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1. Introduction 

Gas chromatography is widely used for determining thermodynamic properties of pure 

substances or solvent properties of binary mixtures. From retention data, the solute activity 

coefficient at infinite dilution, the gas–liquid partition coefficient and others thermodynamic 

properties of mixing can be easily obtained. Using these parameters and appropriate models 

allows understanding of the intermolecular interactions responsible for solvation in the 

stationary phase [1-2]. The solvation parameter model is now well established as a useful tool 

for obtaining quantitative structure–property relationships for chemical, biomedical and 

environmental processes. The model correlates a free-energy related property of a system to 

six free-energy derived descriptors describing molecular properties. The ultimate goal is to 

establish a suitable quantitative structure–property relationship (QSPR) to facilitate the 

prediction of further system properties for compounds lacking experimental values. Two 

broad strategies are generally employed in QSPR studies. The first approach is based on 

theoretical descriptors. The advantage of using the QSPR approach based on theoretical 

descriptors is that all of the necessary parameters for prediction can be calculated purely from 

the three-dimensional representation of the molecular structure of each of the compounds of 

the mixtures, including mixtures of chemically diverse compounds [3-4]. The main weakness 

of this approach is that the selected descriptors may be  difficult to understand and the models 

may lack obvious chemical significance. The second approach is based on descriptors 

determined using experimental technique such as gas chromatography.  

In this review, we will present the different possibility of using chromatographic methods to 

facilitate the rapid and convenient measurement of the LSER model presentsed in reference 

[5]. An application of the LSER model on ionic liquids will be presented. The last paragraph 

will be focused on the use of the LSER model coupled to a group contribution model for the 

estimation of the partition coefficient of organic compounds in ionic liquids.  
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2. Solvation models used in gas chromatography 

2.1. Linear solvation energy relationship 

In numerous solvation models, the partition of a solute between the gas phase and a solvent 

(or stationary phase) may be described by a cavity theory of solution [6-7] in which the 

solvation process is divided into three steps. In the step 1, a cavity of suitable size to 

accommodate the solute is created in the solvent. This process is endoergic because work is 

required to disrupt solvent–solvent interactions. In the second step, the solvent molecules 

around the cavity are reorganized from their original positions to the positions they will 

adopt when the solute is in equilibrium with the solvent. Of course, these positions are not 

fixed but are averages of solvent positions. The Gibbs energy change for such reorganization 

is assumed to be negligible, by analogy with the melting of a solid. However, enthalpy and 

entropy changes in reorganizations may be large, again by analogy with the melting of a 

solid. In the last step, the solute is introduced into the reorganized cavity, and various 

solute–solvent interactions are set up, all of which are exoergic.  

Several thermodynamic properties are related to partitioning between water and other 

phases, for example octanol (Kow) or the pure compound itself (water solubility). These 

partitioning processes can be understood from thermodynamic concepts—like free energy, 

chemical potential and fugacity. The equilibrium partition constant between two phases, on 

a mole fraction basis, can be expressed as: 

 = −Δi 12 12 iK exp G RT( / )  (1) 

where Δ12Gi is the Gibbs energy (or free energy) of transfer between the two phases, R is the 

general gas constant and T is the absolute temperature. The Gibbs energy sums up both the 

enthalpic (Δ12H) and entropic (Δ12S) effects resulting from changes in intermolecular 

interactions: 

 Δ = Δ − Δ12 i 12 i 12 iG H T S  (2) 

The calculation of partitioning from structural or other descriptors therefore requires the 

modelling of these effects. The Gibbs energy change can also be separated into the 

contributions of van der Waals and polar interactions, assuming that these are additive: 

 Δ = Δ + Δ polarvdW
12 i 12 i 12 iG G G  (3) 

In the early 1980’s, Taft & Kamlet [8-12] have developed the basic concept of linear solvation 

energy relationships (LSERs). They have demonstrated for thousands of chemical systems 

that some property which is linearly related to either a free energy of reaction, a free energy 

of transfer, or an activation energy can be correlated with various fundamental molecular 

properties of the solvents or solutes involved. Chromatographic retention and in particular 

logarithmic retention factors (log k′), logarithmic partition coefficients (logKL) are linear free 

energy parameters and as such one can linearly correlate these data with the molecular 

properties of the solutes using the LSER model [13-16]. 
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Figure 1. Model of the solvation process. 

The most recent representation of the LSER model proposed by Abraham and coworkers [5, 

17-19] is given by equation (4) 

 H H H 16logSP c r R s π a α b β l LogL2 2 2 2= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅   (4) 

Where SP is a solvation parameter related with the free energy change such as gas-liquid 

partition coefficient, specific retention volume or adjusted retention time at a given 

temperature. The capital letters represent the solutes properties and the lower case letters 

the complementary properties of the stationary phase. The solute descriptors are the excess 

molar refraction R2, dipolarity/ polarizability 2
Hπ , hydrogen bond acidity basicity, 2

Hα  

and 2
Hβ , respectively, and the gas-liquid partition coefficient on n-hexadecane at 298 K, 

LogL16. The solute descriptors may be determined using inverse gas chromatography or 

estimated using a group contribution method. A databank of descriptors for about 3000 

compounds may be found in the literature [2, 20, 21]. The coefficients c, e, s, a, b and l are not 

simply fitting coefficients, but they reflect complementary properties of the solvent phase. 

