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1. Introduction

We address a general theory of transformations of biometric data, independently
on particular biometric features taken into the processing. An application assumes
representation of data in the specified format and the use of the proposed technique.

The content of a biometric database can be used for different purposes, and their complete
list is usually unknown in advance. These purposes include different variants of processing
noisy data, such as authentication and identification of a person on the basis of his biometric
observations, detection of certain features, etc. General requirements to data processing
schemes in any of these applications contain the design of a verification scheme consisting
of the enrollment and the verification stages. At the enrollment stage, the input data should
be converted to the data stored in the database under the identifier of the person. At the
verification stage, the presented data have to be analyzed to make the decision whether they
belong to the chosen person or not. Privacy protection of the data includes protection against
attackers of three types:

• a blind attacker, who wants to guess the content of the database using his knowledge
about the probability distribution over input biometric data;

• an attacker, who has access to the database and wants to find the input biometric vector
processed at the enrollment stage;

• an attacker, who has access to the database and wants to generate artificial data to pass
through the verification stage with the acceptance decision.

We will present the class of transformations having the following features.
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• If input data are represented by the vector whose components are generated by a
stationary memoryless source having the known probability distribution, then they can be
converted to the vector x whose components are uniformly distributed over the (−1,+1)
interval. Therefore, the scheme has a perfect protection against blind attackers. A
generalized version of the procedure brings the same property for non-stationary sources.
Moreover, if the source has memory or the input probability distribution is unknown, an
approximate uniform distribution can be created.

• The enrollment can be organized in such a way that the constructed vector x is encrypted
and mapped to the vector x̂, which is stored in the database. The encryption is
understood as replacement of certain components of the vector x by randomly chosen
components. As a result, the input biometric data cannot be reconstructed from the
vector x̂. We show that the encryption can be organized in such a way that the properties
of the constructed uniform distribution are conserved, but the union of (−1,−a) and
(+a,+1) intervals replaces the (−1,+1) interval. The value of parameter a ∈ (0, 1)
controls the trade-off between privacy protection and the verification performance, and it
has be assigned in advance. As a result, the scheme becomes protected against attackers,
who have access to the database and want to guess the input vector by reading the
corresponding vector stored in the database.

• The case, when biometrics of the same person is measured at the enrollment and the
verification stages, is simulated as transmission of outcomes of the enrollment stage
measurements over an observation channel. We create another channel between results
of transformations of these outcomes. It turns out that this channel has the property that
the level of noise essentially depends on the magnitude of the transmitted component,
and it is very low when the magnitude is large. Since a large magnitude at the output
of the transformer is obtained when the input magnitude is large, we talk about the
preservation of significant parameters under the noise, provided that these parameters are
represented in a vector of outcomes of biometric measurements by components having
large magnitudes. We present a verification algorithm designed on the basis of these
properties.

Verification algorithms are considered in the most of publications, related to biometrics
(see, in particular [1]–[4]), and they are usually introduced as algorithms of combinatorial
matching of the outcomes of observations received at the enrollment and at the verification
stages. However, secrecy requirements to a biometric system to be designed do not allow
storage of the outcomes received at the enrollment stage, and lead to the schemes where
only relatively few outcomes characterizing the person are taken into account. In the present
chapter, these outcomes are referred to as significant components. The algorithms with
similar understanding are presented in [6]–[8] where significance is determined by the values
of the probability distribution function computed at the observed values. This approach
follows the lines of information theory when data processing is represented as secret sharing
[9]–[12]. Some part of the secret is published, while another part is hidden by the so–called
one-way hash function [13] and it has to be decoded after a noisy version of the observation
data is available. The transformation of the outcomes, received at the enrollment stage, to a
published part of the secret is also viewed as wrapping in a number of applications where
the unwrapping is possible only when outcomes, received at the verification stage, are close
to the wrapped data [14]. The use of possibly non-stationary probability distributions also
allows us to include multi–biometric measurements (see, for example [15], [16]) into the
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processing. Furthermore, the addressed issues are relevant to constructing fault–tolerant
passwords from biometric data [17]–[19]. The cited list of publications is certainly far from
being complete, but we only indicated directions that are relevant to the material of the
chapter. We also understand that specific applications of the presented results need research
on probability distributions of the measured biometric data. In particular, the approaches
can be fruitful for the schemes where different lengths are processed (for example, distances
between certain points on the face or hand).

The chapter is organized as follows. We begin with the introduction and the notation sections
and then introduce the F-transformation for the input data and their noisy observations in
Sections 3,4. A possible implementation of the verification scheme, constructed using the
derived properties, is presented in Section 5. Some general conclusions are included in
Section 6.

