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1. Introduction 

The use of microorganisms and their products as possible therapeutic agents in the 

control of cancer begins at the latter part of the nineteenth century. The search of new 

drugs from microbial sources against infectious disease has been augmented when 

Alexander Fleming (1928) discovered penicillin [1]. The secondary metabolites from 

microorganisms play a vital role in developing antibiotics and chemotherapeutics [2, 3].  

Several researchers have reported various anticancer molecules from different microbial 

sources [4]. Even though chemotherapy is efficient in enhancing patient survival with 

primary tumors continue to have deprived prognosis. The rapid advances in the field of 

antibiotics have inspired new hope that the search among biological systems will disclose 

a chemical agent which will exert a destructive effect upon neoplastic growth without 

seriously affecting normal cells. Using live or attenuated pathogenic bacteria or its 

metabolites in treatment of cancer excretes toxic effects among patients. Azurin, a redox 

protein recently fascinated biomedical researcher’s immense interest as an anti cancer 

therapeutic agent which enters human breast cancer cells and induces apoptosis without 

any adverse effects in cancer patients [5]. Azurin, a secondary metabolite derived from 

bacterial species especially from P. aeruginosa function as a donor in terminal electron 

transfer process [6]. Azurin also termed as blue small copper proteins highly stable in 

nature. The presence of copper ion in the polypeptide chain contributes to the azurin 

stability [6-8]. Azurin reported as a potential anticancer protein against breast cancer cell 

lines, evoked the researchers of novel methods for enhanced synthesis of azurin has 

initialized. P. aeruginosa a common gram negative opportunistic pathogenic bacterium 

found naturally [9]. They are considered as facultative anaerobic grow in partial or total 

oxygen depletion cultural conditions. This organism can achieve anaerobic growth 

with nitrate as a terminal electron acceptor. P. aeruginosa secretes a variety of pigments, 

including pyocyanin, pyoverdine and pyorubin. 
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Previous researchers [10] adopted genetic engineering techniques and other bacterial species 

for purification of azurin. This study is concerned of enhanced azurin synthesis from different 

strains of P. aeruginosa with lucid homogeneity by customized methods. The growth of 

different P. aeruginosa MTCC strains 1934, 741, 2453, and 1942 for the synthesis of azurin were 

scrutinized for enhanced azurin synthesis. The enhanced azurin synthesis from P. aeruginosa 

strains was improved by the CuSO4 and KNO3 containing media under facultative anaerobic 

condition. The purification of azurin had been performed by ion-exchange and gel-filtration 

chromatography. High yield was reported in P. aeruginosa 2453 strain than other strains. 

2. Materials and methods 

2.1. Chemicals and reagents 

Growth medium constituents were of analytical grade obtained from Hi-Media laboratories, 

India. The buffer ingredients were purchased from Merck Chemicals Ltd, India. Sephadex 

G-25, G-75, diethyl amino ethyl cellulose (DEAE) cellulose and carboxy methyl (CM) 

cellulose were all obtained from Sigma-Aldrich, USA. The 3, 5-dimethoxy, 4-hydroxy 

cinnamic acid otherwise called as sinnapinic acid a matrix-assisted laser 

desorption/ionization-time of flight (MALDI-ToF) was also acquired from Sigma-Aldrich. 

Protein concentrations were measured by Lowry’s method with bovine serum albumin as 

standard. Standard dialysis bag with 3 kDa cutoff was purchased from Sigma-Aldrich. 

Powder of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), propidium iodide 

(PI) and dimethylsulfoxide (DMSO) solution were procured from Sigma Aldrich, India. Cell 

culture media and other constituents of media are purchased from Hi-media Laboratories 

Ltd, India. Fetal bovine serum was obtained from Invitrogen Life Technologies, USA.   

2.2. Cultivation of P. aeruginosa MTCC 2453 

A freeze dried culture of  P. aeruginosa strains MTCC2453,741,1934,1942 was obtained from 

the Microbial type culture collection center, Chandigarh, India and was grown in a medium 

containing  7g yeast extract, l0g peptone, 20g of KNO3, 6.4g of KH2PO4, 3.6g of Na2HPO4 

(anhydrous), 2.5g of NaCl, 5µg/ml of CuSO4  per liter. The initial pH was adjusted to 6.5 

with NaOH. The strains were maintained on nutrient broth with 50% glycerol concentration 

and stored at -70oC for further study.  