These coefficients are determined by mutiple linear regression of equation (4). This model 

was strongly applied to characterize chemicals products, petroleum fluids. 

2.2. Determination of LSER parameters of pure solutes 

2.2.1. Determination of Log L16  

To preserve the general character of equation (4), all characteristic parameters should be 

carefully determined and correlation between parameters should be avoided. Experimental 

procedures of successive determination of LSER parameters were described in the literature 

[20, 22-24]. Log L16 characterizes the most general interactions present in every physical 

system and should be determined before other parameters [24]. The original values of log 
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L16 were determined from retention data of organic compounds on n-hexadecane coated 

packed columns at 298.2 K [5]. A number of papers proposed techniques based on the use of 

either capillary or packed columns in wide temperature ranges and replacing the n-

hexadecane with other non-polar stationary phases. The gas liquid partition coefficient of a 

solute is directly related to the experimental capacity factor, k, by equation: 

 
V kML k
V ΦS

= =  (5) 

where VM and VS are the volumes of the mobile and stationary phases, respectively, and Φ is 

the phase ratio (VS/ VM). Experimental determination of log L16 is often very difficult. 

Adsorption phenomena introduce an important error in determination of the capacity 

factor. Zhang et al. [23] determined log L16 with capillary columns coated with n-hexadecane 

and concluded that results were not influenced by adsorption in this case. However, recent 

results presented in reference [25] showed that this improvement is not general and that an 

interfacial adsorption still exists with capillary columns. Moreover, it is very difficult to 

obtain absolute retention data using this technique. Li et al. [24] and Abraham et al. [25] 

studied influence of the solute support and of the stationary phase loading on adsorption 

phenomena. They concluded that the high loading ratio (up to 20 %) of the stationary phase 

and the high temperature of the column allow to reduce adsorption. In this case, the 

knowledge of R2, 2
Hα  and 2

Hπ   parameters is necessary. The number and the nature of 

parameters needed for calculation depend on the stationary phase used. 

Serious difficulties arise when log L16 of non-volatile compounds is to be measured. This is 

due to the definition of log L16 itself. Indeed, direct experimental determination of log L16 of 

compounds less volatile than n-hexadecane is impossible. In the case of heavy compounds 

slightly more volatile than n-hexadecane the experiment is possible but difficult, especially 

at 298.2 K. Often it is recommended to measure retention times at higher temperatures and 

then extrapolate partition coefficients to the ambient temperature. In this case, the quality of 

results depends strongly on the extrapolation method used. The problem of the temperature 

dependence of retention times was often discussed in literature. A suitable extrapolation 

procedure was described in reference [26]. In the case of compounds less volatile than n-

hexadecane several authors proposed to work with columns coated with long chain 

branched paraffins and to establish relationships between corresponding partition 

coefficients and log L16 [16, 26]. Defayes et al. [26] worked with apolane coated stationary 

phase (apolane is a C87H176 branched alkane). This column can be used at temperatures up to 

550 K without a weight loss of the stationary phase. Moreover, it was shown that the effect 

of adsorption at the liquid-gas interface is negligible in this case [26]. However, this opinion 

is not generally accepted and Werckwerth et al. [16] found the influence of adsorption in the 

case of strongly polar compounds. The same authors observed that a linear relationship 

exists between gas-apolane partition coefficients, log L87 and log L16 and that the data 

obtained with apolane can be used to estimate the value of log L16. Moreover, they 

demonstrated that strong correlation between both partition coefficients exists also for log 
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L87 determined at significantly higher temperature [16]. Recently, several authors 

investigated the use of predictive methods to estimate log L16 [27, 28]. This approach is 

particularly interesting to determine the log L16 of nonvolatile compounds. 

2.2.2. Determination of LogL16 using capillary columns 

A direct determination of the stationary phase mass is difficult in the case of capillary or 

Megabore columns and the use of relative methods to determine partition coefficient from 

retention data is often preferred. In this case, different approaches were proposed to 

calculate partition coefficient based on the well-established value of log Ln-hexane [23]. 

Corresponding equation is as follows: 

 
t tmR,X

L LX n hexane t tmR,n hexane

−
= − −−

 (6) 

where tR and tm are the solute retention time and the dead time of the column respectively. 

Retention data of the solute X and of n-hexane should be determined at the same 

temperature. Available data of log Ln-hexane on apolane were determined at 312.4 K [16]. 

On the other hand, it was shown that partition coefficients determined at two temperatures 

are linearly correlated [16].  