Suppose that outcomes of biometric measurements of a person, received at the enrollment
stage, are represented by a float–valued vector r = (r1, . . . , rn) ∈ R

n. The t-th component of
the vector r has the sign, which is understood as

sgn(rt) =







1, if rt ≥ 0

0, if rt < 0
(1)

and the magnitude

|rt| =







+rt, if rt ≥ 0

−rt, if rt < 0
(2)

Thus, the specification of the component rt is equivalent to the specification of the pair
(sgn(rt), |rt|). Such a representation is introduced, because we assume that sgn(rt) and |rt|
are independent parameters: if one knows the sign, then he has no information about
the magnitude; if one knows the magnitude, then he has no information about the sign.
Furthermore, we will assume that the magnitude |rt| characterizes “significance” of the t-th
component: for example, if rt is defined as the difference between the value of the measured
parameter and the average or the expected value, then |rt| determines the deviation of the
t-th parameter for the particular person.

We will analyze the scheme where one of results of the processing of the vector r at
the enrollment stage is expressed by a float–valued vector x̃ = (x̃1, . . . , x̃n) ∈ F

n whose
components have magnitudes less than 1, i.e.,

F =
{

x ∈ R : |x| < 1
}

(3)

The vector x̃ is stored in the database under the identifier of the person, associated with the
vector r. We call it the wrapped version of the input data. The transformation r → x̃ is
not a one-to-one mapping, and some data are lost. This transformation is divided into two
steps. We first introduce a one-to-one mapping r ↔ x, where x = (x1, . . . , xn) ∈ F

n, and
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(a)

r ∈ R
n

x ∈ F
n

x̃ ∈ F
n

❄

F

✲ ✲ ✲Transformer Encryptor

(b)

r
′ ∈ R

n y ∈ F
n

❄

F

✲ ✲Transformer

Figure 1. (a) Transformations of the vector r to the vector x̃ stored in the database under the identifier of the person. (b)

Transformation of the vector r′ to the vector y at the verification stage for its comparison with the vector x̃ and investigation

of the closeness of the vectors r and r′ .

then encrypt the vector x in such a way that the change of the t-th component xt is possible
only if |rt| is small.

At the verification stage, the verifier observes a vector r
′ = (r′1, . . . , r′n) ∈ R

n. This vector
is mapped to the vector y in the same way as r was mapped to x, and there should be an
algorithm that analyzes the pair (y, x̃) to find the closeness of the vector r′ and some vector
r that could be used as an origin of the vector x̃. If the verifier decides that these vectors
are close enough, then components of the vector r

′ are considered as possible outcomes of
biometric measurements of the person whose identifier corresponds to the vector x̃.

The procedures above describe a general structure of the verification scheme under
constraints that the transformation r → x̃ is divided into two steps and that components
of the constructed vectors belong to the set F. These procedures are illustrated in Figure 1
where we use some additional notation. Namely, we parameterize the mappings r ↔ x and
r
′ ↔ y by a monotone increasing function F(r), r ∈ R, approaching 0 when r → −∞ and

r → +∞, respectively. Formally,

d

dr
F(r) > 0, r ∈ R (4)

and

(F(−∞), F(+∞)) = (0, 1) (5)

By (4), (5), the function F has a uniquely determined inverse function F−1, and we can
simulate the data received at the verification stage, as the result of transmission of the
vector x over a channel consisting of the deterministic F−1-transformation x → r, the
stochastic mapping r → r

′ introduced by a physical Vn channel, and the deterministic
F-transformation r

′ → y (see Figure 2a). As the verifier also has access to the vector x̃
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(a)

x ∈ F
n

r ∈ R
n

r
′
∈ R

n

y ∈ F
n

x̃ ∈ F
n

❄

F−1

❄

Vn

❄

F

✲ ✲ ✲ ✲

✲ ✲

Transformer Channel Transformer

Encryptor

(b)

x ∈ F
n

r ∈ R
n

r
′
∈ R

n

y ∈ F
n

x̃ ∈ F
n

❄

Vn

❄

F

✲ ✲ ✲

✲ ✲

Channel Transformer

Encryptor

Figure 2. Schemes for transmission of the vector x to the verifier: (a) Legitimate case. (b) Attack.

constructed as an encrypted version of the vector x, we get the situation, when the vector x

is sent to the verifier over two parallel channels. If the level of noise in the physical channel
is not high, then the verifier is supposed to make the acceptance decision. As an alternative,
there is a possibility that the vector r is generated independently of the vector x (see Figure
2b where we delete the F−1-transformation). In this case, the verifier is supposed to make
the rejection decision.

2. Notation

Let R, R′, X, Y denote random variables and r, r′, x, y denote their values. This notation is also
extended to the vectors of random variables Rn, (R′)n, Xn, Yn and their values r, r′,x,y.