Inoculums’ of  P. aeruginosa strains was prepared by inoculating a loopful of colonies in 

individual 100 ml conical flasks with the exact  constituents of the above prescribed media and 

incubated at 370C, in stirring mode at 100/rev for 21 hours. These inoculums was  used to seed 

the bulk 500ml x 4 sterile medium in 2000 liter conical flasks (separate conical flask used for all 

four strains) which was also kept at stirred mode (100/rev) for 21 hours at 370C [11].  

2.3. Impact of copper sulphate and potassium nitrate on culture medium 

All P. aeruginosa strains MTCC2453, 741, 1934, and 1942 are inoculated separately in a sterile 

medium. Impact of copper sulphate and potassium nitrate in azurin synthesis were 
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observed by adding different concentration of copper sulphate (1µg/ml- 5µg/ml) and 

potassium nitrate (5µg/l – 20µg/l) at different flasks for each concentration distinctly. The 

azurin protein optimization and quantification was studied in UV spectrometer (Perkin 

Elmer, Massachusetts, USA) at 595 nm by Bradford’s method. The azurin synthesized from P. 

aeruginosa MTCC2453 is significantly higher than other strains [11, 12].  

2.4. Extraction of cellular protein 

After 21 hrs incubation, cells were harvested by centrifugation method at 13200 g for 15-20 

minutes by using ultra centrifuge (Eppendorf, Hamburg, Germany). Cell pellets was 

collected and suspended in the appropriate volume of 0.02M potassium phosphate buffer 

pH 7 with protease inhibitor and kept in the ice basket for sonication. Cells were sheared by 

Ultra sonicator (Cole Parmer, USA) of approximately 100 ml batches of cell suspension. All 

batches were sonicated for 1-2 minutes at 100W. After sonication the samples was stirred 

vigorously and centrifuged at 10000g for 20 minutes which removes cell wall debris. The 

green-brown crude supernatant was stored. Resuspended the precipitate in same buffer, 

stirred it vigorously and centrifuged as before and the supernatant were stored with the 

previous extracts [11, 12].  

2.5. Ammonium sulfate precipitation of proteins 

The Crude (supernatant) was saturated to 45% (277g/l) by slowly adding ammonium sulfate 

salt at 40C for precipitation, kept it for overnight [5,6]. After precipitation the solution was 

centrifuged at 20,000g for 25 minutes [6,]. Collected the yellow supernatant saturated again 

to 95% by adding (NH4)2SO4 (372g/l) slowly and kept at 40C for overnight. The overnight 

precipitated solution was centrifuged at 23000g for 45 minutes. Pale supernatant was 

discarded. Precipitate (contains azurin) were collected and resuspended in 0.02M Potassium 

Phosphate buffer pH 7[11, 12]. 

2.6. Dialysis of the supernatant 

Azurin suspended in 0.02M potassium phosphate buffer pH 7 was dialysed by standard 

dialyses bag purchased from Sigma-Aldrich, (Kolkata, India) having 3 kDa molecular 

weight cut off at 40C for 20 hours on the same buffer for overnight with continuous gentle 

stirring. Dialysis was done until the solution attains its buffer pH. The solutions were kept at 

40C after dialysis for further purification [11, 12]. 

2.6.1. Purification of Azurin on Ion – Exchange chromatography 

2.6.1.1. DEAE cellulose treatment 

Dialysate (contains azurin) were initially treated with DEAE. 100 ml slurry of DEAE 

cellulose equilibrated in 0.02M potassium phosphate buffer pH 7 were treated with the 
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dialysate and stirred for 20-30 min at 40C.The suspension was centrifuged at 10,000g for 15 

min. Azurin does not adsorb in the gel remains in supernatant but most of the unwanted 

proteins like yellow flavo proteins are removed. Supernatant was collected. DEAE cellulose 

precipitate was resuspended in the same buffer and again centrifuged at 10,000g for 15 

minutes to remove all unattached proteins [11-13]. 