 87 16log L alog L bT T'= +  (7) 

New relationship can be established between the partition coefficient of the solute X at 

temperature T and the partition coefficient of the n-hexane at temperature T’. This 

relationship is based on the observation verified with several n-paraffin stationary phases 

that equation (7) for one stationary phase is reduced to the following form: 

 87 87log L log L bT T'= +  (8) 

Equations (6) and (8) lead to relationship between the partition coefficient at temperature T 

of the solute X and the partition coefficient of n-hexane determined at temperature T’:  

 
t tmR,X

(L ) (L )T TX n hexane t tm 'R,n hexane T

 −
 = ×−  −− 

 (9) 

Apolane coated capillary columns are considered as an appropriate tool to determine log L16 

of heavy compounds. Studies of Defayes et al. [26] and Werckwerth et al. [16] provided 

arguments supporting this opinion. As it can be seen in Table 1, results obtained with a 

similar but deactivated column are in good agreement with literature. Chromatographic 

peaks obtained with non-polar and polar compounds were symmetric. While this method 

gave good results at high temperatures, the column was deactivated irreversibly within few 

hours. A probable explanation of this phenomenon is that the adhesion between apolane  
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Compounds log L16 a log L16exp Compounds log L16 a log L16exp 

n-Hexane 2.668 2.660 Triethylamine 3.040 2.947 

n-Octane 3.677 3.670 1-Butanol 2.539 2.545 

n-Nonane 4.182 4.180 1-Pentanol 3.106 3.094 

n-Decane 4.685 4.686 1-Octanol 4.569 4.556 

n-Undecane 5.191 5.189 1-Decanol 5.628 5.631 

n-Dodecane 5.696 5.699 Butanone 2.287 2.274 

n-Tridecane 6.200 6.198 2-Pentanone 2.755 2.758 

n-Tetradecane 6.705 6.701 Pyridine 3.022 3.033 

n-Pentadecane 7.209 7.205 Thiophene 2.819 2.809 

n-Hexadecane 7.714 7.711 Naphthalene 5.161 5.162 

Benzene 2.792 2.810 1-Methyl naphthalene 5.789 5.785 

Toluene 3.325 3.331 2-Methyl naphthalene 5.771 5.772 

Ethylbenzene 3.778 3.782 1,4-Dimethylnaphthalene 6.339 6.338 

o-Xylene 3.939 3.943 1,6- Dimethylnaphthalene 6.280 6.284 

m-Xylene 3.868 3.870 cis-Decahydronaphtalene  5.162 

p-Xylene 3.839 3.841 Indane 4.590 4.598 

1,3,5-Trimethylbenzene 4.344 4.348 Phenanthrene 7.632 7.638 

1,2-Diethylbenzene 4.732 4.728    

Table 1. Partition coefficient log L16 exp. at 298.2K obtained with a C50H102 packed column at 373.2K. log 

L16  a : data taken from [5,14,21,31]. 

and the deactivated silica does not assure the film stability at higher temperature [24, 27]. 

Our experience indicates that the use of commercially available apolane coated capillary 

columns should be limited to low temperature ranges. In the case of heavy compounds this 

implies very long retention times and imposes injection of samples of important volume, 

which induces adsorption effects. Consequently, to determine log L16 of heavy compounds 

we decided to use packed columns with long chain n-alkane stationary phase. Moreover, 

results obtained with a non-deactivated column indicate that retention times are influenced 

by adsorption phenomena. Indeed, polar solutes exhibited severely asymmetric peaks and 

their retention times strongly depended on the sample size. Retention times of alcohols are 

longer than the literature values that may indicate the presence of active sites. 

2.2.3. Determination of LogL16 using packed columns 

Problems of the capillary column stability encouraged us to review the possibility of 

application of packed columns for determining log L16 of non-volatile compounds. 

Stationary phases used were long chain n-alkanes, n-hexatriacontane and n-pentacontane. 

They were used at temperatures up to 320 K without significant loss of weight. The essential 

problem encountered with packed columns concerned adsorption effects [30, 23]. Mutelet & 

Rogalski [2] used teflon columns, inert and stable up to 330 K. Selecting an appropriate 

support material can reduce the adsorption on the surface of the support. Preliminary tests 

showed that the best results were obtained with the Chromosorb PAW DMCS and the 
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Chromosorb WHP. Both supports were loaded with 25% of n-pentacontane. The fact that 

with Chromosorb PAW DMCS retention times depend on the sample size and 

chromatographic peaks are asymmetric indicates the presence of adsorption. Moreover, 

retention times of alcohols are longer than expected, indicating the presence of active 

adsorption sites on the support surface. The Chromosorb WHP support has a lower specific 

area and a smaller concentration of hydroxyl groups which reduces the adsorption. Results 

obtained are in good agreements with literature data for most of the compounds studied and 

retention times depend only slightly on the sample size. However, retention times observed 

with polyaromatic hydrocarbons are still longer than expected. Good results were obtained by 

deactivating the column (Table 1) with Silyl 8, as recommended by [31]. The use of packed 

columns with Chromosorb WHP coated with n-alkane and deactivated with Silyl 8 made it 

possible to obtain a homogenous set of log L16 in good agreement with literature data. 