In the basic model, we assume that the vector r is generated by a stationary memoryless
source having the probability distribution (PD) F∗ and the probability density function (PDF)
P∗,
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F
∗ =

(

F
∗(r) = Pr

data
{ R < r }, r ∈ R

)

(6)

P
∗ =

(

P
∗(r) =

d

dr
F
∗(r), r ∈ R

)

(7)

The value of the PDF, associated with the vector r, is expressed as

PDF(r) =
n

∏
t=1

P
∗(rt) (8)

We will simulate the stochastic mapping r → r
′ as transmission of the vector r over an

observation channel, which is introduced as a stationary memoryless channel specified by
the collection of the conditional PDs Φr and the collection of the conditional PDFs Vr,

Φr =
(

Φ(r′|r) = Pr
noise

{ R
′
< r

′ | R = r}, r
′ ∈ R

)

(9)

Vr =
(

V(r′|r) = d

dr′
Φ(r′|r), r

′ ∈ R

)

(10)

for all r ∈ R. The value of the conditional PDF, associated with the output vector r
′, given

the input vector r, is expressed as

PDF(r′|r) =
n

∏
t=1

V(r′t|rt) (11)

Let

FGm,γ =
(

FGm,γ(r) =
1

2
+

1

2
erf

(

r − m

γ
√

2

)

, r ∈ R

)

(12)

Gm,γ =
(

Gm,γ(r) =
1

γ
√

2π
exp

{

− (r − m)2

2γ2

}

, r ∈ R

)

(13)

where

erf(r) =
2√
π

∫

r

0
exp{−r̃

2} dr̃, r ∈ R (14)

is the erf-function, denote the Gaussian PD and PDF, when m is the mean and γ2 is the
variance. We will also use the function

ψc(x) =
1

2
+

1

2
erf

(

c · erf−1(x)
)

(15)
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3. The F-transformation of the input data

The function F, satisfying (4), (5), is the PD of some random variable R, and we write

F =
(

F(r) = Pr{ R < r }, r ∈ R

)

(16)

The corresponding PDF is defined as

P =
(

P(r) =
d

dr
F(r), r ∈ R

)

(17)

Notice that (F∗, P∗) 6= (F, P) in general case and denote

f ∗ =
(

f ∗(x) = Pr
data

{ 2F(R)− 1 < x }, x ∈ F

)

(18)

p∗ =
(

p∗(x) =
d

dx
f ∗(x), x ∈ F

)

(19)

Let us fix the function F, satisfying (4), (5), and map an r ∈ R to the x ∈ F using the rule

x = 2F(r)− 1 (20)

The function F has a uniquely determined inverse function

F−1 =
(

F−1(z), z ∈ (0, 1)
)

(21)

and the equality (20) implies r = r(x), where

r(x) = F−1
( x + 1

2

)

(22)

The F-transformation of the vector r ∈ R
n will be understood as the result of n

component-wise applications of the mapping (20).

Some values of r(x) for Gaussian data are given in Table 1. Notice that

F = FG0,ρ ⇒ 1

2
+

1

2
erf

( r(x)

ρ
√

2

)

=
x + 1

2
⇒ r(x) = ρ

√
2 · erf−1(x) (23)

The data in Table 1 illustrate the point that (20) is a non-linear mapping. In particular, if
ρ = 2, then the values belonging to the interval (0, 0.64) are mapped to the values between 0
and 0.25, . . . , the values greater than 3.92 are mapped to the values between 0.95 and 1. The
mapping r ↔ x is also illustrated in Figure 3.
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x = 0 0.25 0.50 0.75 0.80 0.85 0.90 0.95 1

ρ = 2 0 0.64 1.35 2.30 2.56 2.88 3.29 3.92 +∞

ρ = 1 0 0.32 0.67 1.15 1.28 1.44 1.64 1.96 +∞

ρ = 1/2 0 0.16 0.34 0.58 0.64 0.72 0.82 0.98 +∞

Table 1. Some values of r(x) for the function F = FG0,ρ .

✲
r̃

2F(r̃)− 1
✻

x

F
−1( x+1

2 )

−1

+1

. ......... ......... .......... ................... ......... ......... ......... .......... .......... .......... ........... ........... .......... .......... ........... .......... .......... .......... .......... .......... .......... .......... .......... ................ ......
......................

........... ................ .......
........... ...........

........... ........... ......
..... ...........

...........
...........
...........
...........
...........
...........
........... ........... ......

..... ........... ........... ........... ....... ................
........... ......................

......................
.......... .......... .......... .......... .......... .......... .......... .......... ........... .......... .......... ........... ........... .......... .......... .......... ......... ......... ......... ................... .......... ......... .........

Figure 3. Illustration of the one-to-one mapping x ↔ r = r(x).

