deliver 

such accurate data of the underlying linear system. 

In the following the simulated 20 s time histories of 1 2( ), ( )q t q t  and 3( )q t  are used for the 

non-linear modal identification. First, single mode identification on a trial basis is 

performed. The polynomial function of Eq. (40) with maxi  increasing from 1 to 5 is 

employed. The result is always the same: the deviations between the 'measured' and 

recalculated signals remain high. Also, it shows that there are effects which cannot be 

accounted for with single mode non-linear identification. Figure 5 shows as an example the 

measured and recalculated restoring force of the modal DoF 1r   for max 5i  . By the way, 

it is interesting that the usage of too much coefficients i  causes no problems. The 

apparently unnecessary coefficients are computed to 0. 

Since the single mode non-linear identification is not sufficient, as next step coupled mode 

identification is performed. For the coupled mode identification the polynomial function of 

Eq. (42) is used. The number of terms is increased from max max 1i j   to max max 3i j  . 

The deviations between the 'measured' and recalculated signals disappear completely for 

max max 3i j   and if the clean signals (without the additional random noise) are utilized. 

Again, it shows that the usage of too many coefficients i  causes no problems. The 

apparently unnecessary coefficients are computed to 0. The analysis of noisy signals leads to 

deviations. However, the deviations are not much higher than the noise itself. E.g. in the  
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Figure 5. Non-linear restoring force of modal DoF 1 for single mode identification 

case of 5 % noise the deviations between the 'measured' and recalculated modal coordinates 

1( )q t and 3( )q t  amount to 7.4 % and 7.7 % respectively. It is apparent that no smaller 

deviation than 5 % will be possible. Thus, the deviations are acceptable and indicate a good 

identification. 

Figure 6 shows as an example the restoring force 1 1 3( , )q q  identified from signals with 5 % 

noise for mode 1r   . In the figure the 'measured' and recalculated restoring forces at all 

time steps are plotted as points and crosses. Also, the interpolated restoring surface is 

depicted. The interpolated restoring surface is computed at a grid of 25 10  data points. 

The grid is spanned between the minimum and maximum values of 1q  and 3q . The values 

of the restoring surface are obtained by using Eq. (42) with the identified coefficients ij  and 

inserting the values at the grid points for 1q  and 3q . The figure shows clearly that the 

restoring force 1 1 3( , )q q  depends on both modal coordinates. If modal coordinate 3q  

would be set to zero (or any other fixed value), which is assumed during single mode 

identification, just a trim curve would be identified. However, this trim curve is not able to 

describe the complete non-linear behaviour. 

6. Experimental example 

In this section an example of the application of the method in practice is shown. The method 

is exemplarily applied to an aileron mode of a large transport aircraft (Goege, Fuellekrug, 

Sinapius, Link, & Gaul, 2005), (Goege & Fuellekrug, 2004) (Goege, 2004). 

6.1. Test structure and test performance 

A modal identification test is performed as a Ground Vibration Test on an aircraft using the 

modal identification concept described above. The test duration was about two weeks and 

the aircraft was tested in two configurations. A total number of 352 accelerometers was 

employed to measure the mode shapes of the structure with a sufficient spatial resolution. 
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Figure 6. Restoring force of modal DoF 1 for coupled mode identification 

The transport aircraft is dynamically characterized by a high modal density. During the 

GVT about 73 modes were identified. Most of the modes were linear. Only few modes 

exhibit non-linear behaviour. One mode with significant non-linear behaviour is the aileron 

mode. 

6.2. Non-linear analysis 

At first, the modal characteristics of the aileron mode were identified with the Phase 

Resonance Method at a level of the modal force of 10 N. The aileron mode was excited with 

one single exciter, which was located at the aileron. Figure 7 displays schematically the test 

setup for the excitation of the aileron. 