2.2.4. Determination of LogL16 using temperature gradient method 

The packed column technique can be used to measure log L16 data of volatile organic 

compounds. The reasonable limit of application of this method is the retention time of n-

eicosane. Experimental difficulties make hazardous quantitative determination log L16 of 

heavier compounds. To enlarge the applicability of chromatographic methods to organic 

compounds less volatile than n-eicosane, a method based on the temperature gradient 

chromatography can be used. Recently, Donovan [32] showed that retention times of heavy 

organic compounds obtained in a gradient mode are linearly related to the logarithm of the 

vapor pressure at 298.2 K. The authors used a DB-1 megabore column at high flow rates of 

the gas phase. This method making it possible to reduce considerably retention time was 

applied to determine vapor pressures of pesticides and polyaromatic hydrocarbons. 

Nevertheless, the stationary phase DB-1 is slightly polar [24]. Corresponding system 

parameters of the poly(dimethylsiloxane) immobilized in DB-1 column were published in 

the reference [24]. Values determined at t= 60°C are as follows: r =0, s = 0.211, a = 0.308 and b 

= 0. Therefore, experimental results obtained with a DB-1 column can be used to determine 

log L16 only if LSER parameters expressing solute polarity are known. No general 

relationship between the reduced retention time and log L16 valid with all organic 

compounds can be obtained without the knowledge of above parameters. 

However, this approach can be used to establish relationship between the reduced retention 

time and log L16 within a series of compounds. Indeed, polar parameters vary only slightly 

and in a regular way within a series. Moreover, certain parameters decrease strongly with 

rising temperature [24]. Therefore, it can be supposed that the effect of the stationary phase 

polarity is nearly constant within a homologous series of moderately polar compounds. 

Measurements performed in a gradient mode with several homologous series confirmed 

this hypothesis. However, linear relationship does not afford the precision required for the 

log L16 determination. It was noticed that not only the reduced retention time tR but also the 

corresponding temperature T is needed to establish the appropriate function. Function log 

L16 = f(tR,T) is linear with R=0.996 that is not enough to represent the log L16 with the 

precision required. We found that the suitable function is as follows: 



 
Chromatography – The Most Versatile Method of Chemical Analysis 372 

 
f(t )16 Rlog L

T
exp

 
=  

 
 (10) 

In the case of n-alkanes, function f(tR) was obtained with log L16 literature data of n-alkanes 

from n-dodecane up to n-docosane. The plot of f(tR) and values of parameters determining 

this function are given in Figure 1. The log L16 of n-alkanes up to n=38 calculated with 

equation (10) using gradient mode results are presented in Table 2. It is reasonable to 

suppose that partition coefficients of heavy n-alkanes up to approximately C45H92 can be 

obtained with gradient method. It should be pointed out that the present approach based on 

the gradient mode chromatography can be used only to determine log L16 within a 

homologous series of moderately polar compounds. The use of the present method with less 

polar stationary phase (recently, Li et al. [24] shown that in the case of SPB columns r = 0, a = 

0, b = 0) can facilitate the study of polar compounds and perhaps obtain more general 

results. 

 

Compounds tR log L16 exp Log L16 a,b 

n-Undecane 3.70 5.221 5.191a 

n-Dodecane 5.87 5.705 5.696a 

n-Tridecane 8.18 6.195 6.200a 

n-Tetradecane 10.60 6.707 6.705a 

n-Pentadecane 12.98 7.221 7.209a 

n-Hexadecane 15.15 7.707 7.714a 

n-Heptadecane 17.42 8.237 8.218a 

n-Octadecane 19.47 8.739 8.722a 

n-Nonadecane 21.42 9.239 9.226a 

n-Eicosane 23.30 9.743 9.731a 

n-heinecosane 25.12 10.253 10.236a 

n-Docosane 26.85 10.760 10.740a 

n-Tricosane 28.48 11.259 11.252a 

n-Tetracosane 30.05 11.759 11.758a 

n-Pentacosane 31.57 12.262 12.244b 

n-Hexacosane 33.07 12.779 12.744b 

n-Heptacosane 34.47 13.280 13.244b 

n-Octacosane 35.82 13.780 13.744b 

n-Nonacosane 37.15 14.291 14.244b 

n-Heinetriacontane 39.70 15.321 15.244b 

n-dotriacontane 40.80 15.787 15.744b 

n-Pentatriacontane 44.00 17.223 17.244b 

n-Hexatriacontane 45.08 17.736 17.744b 

n-Octatriacontane 47.00 18.684 18.744b 

Table 2. Retention times tR and partition coefficients log L16 exp of n-alkanes determined at 298.2°C using 

the gradient method on DB-1 column. Log L16 a,b  a: -literature data [5,14,21,31]. b: -estimates calculated 

using the group contribution method proposed by reference [2].  
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Figure 2. Plot of f(tR) function established with temperature gradient method; aromatics and 

polyaromatics (ο), n-alkanes ().  

2.2.5. Determination of polar LSER parameters  

The excess molar refraction E is defined by the difference between the value for the  

solute molar refraction and the molar refraction for an alkane of the same characteristic 

volume:  

 ( ) ( )2 X X XR  MR solute   MR alkane of the same V= −  (11) 

The solute molar refraction is calculated from the following equation: 

 
( )
( )

210 n 1 VX
MRX 2n 2

⋅ − ⋅
=

+
 (12) 

Where VX is the specific volume in cm3.mol-1/100 and n the refractive index of the solute. 