In the following considerations we will restrict ourselves to the class of functions F, satisfying
(4), (5) and having additional symmetric properties:

r(−x) = −r(+x) (24)

and

P(r(−x)) = P(r(+x)), x ∈ F (25)

The F-transformation of input data can be viewed as an application of the inverse to the
well-known construction of pseudorandom generators having a fixed probability distribution
F. In this case, an algorithm generates the value z of a random variable “uniformly
distributed over the (0, 1) interval” and outputs F

−1(z) ∈ (0, 1). Our scheme receives an
r ∈ R and outputs 2F(r) − 1 where the multiplication by 2 and the subtraction of 1 are
introduced because of further processing of the signs and the magnitudes. Notice that a
similar approach can be used to generate Gaussian variables having the mean 0 and the

fixed variance ρ2; the transformer has to output FG−1
0,ρ (F(r)) in this case.
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As 2F(R) − 1 is a deterministic function of the random variable R, the value of x is the
observation of the random variable X = 2F(R) − 1 having the PD f ∗ and the PDF p∗. We
write

f ∗(x) = Pr
data

{ 2F(R)− 1 < x } = Pr
data

{

F(R) <
x + 1

2

}

= Pr
data

{

R < F−1
( x + 1

2

) }

= F∗
(

F−1
( x + 1

2

))

= F∗(r(x)) (26)

and

p∗(x) =
d

dx
f ∗(x) =

d

dx
F∗(r(x))

=
( d

dr̃
F∗(r̃)

∣

∣

∣

r̃=r(x)

)

· d

dx
r(x) = P∗(r(x)) · d

dx
F−1

( x + 1

2

)

= P∗(r(x)) ·
( d

dr̃
F(r̃)

∣

∣

∣

r̃=r(x)

)−1
· d

dx

x + 1

2
=

1

2
· P∗(r(x))

P(r(x))
(27)

Therefore

f ∗ =
(

F∗(r(x)), x ∈ F

)

, p∗ =
( P∗(r(x))

2P(r(x))
, x ∈ F

)

(28)

By (8) and the fact that the F-transformation is a component-wise mapping, the value of the
PDF, associated with the vector x, is expressed as

PDF(x) =
n

∏
t=1

P∗(r(xt))

2P(r(xt))
(29)

for all x ∈ F
n.

If (F∗, F) = (FG0,ρ∗ , FG0,ρ), then we use (23) and write

f ∗(x) = FG0,ρ∗ (ρ
√

2 · erf−1(x)) =
1

2
+

1

2
erf

( ρ
√

2 · erf−1(x)

ρ∗
√

2

)

(30)

p∗(x) =
G0,ρ∗ (r(x))

2G0,ρ(r(x))
=

ρ
√

2π

2ρ∗
√

2π
exp

{

− r2(x)

2(ρ∗)2
+

r2(x)

2ρ2

}

(31)

Hence,

f ∗ =
(

ψρ/ρ∗ (x), x ∈ F

)

, p∗ =
( ρ

2ρ∗
exp

{

− ρ2 − (ρ∗)2

2ρ2(ρ∗)2
r2(x)

}

, x ∈ F

)

(32)

where ψρ/ρ∗ (x) is defined by (15) with c = ρ/ρ∗. Examples of the functions f ∗(x) and p∗(x)
are given in Figures 4, 5.
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✲
x

f ∗(x)
✻

−1 0 +1

1

1/2

ρ∗ = 1

ρ∗ = 2

.

................

............

................
................
.................

.............. ......... ......... ........ ........ ........ ..................................


............................
........ ........ ........ ......... ......... ..................

..................
.................
.................
........
.......
.........

✲
x

f ∗(x)
✻

−1 0 +1

1

1/2

ρ∗ = 1

ρ∗ = 1/2

........ ....... ....... ....... ........ ....... ....... ....... ....... ....... ....... ....... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......... ...................

......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ....... ....... ....... ....... ....... ....... ....... ........ ....... ....... ....... .......

Figure 4. Examples of the PDs f ∗ , when (F, F∗) = (FG0,1, FG0,ρ∗ ).

Suppose that F∗ = F. Then

f ∗(x) = F
(

F−1
( x + 1

2

))

=
x + 1

2
, p∗(x) =

d

dx

x + 1

2
=

1

2
(33)

and

f ∗ =
( x + 1

2
, x ∈ F

)

, p∗ =
( 1

2
, x ∈ F

)

(34)

i.e., X is a random variable, uniformly distributed over the set F. If the vector x is stored,
then the database is perfectly protected against attackers, who want to guess its content. If
F∗ 6= F, then we get an approximate uniform distribution. However, r → x is a one-to-one
mapping, and the attackers, who have access to the database, can reconstruct the vector r.
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✲
x

p∗(x)
✻

−1 0 +1

1

1/2

1/4
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.
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Figure 5. Examples of the PDFs p∗ , when (F, F∗) = (FG0,1, FG0,ρ∗ ).