 

Figure 7. Excitation of the aileron mode of a large transport aircraft 
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Next, the level of the modal force was increased in several steps up to 121 N. At each force 

level the aileron mode was measured with the Phase Resonance Method. Significant non-

linear characteristics were observed: The resonance frequency of the aileron mode was 

changing over the load level by approximately 27 %. 

For the detailed non-linear analysis short parts of the time domain signals with harmonic 

steady-state excitation at the linear resonance frequency were measured. About 16 cycles of 

vibration were recorded. The modal accelerations were computed from the measured 

signals of the 352 accelerometers according to Eq. (35). The acceleration signals were filtered 

and integrated to obtain velocities and displacements as described above. 

The analysis of the modal displacements was performed in the same way as for the 

simulated example. Figure 8 shows the RMS-values of the modal displacements for the 

lowest and highest excitation level. It shows that for the highest excitation level only the 

aileron mode 60r   itself responds. However, for the lowest excitation level, a significant 

response of the bending mode of one winglet (mode 71r  ) is also observed. This is not 

surprising because the motions of an aileron are in principle capable of exciting wing 

bending modes and thus motions of a winglet. The coupling of the aileron mode with all 

other modes is comparatively small. 

 

Figure 8. Mode participation for two different force levels 

Figure 9 displays the restoring force of mode 60r  . The restoring force was calculated 

according to Eq. (34). In this equation the modal parameters, which were identified with the 

Phase Resonance Method on the highest level, are inserted together with the measured 

modal displacement 60q  and the modal force 60f . The restoring function shows a hysteresis 

behaviour and may indicate a clearance non-linearity. This is imaginable because the 

structure vibrates at the lowest force level with only small amplitudes, which are close to the 

production tolerances of the aileron/wing attachment. 
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Under consideration of the observed mode coupling it makes sense to perform two types of 

non-linear identification: single mode identification for mode 60r   and coupled mode 

identification for the two modes 60r   and 71r  . 

 

Figure 9. Measured restoring forces of the aileron mode 

6.3. Single mode non-linear identification 

For the single mode non-linear identification the polynomial functions of Eqs. (40) and (41) 

with the modal displacements and velocities of the aileron mode 60r   are employed. The 

powers 60q  and 60q  are increased from max 1i   to max 3i  . The selection of terms is 

performed in the way that several analysis runs with different terms on a trial and error 

basis are performed. The goal is to minimize the deviations between the measured and 

recalculated restoring forces and the measured and recalculated modal signals. Terms are 

included if they appear necessary to model the non-linear behaviour. They are excluded if 

they do not reduce the deviations. It turns out that the curve fit on the basis of Eqs. (40) and 

(41) is not completely successful. Thus, additional anti-symmetric terms on a trial and error 

basis are introduced. A stiffness term with the second power of 60q , namely 60 60q q   

reduces clearly the deviations and is therefore additionally included. 

Table 1 shows the identified parameters which contribute clearly. The low value of the 

linear damping parameter i  constitutes only small changes with respect to the linear term, 

which is identified with the Phase Resonance Method and is a priori included in Eq. (34). No 

non-linear damping terms are detected. 

Inserting the identified parameters in Eq. (37), the restoring force is calculated and displayed 

in Figure 10 together with the measured restoring force. It shows that the measured und 

recalculated restoring force match really well. Nevertheless, some deviations occur at the 

minima and maxima of the functions. The RMS-value of the deviation amounts to 0.90 %. 
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Term of non-linearity Single mode identification 

60q  5
1 3.204 10    

60 60q q  10
2 4.662 10    

3
60q  14

3 3.814 10     

60q  1 7.0   

Table 1. Parameters for single mode identification 

 

Figure 10. Measured and recalculated restoring forces (without coupling) 

6.4. Coupled mode non-linear identification 

For the coupled mode identification the polynomial functions of Eqs. (42) and (43) with the 

modal displacements and velocities of the aileron mode 60r   and the winglet mode 71r   are 

employed. The powers of 60q , 71q  and 60q , 71q  are increased from max max 1i j   to 

max max 3i j  . The selection of terms is performed in the same way as above. Several analysis 

runs with different terms on a trial and error basis are performed. Terms are only included if they 

contribute clearly to reduce the deviations between measured and recalculated modal signals. 