Abraham et al. [18] set out to construct scales of solute hydrogen bond acidity and hydrogen 

bond basicity using logK values for reaction 1 in tetrachloromethane. The authors set out 

logK values for a series of acids against 45 given bases. If log K values for acids in a given 

reference base is plotted against log K values for acids in another reference base, a series of 

straight lines is observed with an intersection at a magic point of -1.1 log units. It is found 

that: 

 ( ) HlogK seriesof acidsagainst referencebaseB L logK DB BA= +  (13) 

Where LB and DB characterize the base and H
AlogK  values characterize the series of acids. 

The 2
Hα  and 2

Hβ parameters are then defined by: 
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 ( )H Hα logK 1.1 /4.6362 A= +  (14) 

 ( )H Hβ logK 1.1 /4.6362 B= +  (15) 

The 2
Hα  and 2

Hβ parameters can be determined at the same time with 2
Hπ parameter. 

Retention data (such as retention volume, partition coefficients) of the solute in three 

stationary phases at least of different polarity can be used to determine the 2
Hα , 2

Hβ  

and 2
Hπ . Each stationary phase can be described by equation (16): 

 H H H 16logK c r R s π a α b β l LogLL 2 2 2 2= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅   (16) 

At first, the LSER parameters c, s, a, b and l of each stationary phase are determined by 

multiple linear regression using solutes for which R2, 2
Hα , 2

Hβ , 2
Hπ  and logL16 are 

known. Then, 2
Hα , 2

Hβ , 2
Hπ can be determined by multiple linear regression. 

2.2.6. Group contribution Method for calculation of LSER parameters of organic 

compounds 

Predictive methods allow to calculate these physico-chemical parameters which are 

inacessible via direct experiment. This alternative is particularly interesting in the case of log 

L16 of nonvolatile compounds. We consider that experimental methods described in the 

preceeding paragraph are useful for determination of LSER parameters of volatile and 

moderatly non-volatile compounds. Therefore, the large data bank of log L16 values already 

available in the literature can be used to establish group additivity rules and to predict log 

L16 of less volatile compounds. Havelec & Sevcik [27,28] presented a general group 

contribution method making it possible to calculate accurate estimates of log L16 of about 

2000 organic compounds. The number of groups necessary to obtain good estimates of log 

L16 depends on the complexity of the molecular structure and rises in the case of 

polyfunctional molecules. This explains a high number of adjustable parameters used in the 

model [27,28]. For instance, log L16 of non-aromatic hydrocarbons is established with 33 

parameters and 9 structural contributions. The total number of all group parameters, 

interactional parameters and structural contributions is of 131. The contribution of a given 

group is represented in the reference [27,28] with three parameters related to the structure of 

the molecule and to its interactions with the stationary phase. As log L16 is dependent on the 

solute vapor pressure and on the infinite dilution activity coefficient this approach is 

basically correct. However, molecular interactions are always related to n-hexadecane and 

certain parameters can be correlated. Platts et al. [20] recently proposed a new predictive 

method based on a careful analysis of contributions of various functional groups to establish 

log L16 and other LSER parameters. Therefore, molecular segments were defined in view to 

obtain good estimates of each. The log L16 of hydrocarbons is calculated with 9 parameters 
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only. This method was established with 81 parameters, using a databank of 1908 

compounds. A new model was proposed to calculating log L16 for nonvolatile organic 

compounds with special attention paid to heavy hydrocarbons. Data for 550 organic 

compounds containing mainly hydrocarbons and members of homologous series were used 

in regression. Basic heteroatom segments were taken into account but the polyfunctional 

organic compounds were not dealt with. Values of log L16 were taken from literature [5, 21]. 

To elaborate the group contribution method a simple and efficient approach was used. 

Accordingly, log L16 of the compounds X was calculated with the following expression: 

 16logLx n ci i
i
= ⋅  (17) 

where ci is the contribution of the group “i” and ni is the number of groups “i” in the 

compound X.  

Platts et al. [20] have developed and tested additive models for six important molecular 

LFER descriptors, namely, R2, 2
Hα , 2

Hβ , 2
Hπ  and logL16. Five of these six, all bar 2

Hα  

are calculated from a single set of 81 atom and group fragments, while 2
Hβ  is calculated 

from a separate set of 51 fragments. In general, the linear fit obtained with these additive 

models is good, with R2 and log L16 in particular giving excellent correlation. Splitting the 

data into training and test sets has also tested the predictive ability of such models, and is 

found to be almost as accurate as the full regressions. The performance of the method in 

calculating descriptors for “difficult” structures, ones containing intramolecular interactions 

such as hydrogen bonds, has been analyzed. Variations in descriptors due to such 

interactions are generally found to be reproduced, though inevitably some small 

discrepancies are found. In conclusion, this model is particurlarly powerful and useful for 

the prediction of LSER parameters of heavy and complicated molecules. 