Our assumption that the vector r is generated by a known stationary memoryless source,
and the value of the PDF, associated with this vector, is expressed by (8), can contradict to
the practice. If the source is non–stationary, and P∗

1 (r1), . . . , P∗
n (rn) replace the multipliers at

the right-hand side of (8), then considerations above are directly extended by replacing the
function F with the functions

Ft =
(

Ft(r) = Pr{ Rt < r }, r ∈ R

)

, t = 1, . . . , n (35)

that approximate the PDs of components of the input vector. A more general assignment
corresponds to the sources with memory, when the PDs and the PDFs are given as

F∗(rt−1) =
(

F(r|rt−1) = Pr
data

{ Rt < r | (R1, . . . , Rt−1) = rt−1 }, r ∈ R

)

(36)

P∗(rt−1) =
(

P(r|rt−1) =
d

dr
F(r|rt−1), r ∈ R

)

(37)

where rt−1 = (r1, . . . , rt−1) and t = 1, . . . , n. Then

PDF(r) =
n

∏
t=1

P∗(rt|rt−1) (38)
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Let

xt = 2Ft(rt)− 1, rt(xt) = F−1
t

( xt + 1

2

)

(39)

and xt−1 = (x1, . . . , xt−1), r(xt−1) = (r1(x1), . . . , rt−1(xt−1)). We also denote

f ∗(xt−1) =
(

f (x|xt−1) = Pr
data

{ Xt < x | (X1, . . . , Xt−1) = xt−1 }, x ∈ F

)

(40)

p∗(xt−1) =
(

p(x|xt−1) =
d

dx
f (x|xt−1), x ∈ F

)

(41)

Then

f ∗(xt−1) =
(

F∗
t (rt(x)|r(xt−1)), x ∈ F

)

(42)

p∗(xt−1) =
( P∗(rt(x)|r(xt−1))

2Pt(rt(x))
, x ∈ F

)

(43)

These formulas allow us to extend statistical properties of the F-transformation of the input
data to the general case.

4. The F-transformation of noisy observations of the input data

Let us denote

ϕx =
(

ϕ(y|x) = Pr
noise

{ 2F(R′)− 1 < y | 2F(R)− 1 = x}, y ∈ F

)

(44)

vx =
(

v(y|x) =
d

dy
ϕ(y|x), y ∈ F

)

(45)

for all x ∈ F. If (Φr, Vr) = (FGr,σ, Gr,σ) for all r ∈ R, then the observation channel is an

additive white Gaussian noise channel having the variance of the noise equal to σ2.

Let us map an r′ ∈ R to the y ∈ F in the same way as an r ∈ R was mapped to the x ∈ F,

i.e., y = 2F(r′)− 1 and r′ = r(y), where r(y) = F−1
(

y+1
2

)

. Notice that the value of y is the

observation of the random variable Y = 2F(R′) − 1 having the conditional PD ϕx and the
conditional PDF vx, given X = x, since 2F(R′)− 1 is a deterministic function of the random
variable R′. The result of the F-transformation of the vector r

′ ∈ R
n, will be understood is

the vector (2F(r′1)− 1, . . . , 2F(r′n)− 1).

One can see that the stochastic dependence between random variables R and R′ is translated
to the stochastic dependence between random variables X and Y in such a way that

ϕ(y|x) = Pr
noise

{Y < y | X = x } = Pr
noise

{

2F(R′)− 1 < y | 2F(R)− 1 = x
}

= Pr
noise

{

R′
< F−1

( y + 1

2

) ∣

∣

∣
R = F−1

( x + 1

2

) }

= Pr
noise

{ R′
< r(y) | R = r(x) } = Φ(r(y)|r(x)) (46)
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r̃

2F(r̃)− 1
✻

x

y

2Φ(r(y)|r(x))− 1

erf( r̃
ρ
√

2
) = 2F(r̃)− 1

erf( r̃−r(x)

σ
√

2
) = 2Φ(r̃|r(x))− 1

−1

+1
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Figure 6. Illustration of the computation of the probability Φ(r(y)|r(x)) for a given pair (x, y) ∈ F× F, when F = FG0,1.

and

v(y|x) = d

dy
Pr

noise
{Y < y | X = x } =

d

dy
Φ(r(y)|r(x))

=
d

dr̃
Φ(r̃|r(x))

∣

∣

∣

r̃=r(y)
· d

dy
r(y) = V(r(y)|r(x)) · d

dy
F−1

( y + 1

2

)

= V(r(y)|r(x)) ·
( d

dr̃
F(r̃)

∣

∣

∣

r̃=r(y)

)−1
· d

dy

y + 1

2
=

V(r(y)|r(x))

2P(r(y))
(47)

Therefore the conditional PDs and the conditional PDFs are specified as

ϕx =
(

Φ(r(y)|r(x)), y ∈ F

)

, vx =
( V(r(y)|r(x))

2P(r(y))
, y ∈ F

)

(48)

for all x ∈ F. By (11) and the fact that the F-transformation is a component-wise mapping,
the value of the PDF, associated with the vector y, given the vector x, is expressed as

PDF(y|x) =
n

∏
t=1

V(r(yt)|r(xt))

2P(r(yt))
(49)

for all x,y ∈ F
n.

The computation of the PDs ϕx is illustrated in Figure 6 for Gaussian data, and examples of
functions constructed using this procedure are given in Figures 7, 8.
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Figure 7. Examples of the conditional PDs ϕx , when (F, Φr) = (FG0,1, FGr,1/4).