The supernatant after DEAE treatment was saturated to 100% (766g/l) with (NH4)2SO4 at 

40C for overnight for precipitation. After saturation, precipitates are mixed gently and kept 

for centrifugation at 10000g for 10 min. supernatant was collected for dialysis at 40C for 

overnight with gentle stirring with the same before. Dialysis was continued till the solution 

pH attains its buffer pH [11-13]. 

2.6.2. Purification of Azurin on gel-filtration chromatography 

2.6.2.1. Chromatography on Sephadex G-25 

Sephadex G-25 beads were equilibrated in the 0.02M potassium phosphate buffer pH 7 [Parr S 

R et al 1976] for overnight, and tightly packed in 3cm x 25cm length glass column without any 

bubbles. The column was initially washed with 0.02M potassium phosphate buffer for twenty 

volumes of the gel packed. The Flow rate was adjusted to one minute per ml. slowly the 

dialysate (after DEAE treatment) was added with the eluent buffer 0.02M potassium 

phosphate buffer pH 7 on the column. Thirty fractions were collected at one minute interval 

[12-14].  

2.6.2.2. Chromatography on Sephadex G-75 

Sephadex G-75 beads in powder form are equilibrated in 0.01M Tris/Hcl buffer pH 7.5 for 

overnight. After equilibration the beads were tightly packed in a 3cm x 45cm glass column. 

The column was washed with same equilibrating buffer for fifty volumes of the column 

value. After washing with buffer one ml of the sample (fraction (a) collected from the G-25) 

were passaged and eluted with the same equilibrating buffer. Seventy five fractions were 

collected at 1 ml/6minutes flow rate [12-14].  

2.6.3. Purification of Azurin on ion –  

Exchange (anionic) chromatography 

2.6.3.1. Chromatography on CM cellulose 

The CM cellulose beads from Sigma–Aldrich (Kolkata, India) were equilibrated for 

overnight in the ammonium acetate buffer pH 3.9 adjusting the pH by 0.05M acetic acid 

with 2M NH3.After swelling, the beads were packed in a 5cm x 15cm glass column and 

washed for ten times of the column volume. Gently one ml of the sample added (Fraction (e) 

collected from G-75) over the top of the column and left it for 5-10 minutes to bind the 

protein inside the beads. After 10 minutes the column was eluted with ammonium acetate 

buffer pH 4.65 [12-14]. 
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2.6.4. Characterization of Azurin (purified from P. aeruginosa MTCC2453) 

2.6.4.1. Molecular weight determination by matrix-assisted laser desorption/ionization time of flight 

(MALDI-ToF) 

The most successful method to analyze biopolymers such as, proteins, peptides, sugars and 

large organic molecules which are tend to be fragile and fragment when ionized by more 

conventional ionization methods [15]. The Fractions collected from G-25, G-75 and CM 

cellulose were performed MALDI for molecular weight determination. Two micro liter from 

each fraction of the chromatography was added with 20µl of 3, 5-Dimethoxy, 4-Hydroxy 

cinnamic acid otherwise called as sinnapinic acid (Sigma-Aldrich. Kolkata, India). Tiny 

spots were made on silver plate and kept for drying for 4-6 hours to drain the water 

molecules. Further spots were dried with a vacuum drier to make a crystalline molecule. 

After drying the samples were placed in the MALDI-ToF chamber (Voyager De pro, applied 

systems Illinois, USA) for analysis by using nitrogen laser at 337 nm. 

2.6.5. Purification profile of Azurin ((synthesized from P. aeruginosa MTCC2453) by 

SDS-PAGE 

Five ml of 12% resolving gel contains 1ml distilled water, 30% acryl amide, 1.5M Tris (pH 

8.8), 10% SDS, 10% APS and 0.002µl TEMED for polymerization was casted in the glass slab 

without any bubbles and kept it for 10-15 minutes. After polymerization of the resolving gel, 

3ml of stacking gel (4%) were loaded over the resolving gel which contains 0.68 ml distilled 

water, 30% acryl amide, 1M Tris (pH 6.8) 10% SDS,10% APS, and 0.001ml TEMED. After 

casting the gel, proteins purified from different chromatography were loaded with 

bromophenol (molecular weight marker dye) at different lanes for profiling the protein 

purification process.  