3. Application of linear solvation energy relationship on ionic liquids 

The LSER model may be used to characterize the stationary phases in chromatography. In 

this case, a large number of solutes (between 20 and 50) for which LSER parameters R2, 

2
Hα , 2

Hβ , 2
Hπ  and logL16 are known have to be injected. The LSER parameters 

characterizing the stationary phases (c, s, r, a, b and l) are determined by multiple linear 

regression. In the literature, there is a large amount of data of partition coefficients or 

activity coefficients measured by gas–liquid chromatography or by dilutor technique. Some 

system constants for various ionic liquids and classical solvents at 25 °C are summarized in 

Table 3. The data for the 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-

methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate 

and 1-ethyl-3-methylimidazolium  diethylphosphate [33], 1-Butyl-3-methylimidazolium 

tetrafluoroborate [34], n-Acryloyloxypropyl-N-methylimidazolium bromide and n-

Methacryloyloxyhexyl-N-methylimidazolium bromide [35], 1-Propenyl-3-alkyl-imidazolium 
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bromide [36], 1-butyl-3-methylimidazolium octyl sulfate and 1-ethyl-3-methylimidazolium 

tosylate [37], Triethylsulphonium bis(trifluoromethylsulfonyl)imide [38], 1-Methyl-3-

ethylimidazolium bis(trifluorosulfonyl)-amide and 1.2-Dimethyl-3-ethylimidazolium 

bis(trifluorosulfonyl)-amide [39] were taken from the sources indicated. Poole & Poole [40] 

found that the system constants of LSER model for the room temperature ionic liquids fall 

into the range e = −0.62 to 0.86, s = 1.7–2.8, a = 2.1–7.3, b = 0–1.07, and l = 0.35–0.96. Compared 

with the scale of the polar organic solvents e = −0.60 to 0.82, s = 0.54–2.8, a = 0.28–5.50, b = 0–

4.8, and l = −0.21 to 0.98,  we can see that both scales are similar indicating that the solvation 

properties for the room temperature ionic liquids are classical and fit quite well into the 

scales developed for polar molecular solvents.  

The (c + lL) term gives information on the effect of cohesion of the ionic liquids on solute 

transfer from the gas phase. In general, the ionic liquids are cohesive solvents; they interact 

weakly via nonbonding and π-electrons (r system constant is zero) and are not much 

different to other polar non-ionic liquids. The ionic liquids are roughly as 

dipolar/polarizable as classical solvents. The hydrogen-bond basicity of the ionic liquid (a 

system constants) are considerably larger than values obtained for non phases (0-2.1) [1]. 

The hydrogen-bond basicity of Ils depends on the anion grafted on the cation. ionic liquids 

can be slightly more hydrogen-bond basic than dimethyl sulfoxide and N-

methylpyrrolidinone, and are weak to moderate hydrogen-bond acids, similar to the 

aliphatic alcohols. From Table 3 and data collected in the reference [40], we can see that the 

hydrogen-bond acidity of the ionic liquids depends largely on the cation and is lower for the 

1,3-dialkylimidazolium salts with an alkyl group at C-2 position than 1,3-

dialkylimidazolium salts.  

4. Predictive models based on LSER model coupled to a group 

contribution method 

Solvation model may be also used to set up correlation between thermodynamic properties 

and LSER parameters. Abraham et al. [41,42] reported mathematical correlations based on 

the general Abraham solvation parameter model for the gas-to-solvent, KL, and water-to-

solvent, P, partition coefficients. Recently, [43-46] modified the Abraham solvation 

parameter model: 

 
cation anion cation anion cation anion

cation anion cation anion cation anion

Log  c  c  e  e   s  s   

                + a  a   b  b   l  l  
LK ( )· ( )·

( )· ( )· ( )·

= + + + + + +
+ + + + +

E S

A B L
 (18) 

 
cation anion cation anion cation anion

cation anion cation anion cation anion

Log  c  c  e  e   s  s  

a  a    b  b  v  v  

P ’ ’ ( ’ ’ )· ( ’ ’ )·

( ’ ’ )· ( ’ ’ )·  ( )·

= + + + + +
+ + + + + +

E S

A B V
 (19) 

by rewriting each of the six solvent equation coefficients as a summation of their respective 

cation and anion contribution. The dependent variables in equations (18) and (19) are 

solutes descriptors as follows: E and S refer to the excess molar refraction in units of 

(cm3.mol-1)/10 and dipolarity/polarizability descriptors of the solute, respectively, A and B  
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Ionic liquids and classical solvents System constants 