If the observation channel is an additive channel, then V(r′|r) depends only on the absolute
value of the difference r′ − r. It is also usually assumed that

V(r′|r) is a monotone decreasing function of |r′ − r| (50)

and

max
r′∈R

V(r′|r) = V(r|r) = Const (51)

In particular, Const = 1/(σ
√

2π) for additive white Gaussian noise channels having the
variance of the noise equal to σ2.

We include transformations at the input/output of the channel and create another channel
x → y whose conditional PDFs essentially depend on the magnitude of the input symbols.
This point is illustrated in Figures 7, 8: the slope of the function ϕ(x|x) increases with
|x|, and v(x|x) tends to the δ-function, as x → ±1. Notice that the behavior of functions
under considerations is completely determined by the description of physical channel and
the chosen function F, and it is not affected by the PD F∗, which can be unknown.

By (51),

V(r(y)|r(x))

2P(r(y))

∣

∣

∣

y=x
=

V(r(x)|r(x))

2P(r(x))
=

Const

2P(r(x))
(52)

Suppose that, for any ε > 0, there is an rε ∈ R such that |r| > rε implies P(r) ≤ ε. Then

|r(x)| > rε ⇒ V(r(y)|r(x))

2P(r(y))

∣

∣

∣

y=x
≥ Const

2ε
(53)
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Figure 8. Examples of the conditional PDFs vx , when (F, Φr) = (FG0,1, FGr,1/4).

and the expression at the right-hand side tends to infinity, as ε → 0, i.e., the created channel
becomes noiseless. In other words, we preserve significant components of the vector r in
noisy observations for a wide class of observation channels.

If Φr = FGr,σ, then

ϕ(y|x) = 1

2
+

1

2
erf

( r(y)− r(x)

σ
√

2

)

, v(y|x) = 1

2P(r(y))
Gr(x),σ(r(y)) (54)

and if F = FG0,ρ, then these equalities can be continued as

ϕ(y|x) = 1

2
+

1

2
erf

(

ρ

σ

(

erf−1(y)− erf−1(x)
))

(55)

v(y|x) = ρ

2σ
exp

{

− ρ2

σ2

(

erf−1(y)− erf−1(x)
)2

+
(

erf−1(y)
)2 }

(56)

as it follows from (23). We also write

(F, Φr) = (FG0,ρ, FGr,σ) ⇒ Const

2P(r(x))
=

ρ

2σ
E(x) (57)

where

E(x) = exp
{ r2(x)

2ρ2

}

= exp
{ (

erf−1(x)
)2 }

(58)
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r ∈ R
n

x ∈ F
n

a, a0 ∈ (0, 1)

x̃ ∈ F
n

s ∈ {0, 1}n

❄

F

✲ ✲ ✲

✲

✲

Transformer
Zone

Encryptor

Figure 9. Processing the vector r at the enrollment stage with zone encryption.

does not depend on ρ. By (52), the expression at the right-hand side of (57) specifies the
value of v(x|x). The function E(x) is minimized at x = 0 and tends to infinity, as x → ±1
(see Table 2). Thus, the PDF vx tends to the δ-function, as x → ±1. The speed of convergence
is proportional to the ratio ρ/(2σ).

The derived formulas will be used in the evaluation of verification performance, but some
preliminary estimates can be already presented. Namely, let us fix a λ ∈ (0, 1) and, for all
x ∈ (0, 1), denote

∆x(λ) = x − yλ (59)

where yλ is the solution to the equation ϕ(yλ|x) = λ and the function ϕ(y|x) is expressed in
(55). Furthermore, let

Λx = Pr
noise

{Y < 0 | X = x} = ϕ(0|x) = ψ−ρ/σ(x) (60)

where the function ψ(x) is defined in (15) for c = −ρ/σ. By the symmetry properties, Λx

is the probability that the input symbol, having the magnitude x, changes the sign after the
symbol is transmitted over the X → Y channel. The probability that Y < x − ∆x(λ) is equal
to λ, when +x is transmitted. The probability that Y > −x + ∆x(λ) is also equal to λ, when
−x is transmitted. The numerical illustration is included in Table 2 for (ρ, σ) = (1, 1/4). For
example, if x = 0.90, then Y < 0 with the probability 2.4 · 10−11 and components of the vector
(10−2, 10−4, 10−8, 10−16) are the probabilities of the events Y < 0.90− (0.19, 0.37, 0.71, 1.22) =
(+0.71,+0.53,+0.19,−0.32). Comparison of parameters above for different x allows us to
conclude that the increase of the magnitude of the transmitted symbol leads to essential
improvement over the channel having the input alphabet (-1,+1) and the output alphabet
{-,+}.