Glass slab gel were kept in the electrophoresis tank with tank buffer (196 mM glycine, 

0.1%SDS, 50mM Tris-Hcl pH 8.3 made by diluting a 10x stock solution). This setup was 

connected with power pack initially in 80mV to 100 mV. After running the gel up to its 

anode end, was removed and stained with 0.2% coomassie brilliant blue for overnight. 

Destained with destaining solution (45: 45: 10 – methanol: water: acetic acid) which destains 

the comassie blue until it reveals the bands. The bands (figure 4) were observed under UV 

transilluminator (Biorad, PA, USA) [16]. 

2.6.6. FTIR analysis 

Infrared spectroscopy experiments were performed using a Nexus 870 (Thermo Nicolet 

Corporation, Madison, USA) spectrometer equipped with a potassium bromide (KBr) beam 

splitter and DTGS (deuterated triglycine sulfate) detector in the range of 3,000-4000 cm−1. We 

recorded 32 scans per spectrum at a 2 cm−1 resolution for 100 µl of azurin liquid samples in 

0.02 M PBS buffer (pH 7.0). We kept the same buffer as a background medium and 

performed all measurements at room temperature. We corrected spectra for the moisture 
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and carbon dioxide in the optical path. The curves were deconvoulted and imported into 

Omnic’s peak fit software (Thermo scientific, Illinois, USA) and a Gaussian curve fitting 

performed [17].  

3. Results 

3.1. Growth of P. aeruginosa strains 

The inoculated growth of P. aeruginosa MTCC strains 2453, 741, 1934 and 1942 under 

facultative anaerobic conditions, yields total dry cell protein in the range of 150- 170 g/l 

medium (Fig. 2.1a). We observed P. aeruginosa 2453 produces lesser amount of cellular 

proteins than other strains. The quality assay was performed after incubation for 

contamination of any other unwanted organisms. A unique green colour colony in nutrient 

agar medium was observed and hence we confirmed it as P. aeruginosa colonies (Fig 1.).  

3.2. Effect of copper sulphate and Nitrate in azurin synthesis 

Earlier studies showed that azurin production by different bacterial strains were similar to 

the azurin produced by P. aeruginosa MTCC 2453 but with more yield than previous 

procedures. Four strains were tested for high yield of azurin productions were P. aeruginosa 

2453, 741, 1942, and 1934. We observed a significant increase in the yield of azurin secreted 

by P. aeruginosa 2453 than genetically engineered strains and other strains. This remarkable 

increase in the yield of azurin was obtained by addition of CuSO4 and KNO3 in the medium 

with specific facultative anaerobic cultural conditions. In contrast to earlier studies, adding 

both CuSO4 (4-5 µg/ml) and KNO3 (0.02 µg/ml) in the medium under facultative anaerobic 

conditions generate high amount of azurin (Figure 2.), rather adding either CuSO4 or KNO3 

(Table 1.). 

 

 

Figure 1.  (a) Bacterial culture medium incorporated with CuSO4 and KNO3 (b) Green colour colonies a 

unique characteristic of P. aeruginosa colonies 
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Figure 2. Quantification of azurin synthesis by different strains of P. aeruginosa MTCC 741, 1934, 1942 

and 2453 and impact of CuSO4 and KNO3: 1-5 µg/ml range of CuSO4 concentration with 0.004-0.02 

µg/ml of KNO3 was added in the culture medium to study the impact of azurin synthesis. 

 

Purification step 
P. aeruginosa 

MTCC 1934 

P. aeruginosa 

MTCC 741 

P. aeruginosa 

MTCC 2453 

P. aeruginosa 

MTCC 1942 

Total dry cell yield in g/l medium 1650 1780 156 0 1590 

Protein concentration after 45/95 % 

(NH4)2SO4 precipitation (g/l)
1520/1410 1460/1550 1105/1250 1205/1300 

Protein concentration after DEAE 

treatment in g/l medium
560 610 460 490 

Protein concentration after G-25 

treatment g/l. 
440 485 315 384 

Protein concentration after G-75 

treatment g/l. 
320 350 295 302 

Total Azurin synthesis in mg/g 

dry bacteria. (CM cellulose) 
2.9 2.4 3.95 2.6 

Table 1. Azurin yield from different strains (P. aeruginosa MTCC 741, 1934, 1942 and 2453) in addition 