Table 2 shows the identified parameters which contribute clearly. For mode 60r   itself 

three stiffness and one damping parameter are identified again. In addition, two coupled 

stiffness and five coupled damping terms are identified. A significant difference to single 

mode identification for the four identified parameters of mode 60r   is observed. The 

reason is that the analytical model has changed and that the coupled mode identification 

requires additional terms until the measured restoring forces are fitted with good accuracy. 

The different terms in the stiffness series compensate partly for each other. Thus, the 

physical meaning of the polynomial coefficients is limited. The polynomial coefficients may 

be considered rather as 'numbers' which enable a good fit to the measured data. The main 

criterion are the restoring functions. 
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Term of non-linearity Coupled mode identification 

60q  6
1 2.264 10    

60 60q q  9
2 6.425 10     

3
60q  13

3 4.001 10     

60q  2
1 1.190 10    

60 71q q  9
4 1.397 10    

2
60 71q q  13

5 2.041 10    

60 71q q   4
2 1.806 10    

2
60 71q q   7

3 1.458 10     

2
60 71q q   6

4 1.247 10     

2 3
60 71q q   11

5 2.323 10    

3 3
60 71q q   11

6 5.266 10     

Table 2. Parameters for coupled mode identification 

 

Figure 11. Measured and recalculated restoring forces (with coupling) 

Figure 11 shows the measured and recalculated restoring forces. A nearly perfect agreement 

can be seen, even at the minima and maxima of the functions. The quantitative assessment 

via RMS-value delivers a deviation of 0.15 %. In order to show the influence of the coupling 

terms, the restoring stiffness forces 60  are visualized as surfaces in Figure 12. 

The restoring surfaces are computed at a grid of data points which is spanned by the 

minimum and maximum values of 60q  and 71q . The restoring force surface of the single 

mode nonlinear identification is computed at the grid points from Eq. (41) with the 

parameters of Table 1. This surface is depicted as black mesh. The restoring force surface of  
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Figure 12. Restoring surface of single mode identification (black) and coupled mode identification (red) 

the coupled mode identification is computed at the grid points from Eq. (42) with the 

parameters of Table 2. This surface is depicted as red mesh. Both surfaces exhibit a clear 

difference. Thus, the restoring force 60  depends clearly from both modal coordinates 60q  

and 71q . Single mode identification with the black mesh restoring surface is not able to 

describe the complete non-linear behaviour. 

7. Conclusion 

This book chapter derives first the basic dynamic equations of structures with non-

linearities and considers the experimental modal identification. Then the theoretical basis for 

non-linear identification is explained and a test strategy for non-linear modal identification, 

which can be used within a test concept for modal testing, is described. The basic idea is to 

use modal force appropriation, to employ equations in modal space and to identify the 

modal non-linear restoring forces. This is realized by computing the coefficients of 

applicable functions for the restoring forces from time domain data. The required steps for 

single mode and coupled mode non-linear identification are developed and discussed in 

detail. The identification is then illustrated by an analytical example where it could be 

shown that the method is able to identify the non-linear coupled modes of vibration. A 

second example taken from a modal identification test on a large transport aircraft shows 

the application of the approach in practice. 

The non-linear identification may be further developed by using other functions for the 

restoring forces or to extend it to a higher number of modal DoF. Also, it can be elaborated 

whether and how it would be possible to derive the required linear modal parameters from 



 
Nonlinearity, Bifurcation and Chaos – Theory and Applications 198 

applying Phase Separation Techniques. Thus, the experimental effort of applying the Phase 

Resonance Method could be avoided leading to a reduced test duration. 
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