5. Constructing the wrapped versions of input data and verification over

noisy observations

We believe that there is a large variety of verification schemes that can be constructed on the
basis of statistical properties of the probabilistic ensemble (X, Y). We modify the scheme in
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x E(x) Λx ∆x(10−2) ∆x(10−4) ∆x(10−8) ∆x(10−16)

0 1.00 0.5 0.44 0.65 0.84 0.96

0.25 1.05 0.1 0.46 0.71 0.97 1.17

0.50 1.25 3.5 · 10−3 0.43 0.70 1.03 1.33

0.75 1.94 2.1 · 10−6 0.32 0.58 0.95 1.38

0.80 2.22 1.5 · 10−7 0.28 0.52 0.90 1.36

0.85 2.82 4.3 · 10−9 0.24 0.46 0.82 1.31

0.90 3.87 2.4 · 10−11 0.19 0.37 0.71 1.22

0.91 4.21 5.9 · 10−12 0.18 0.35 0.68 1.19

0.92 4.63 1.3 · 10−12 0.16 0.33 0.65 1.16

0.93 5.16 2.1 · 10−13 0.15 0.31 0.61 1.12

0.94 5.86 2.7 · 10−14 0.13 0.28 0.57 1.08

0.95 6.82 2.3 · 10−15 0.12 0.25 0.53 1.03

0.96 8.24 < 10−15 0.10 0.22 0.48 0.96

0.97 10.53 < 10−15 0.08 0.18 0.41 0.88

0.98 14.97 < 10−15 0.06 0.14 0.34 0.77

0.99 27.59 < 10−15 0.04 0.09 0.23 0.59

Table 2. Some values of E(x), Λx , and ∆x(λ) for (ρ, σ) = (1, 1/4).

✲

Input

Data

Open Access

Database

ID(r)

a, a0 ∈ (0, 1)

x̃ ∈ F
n

Hash(s)

ID(r)

r ∈ R
n

Figure 10. Mapping of the input data to the data stored in an open access database.
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Figure 1a and introduce the so–called zone encryption (see Figure 9),

x →
(

(a, a0), x̃, s
)

(61)

where a, a0 ∈ (0, 1), a > a0; x̃ = (x̃1, . . . , x̃n) ∈ F
n; s = (s1, . . . , sn) ∈ {0, 1}n. If ID(r)

is the identifier of the person whose data are given by the vector r, then the enrollment is
represented as the mapping

(

ID(r), r
)

→
(

ID(r), (a, a0), x̃, Hash(s)
)

(62)

where the function Hash is a cryptographic “one–way” function having the property that one
can easily find the value of the function for the given argument, but the inversion (finding
the argument for the known value of the function) is practically impossible. The parameters
at the right-hand side are stored in an open access database (see Figure 10).

The use of "the zone encryption", is caused by the point that we partition the (−1,+1)
interval into 5 zones: Significant+/− zones (Sg+, Sg−), Buffer +/− zones (Bf+, Bf−), Zero
zone (Zr), where



















Sg+ = (+a,+1), Sg− = (−1,−a)

Bf+ = (+a0,+a), Bf− = (−a,−a0)

Zr = (−a0,+a0)

(63)

Let the notation x̃t ∼ U(+a,+1) be understood in such a way that the value of x̃t is chosen
at random using a uniform PD over the (+a,+1) interval. Similarly, if x̃t ∼ U(−1,−a), then
the value of x̃t is chosen at random using a uniform PD over the (−1,−a) interval. If x is
the wrapped version of the vector r, constructed by the F-transformation, then we set































x̃t = xt, if xt ∈ Sg+ ∪ Sg−

x̃t ∼ U(−1,−a), if xt ∈ Bf+

x̃t ∼ U(+a,+1), if xt ∈ Bf−

x̃t = 0, if xt ∈ Zr

(64)

Therefore components of the vector x, belonging to the Significant zones, are unchanged
and components, belonging to the Zero zone, are set to zero. Components, belonging to the
Buffer zones, are changed in such a way that the results belong to the Significant zones with
different signs. The presented procedure is illustrated in Figure 11, and the binary vector s

having components

st =







1, if xt ∈ Sg+ ∪ Sg−

0, if xt 6∈ Sg+ ∪ Sg−
(65)

specifies the Significant zones.
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xt

x̃t

❄

✻

Figure 11. Partitioning of the (−1,+1) interval into zones and illustration of the mapping xt → x̃t , when xt belongs to the

Buffer zones.