of 5 µg/ ml CuSO4 and 0.02 µg/ml KNO3 in the culture medium  

3.3. Chromatography methods for azurin Purification 

DEAE and G-25 are gel filtration columns which remove positively and negatively charged 

proteins respectively. The unwanted flavo proteins and positively charged proteins were 

removed during DEAE chromatography. The collected fractions from G-25 were quantified 

for protein concentration in the UV-Spectrophotometer at 280nm wavelength. Azurin and 

other proteins more than 5 kDa were eluted immediately after void volume is plotted as 

graph (Figure 3.).  
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Peak (a) from G-25 was loaded on G-75 for further purification. The G-75 fractions were 

quantified for protein concentration in the UV-Spectrophotometer at 280nm wavelength. 

Azurin a 14 kDa protein will elute after binding in to the beads when the elution buffer 

elutes it. Thus, azurin and some other proteins will elute very lately, was confirmed from 

the OD values of the spectrometer, when plotted as graph (Figure 4). The azurin will form a 

thick band when passages through CM cellulose column which was eluted by ammonium 

acetate buffer pH 4.65. Ten fractions were collected and absorbed under UV spectrometer at 

280nm wavelengths for azurin concentration (Figure 5.). 

 

Figure 3. Elution on sephadex G-25: The active fraction from DEAE was loaded on G-25 column. Upon 

thirty fractions only peak (a) collected for further purification. 

 

Figure 4. Elution on sephadex G-75: Fraction (a) collected from the G-25 was loaded with eluent buffer 

(PBS) to elute bounded proteins. Seventy five fractions were collected at 1 ml/6minutes flow rate. Peak 

(e) collected for further purification. 
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Figure 5. Azurin purified from various strains of Pseudomonas aeruginosa: a Azurin forms thick bands in 

CM cellulose column chromatography during their purification process. Later this was eluted by 

ammonium acetate buffer pH 4.65. All Pseudomonas aeruginosa strains, particularly Pseudomonas 

aeruginosa 2453 strain shows more significant amount of azurin production. b the mean of the azurin 

production by various Pseudomonas.aeruginosa strains: The production of azurin was enhanced by the 

copper sulphate (5µg/ml) and KNO3 (0.02 µg/ml) containing media under facultative anaerobic 

condition. The bar graph shows Pseudomonas aeruginosa 2453 secrets more azurin than any other strains 

like Pseudomonas aeruginosa 741, 1942, 1934 strains tested. 

3.4. Characterization of Azurin (Purified from P. aeruginosa MTCC2453) 

In this study we profiled our purification process at every step by MALDI-ToF (Figure 6.) 

and SDS-PAGE (Figure 7.) and to confirm the azurin presence in our experiments. Cellular 

proteins loaded in lane 2 of SDS-PAGE reveals whole cell proteins of P. aeruginosa MTCC 

2453. Fraction (a) collected from G-25 gel filtrations were loaded in lane 3; it shows proteins 

above 5 kDa in SDS-PAGE which was also confirmed in MALDI-ToF results. Most 

unwanted proteins were deduced during G-75 gel filtration. Our SDS and MALDI results 

shows fraction (e) from G-75 contains azurin (14 kDa). The azurin was again purified and 

concentrated in CM cellulose.  
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Figure 6. (a) Protein purification was assayed at each step of chromatography. Peak (a) from G-25 was 

analyzed in MALDI-ToF using Nitrogen laser at 337 nm, confirming the 14 kDa molecular weight of 

azurin.  
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(b) Protein purification was assayed at each step of chromatography. Peak (a) from G-25 was analyzed 

in MALDI-ToF using Nitrogen laser at 337 nm, confirming the 14 kDa molecular weight of azurin. 

(c) Peak (e) from G-75 was analyzed in MALDI-ToF 

 

Figure 7. Protein purification profile further was confirmed by SDS-PAGE analysis: Lane 1: Molecular 

weight markers 6.5-240 kDa (Bangalore Gene, India), Lane 2:  Total cellular proteins, Lane 3: G-25 

Fraction [peak (a)], Lane 4:  G-75 fraction [peak (e)], Lane 5:  CM cellulose purified azurin. 