  e s a b l c 

1-ethanol-3-methylimidazolium 

hexafluorophosphate 
0 3.03 2.89 1.13 0.47 -1.14 

1-ethanol-3-methylimidazolium 

tetrafluoroborate 
0 3.03 3.64 0.763 0.5 -1.35 

1,3-dimethylimidazolium 

dimethylphosphate 
0.86 2.59 7.27 0 0.35 -0.61 

1-ethyl-3-methylimidazolium  

diethylphosphate 
0.26 1.97 6.9 0 0.54 -0.09 

1-Butyl-3-methylimidazolium 

tetrafluoroborate 
0.56 2.82 3.27 0.48 0.5 -0.77 

n-Acryloyloxypropyl-N-methylimidazolium 

bromide 
0 2.88 5.5 0 0.48 -1.03 

n-Methacryloyloxyhexyl-N-

methylimidazolium bromide 
0 2.46 5.36 0 0.57 -0.87 

1-Propenyl-3-methyl-imidazolium bromide 0 2.16 5.19 0 0.53 -1.86 

1-Propenyl-3-octyl-imidazolium bromide 0 1.72 4.96 0 0.57 -1.6 

1-Propenyl-3-decyl-imidazolium bromide 0 1.73 4.89 0 0.66 -1.58 

1-Propenyl-3-dodecyl-imidazolium bromide 0 1.44 4.87 0 0.72 -1.51 

1-Butyl-3-methylimidazolium octyl sulfate 0 1.47 4.05 0 0.68 -0.237 

1-Ethyl-3-methylimidazolium tosylate 0.54 2.4 4.81 0.17 0.48 -0.84 

n-Butylammonium thiocyanate 0.14 1.65 2.76 1.32 0.45 -0.75 

1-Methyl-3-ethylimidazolium 

bis(trifluorosulfonyl)-amide 
0.148 2.277 2.172 1.041 0.629 -0.439 

1.2-Dimethyl-3-ethylimidazolium 

bis(trifluorosulfonyl)-amide 
0.214 2.347 2.075 0.896 0.655 -0.565 

Triethylsulphonium 

bis(trifluoromethylsulfonyl)imide 
0.114 2.37 2.34 0.696 0.642 -0.803 

1-Ethyl-3-methylimidazolium 

Trifluoroacetate 
0.608 1.63 4.21 1.81 0.584 -0.918 

1-Butyl-3-methylimidazolium 

Trifluoromethanesulfonate 
0.399 2.03 3.49 0.681 0.647 -0.784 

Trifluoroethanol -0.547 1.339 2.213 3.807 0.645 -0.092 

Methanol -0.22 1.17 3.7 1.43 0.769 -1.27 

Water 0.82 2.74 3.9 4.81 -0.213 0 

1.2 Dichoroethane -0.47 1.676 0.92 0.486 0.927 0.025 

Dry methyl acetate -0.447 1.675 2.625 0.213 0.874 0.129 

Dry ethyl acetate -0.352 1.316 2.891 0 0.916 0.182 

Ethylene glycol 0.217 1.427 4.474 2.687 0.568 -0.898 

Benzene -0.313 1.053 0.457 0.169 1.02 0.107 

2-(Cyclohexylamino)ethanesulfonate 0.07 1.57 3.67 0 0.51 -0.83 

Table 3. LSER descriptors of ionic liquids determined at 313.15 K. 
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are measures of the solute hydrogen-bond acidity and basicity, V is the McGowan volume 

in units of (cm3.mol-1)/100 and L is the logarithm of the gas-to-hexadecane partition 

coefficient at 298 K. Sprunger et al. calculated equation coefficients for 8 cations and 4 anions 

using a database that contained 584 experimental log KL and 571 experimental log P values. 

No loss in predictive accuracy was observed by separating the equation coefficients into 

individual cation-specific and anion-specific values. The major advantage of splitting the 

equation coefficients into individual cation-specific and anion-specific contributions is that 

one can make predictions for more ILs. In Sprunger’s approach, the major advantage of 

splitting the equation coefficients into individual cation-specific and anion-specific 

contributions is that one can make predictions for more Ils. Most of the cations are 

alkylimidazolium. The use of this model is somewhat limited since it can not be 

extrapolated to alkylimidazolium ionic liquids not initially defined by the method (e.g. with 

long alkyl chains).  

In the development of Mutelet et al. [47], the cation with its alkyl chains is splitted in 

different contributions: (CH3, CH2, N, CHcyclic…). The approach allows to have a predictive 

model. The aim of this work was to develop a group contribution method allowing to 

estimate the log KL and Log P of organic compounds in ionic liquids at 298 K. Using the 

LSER model proposed by Abraham, the group contribution method expresses LSER 

coefficients ci, ei, si, ai, bi and li of equation (19). or '
ic , '

ie , '
is , '

ia , '
ib  and iv  of equation (20) 

by:  

= × + × + × + × + × + ×

= × + × + × + × + × + ×
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Where ni is the number of group i present in the ionic liquid. 

Mutelet et al. [47] proposed to extend the temperature dependent GC-LSER in view of 

determining the partition coefficient of organic compounds in ionic liquids. The GC-LSER 

can be rewriting as followed: 

 

× + × ⋅ + × ⋅ + × ⋅ + × ⋅
= +

    
21 21 21 21 21

i i i i i i i i i i
i i i i i

L

n c n e E n a A n b B n l L

LogK const
T

 (21) 

The experimental data used to calculate Abraham’s model ion-specific equation coefficients 

were taken from the collection of [43-46] and were updated with recent data. A total of 1450 

gas-liquid partition coefficients and 1410 water-to-liquid partition coefficients were used for 

the calculation. Solutes were mainly n-alkanes, cycloalkanes, alkenes, alkynes, aromatics, 

alcohols, ethers, aldehydes, ketones, chloroalkanes. The E-scale varies from 0 to 1.5, the S-

scale from 0 to 1.72, the A-scale from 0 to 1.04, the B-scale from 0 to 1.28, the L-scale from –

1.200 to 7.833 and the V-scale from 0.109 to 1.799. The dataset is composed of 27 
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imidazolium based ionic liquids, 3 ammonium, 3 pyridinium and 4 pyrolidinium based 

ionic liquids. The authors also add sulphonium and phosphonium ionic liquids although 

only one set of KL (or P) data may be found for these families. The twenty one groups which 

are defined in this method are listed in Table 4. The decomposition into groups of the ionic 

liquids is very easy, that is as simple as possible. No substitution effects are considered. No 

exceptions are defined. In Figure 3 are represented all ionic liquids studied in this work. 