3.5. FTIR analysis 

The functional groups of azurin were studied using FTIR spectrum. The presence of the 

amide I band was indicated by the peak around 1650 cm-1 region, which arises primarily 

because of the stretching vibration of the main chain of carbonyl groups in the protein 

backbone coupled with the in-plane N-H bending and C-N stretching modes. Furthermore, 

the presence of an amide band around 1650 cm-1 signifies α-helix secondary structure of 

azurin. Azurin synthesized from all strains showed a significant shift in the amide I band 

with one another, indicating differences in their helix secondary structure of azurin. The 

most prominent among all strains is P. aeruginosa 2453 which showed peak around 1646.936 

whereas, others showed peak around 1642.269, 1639.446, 1637.873 for P. aeruginosa 741, 1942, 

1934 respectively (Fig. 8.). The peaks at 3695 and 3251 cm-1 are the amide A and B bands, 

respectively, which arise from a Fermi resonance between the first overtone of amide and 

the N-H stretching vibrations. The 1495 cm-1 peak refers to the amide II band, which arises 

because of the C-N stretching as well as the C-N-H bending motions. The 1352 peak is the 

amide III band, which arises predominantly because of the in-phase combination of N-H in 

plane bending and C-N stretching vibrations. 
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Figure 8. FTIR analysis showed peak around 1646.936 in P. aeruginosa 2453 whereas, others showed 

peak around 1642.269, 1639.446, 1637.873 for P. aeruginosa 741, 1942, 1934 respectively. 

4. Discussion 

Azurin production from P. aeruginosa MTCC 2453 was enhanced when 5µg/ml of copper 

sulphate and the potassium nitrate (0.02µg/ml) was added. At each step of the purification 

process protease inhibitor was added to the protein sample for inhibition of protein lyses. 

During dialysis most of the lower (approx) proteins up to 3 kDa molecular weight are 

pierced out. The retained proteins (above 3 kDa molecular weight) were washed in 

sephadex G-25 which serves as a desalting column and also has 3-5 kDa molecular weight 

fractionation range. High molecular weight more than 5 kDa proteins were eluted 

immediately after void volume which was revealed in SDS-PAGE and MALDI-ToF 

spectrometer. 

The fraction collected from G-25 containing only more than 5 kDa proteins were passed 

through on G-75 which has 5-80 kDa fractionation range. The higher proteins above 80 kDa 

molecular weight elute after void volume; the remaining proteins between 6-70 kDa were 

bounded within the beads later eluted by the buffer. The fraction which showed 14 kDa 

molecular weight by analyzing in MALDI-ToF spectrometer for all the fractions (MALDI-

ToF results not shown for all fractions which showed peak) were collected and again 

purified in CM cellulose chromatography. The fraction which showed peak in CM cellulose 

was again observed in MALDI-ToF spectrometer to confirm the presence of 14 kDa 

molecular weight of Azurin.   

Our idea of adding copper in the culture medium was not only for the enhanced azurin 

synthesis, but to reveal the differences of azurin’s stability in the secondary structure for all 
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P. aeruginosa strains. The FTIR investigation showed azurin has C=O (protein backbone) 

stretching, which is the unique nature of the amide I band. The presence of the amide band 

at 1650 cm-1 signifies the α-helix secondary structure of azurin. The significant shift among 

four strains synthesized azurin implies that there was a difference in their secondary 

structure which may be due to their physiological or genetic variations among strains. The 

impact of the differences in the secondary structure of azurin synthesized from all four 

strains tested, were also reflected in the apoptosis generation of all strains. 

Abbreviations 

MALDI-Matrix-Assisted Laser Desorption/Ionization, SDS-PAGE-Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis, FTIR- Fourier Transform Infrared Spectroscopy, CuSO4 

– copper sulphate, KNO3 – Potassium nitrate, MTT -3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium, PI-Propidium Iodide, DMSO-dimethylsulfoxide, MALDI-ToF-Matrix-

Assisted Laser Desorption/Ionization-Time of Flight, MTCC- Microbial Type Culture 

Collection center, CM-carboxymethyl, DEAE-Diethylaminoethyl Cellulose 
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