Five groups are defined to describe the chains R1, R2, R3 and R4 grafted on the cation: CH3, 

CH2, -O-, -O-Ncycl and –OH. These groups allow the calculation of partition coefficients of 

alkyl based ionic liquids but also functionalized ionic liquids such as ether, alcohols. The 

remaining seven groups are: CH2cyclic, CHcyclic, Ccyclic, Ncyclic, N+ (ammonium cation), P+ 

(phosphonium cation) and S+ (sulphonium cation). 

More precisely, Ncyclic represents two structures: 
+

⏐
− =N  and 

⏐
− −N . Nine groups are used for 

anions: bis(trifluoromethylsulfonyl)imide : ( ) −
2

TF N , hexafluorophosphate: −
6PF , 

tetrafluoroborate: −
4BF , ethylsulfate: −

4EtSO , octylsulfate: −
4OcSO , thiocyanate: −SCN , 

trifluoromethylsulfonate : −
3 3CF SO , trifluoroacetate : −

3ACF  and dicyanamide: ( ) −
2

CN N . 

As an example, let’s have a look at the decomposition of 1-butyl-3-methylimidazolium 

hexafluorophosphate. In this case, the decomposition of the molecule into elementary 

groups is: 2 group 1 (-CH3) + 3 group 2 (-CH2) + 3 group 7 ( Ccyclic) + 2 group 9 (Ncyclic) + 1 

group 14 (PF6-). 

 

Figure 3.  Cation of six families of ionic liquids. 

Group contribution model coupled to LSER (GC-LSER) for estimating the gas-to-ionic 

liquids partition coefficients and water-to-ionic liquids partition coefficients allows to 

predict with good accuracy Log KL and Log P at 298 K of not only alkyl based ionic liquids 

but also functionalized ionic liquids. The parameters of the group contribution methods 

were determined for imidazolium, pyridinium, pyrrolidinium, phosphonium, ammonium 

and sulphonium based ionic liquids containing several different anions. A comparison 

between the experimental and calculated values showed that the proposed models describe 
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the experimental data available with a mean absolute error of about 0.15 log unit. While the 

model is probably somewhat limited in prediction for pyridinium and pyrrolidinium based 

ionic liquids because of the poor dataset for these cations, results obtained are satisfactory. 

 

Cation’s group Definition Anion’s group Definition 

Group 1 CH3- CH3 from alkyl chain 

R1, R2,R3 or R4 

Group 13 ( ) −
2

TF N  bis(trifluoromethyl-

sulfonyl)imide 

Group 2 -CH2- CH2 from alkyl chain 

R1, R2,R3 or R4 

Group 14 −
6PF   Hexafluorophosphate 

Group 3 -O- -O- in alkyl chain R1, 

R2,R3 or R4 

Group 15 −
4BF  Tettrafluoroborate 

Group 4 -O-

Ncyclic- 

Oxygenated atom 

connected directly to 

Ncyclic 

Group 16 −
4EtSO  Ethylsulfate 

Group 5 -OH -OH from alkyl chain 

R1, R2,R3 or R4 

Group 17 −
4OcSO  Octylsulfate 

Group 6 CH2cyclic  CH2 cyclic in 

pyrolidinium’s cation

Group 18 −SCN  Thiocyanate 

Group 7 CHcyclic CH cyclic in 

imidazolium or 

pyridinium’s cation 

Group 19 −
3 3CF SO  Trifluoromethyl-

sulfonate 

Group 8 Ccyclic C cyclic in 

imidazolium or 

pyridinium’s cation 

Group 20 −
3ACF  Trifluoroacetate 

Group 9 Ncyclic Cyclic nitrogen 

(imdazolium, 

pyridinium and 

pyrolidinium) 

Group 21 ( ) −
2

CN N  Dicyanamide 

Group 10 
N

+

Ammonium’s cation    

Group 11 
P

+
Phosphonium’s cation    

Group 12 

S
+

Sulphonium’s cation    

Table 4. Description of the 21 groups used for the estimation of LogKL and LogP. 
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5. Conclusion 

The solvation parameter model is suitable for describing the retention properties of 

molecules in chromatographic systems. To establish the system properties requires 

identification of a group of compounds with well known descriptor values. We have shown 

that all LSER parameters of solutes may be determined using gas chromatography or 

experimental techniques. The solvation model may be used either for the physico-chemical 

characterization of the stationary phases or for the establishment of a suitable quantitative 

structure–property relationship to facilitate the prediction of further system properties for 

compounds lacking experimental values. 
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