The zone encryption can be introduced as representation of the vector x by the sum of three
vectors,

x = x
(Sg) + x

(Bf) + x
(Zr) (66)

constructed as follows: set x
(Sg)
t

= x
(Bf)
t

= x
(Zr)
t

= 0 for all t = 1, . . . , n and use the rules



















x
(Sg)
t

= xt, if xt ∈ Sg+ ∪ Sg−

x
(Bf)
t

= xt, if xt ∈ Bf+ ∪ Bf−

x
(Zr)
t

= xt, if xt ∈ Zr

(67)

The vector x̃ can be also represented by the sum of three vectors,

x̃ = x̃
(Sg) + x̃

(Bf) + x̃
(Zr) (68)
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(a, a0) = (.88, .76)

x +.68 −.77 +.91 +.24 −.98 +.08 −.52 −.81

x
(Sg) +.91 −.98

x
(Bf) −.77 −.81

x
(Zr) +.68 +.24 +.08 −.52

x̃
(Sg) +.91 −.98

x̃
(Bf) +.90 +.95

x̃
(Zr) 0 0 0 0

x̃ 0 +.90 +.91 0 −.98 0 0 +.95

s 0 0 1 0 1 0 0 0

Table 3. Example of the zone encryption where gaps contain zeroes.

where we first set x̃
(Sg)
t

= x̃
(Bf)
t

= x̃
(Zr)
t

= 0 for all t = 1, . . . , n and then set































x̃
(Sg)
t

= x
(Sg)
t

, if xt ∈ Sg+ ∪ Sg−

x̃
(Bf)
t

∼ U(−1,−a), if xt ∈ Bf+

x̃
(Bf)
t

∼ U(+a,+1), if xt ∈ Bf−

x̃
(Zr)
t

= 0, if xt ∈ Zr

(69)

Thus, the t-th component of the vector x̃ is either equal to 0, or belongs to the set Sg+ ∪ Sg−.

Furthermore, x̃t > 0 implies x̃t ∈ Sg+, and x̃t < 0 implies x̃t ∈ Sg−. Thus, n = n
(Sg)(x̃) +

n
(Zr)(x̃), where

n
(Sg)(x̃) =

{

t ∈ {1, . . . , n} : x̃t ∈ Sg+ ∪ Sg−
}

(70)

n
(Zr)(x̃) =

{

t ∈ {1, . . . , n} : x̃t = 0
}

(71)

Moreover, n
(Sg)(x̃) = n

(Sg)(x) + n
(Bf)(x), where n

(Sg)(x) = | T (Sg)(x) |, n
(Bf)(x) =

| T (Bf)(x) |, and

T (Sg)(x) =
{

t ∈ {1, . . . , n} : xt ∈ Sg+ ∪ Sg−
}

(72)

T (Bf)(x) =
{

t ∈ {1, . . . , n} : xt ∈ Bf+ ∪ Bf−
}

(73)

The numerical example of the zone encryption is given in Table 3. Since | − .77|, | − .81| ∈
(.76, .88) = (a0, a), the 2-nd and the 8-th components of the vector x belong to the Buffer
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zones. The encryptor replaces these components by numbers chosen at random from the
(+.88,+1) interval. For example, −.77 → +.90 and −.81 → +.95. The vector

x̃ = (0,+.90,+.91, 0,−.98, 0, 0,+.95) (74)

and the hidden version of the vector s = (0, 0, 1, 0, 1, 0, 0, 0) are stored in the database.

Similarly to (63), let us introduce the sets



















rSg+ = (r(+a), r(+1)), rSg− = (r(−1), r(−a))

rBf+ = (r(+a0), r(+a)), rBf− = (r(−a), r(−a0))

rZr = (r(−a0), r(+a0))

(75)

where the function r(x), x ∈ F, is defined in (22). It is important to notice that the same
vector x̃ encrypts many vectors r and

x̃t ∈ Sg+ ⇒ rt ∈ rSg+ ∪ rBf−, x̃t ∈ Sg− ⇒ rt ∈ rSg− ∪ rBf+, x̃t = 0 ⇒ rt ∈ rZr (76)

If x̃t ∈ Sg+, then the conclusion, whether rt belongs to the sets rSg+ or rBf−, is specified
by the t-th component of the vector s, which is hidden from the attacker. Similarly, if x̃t ∈
Sg−, then the conclusion, whether rt belongs to the sets rSg− or rBf+, is also specified by

the t-th component of the vector s. The total number of variants is equal to 2n
(Sg)(x̃). All

of them are presented in Table 4 for the vector x̃, defined in (74). For example, if F =
FG0,1, then (r(.88), r(.76)) = (1.55, 1.17) and r2, r3, r8 ∈ (+1.55,+∞) ∪ (−1.55,−1.17), r5 ∈
(−∞,−1.55) ∪ (+1.17,+1.55), r1, r4, r6, r7 ∈ (−1.17,+1.17).

If we construct a uniform probability distribution at the enrolment stage by using the
F-transformation, then all variants are equivalent, and the probability of the correct guess
of the vector s by an attacker, who knows the vector x̃, is equal to

Patt(x̃) = 2−n
(Sg)(x̃) = 2−(n(Sg)(x)+n

(Bf)(x)) (77)

and the value of the sum n
(Sg)(x) + n

(Bf)(x) is a function of the vector x and the pair (a, a0).

Notice that the randomization at the enrollment stage can be replaced by deterministic
mappings Bf+ → Sg− and Bf− → Sg+. For example, if the Significant and the Buffer zones
have equal sizes, i.e., if 1 − a = a − a0, then one can follow the rules: if xt ∈ Bf+, then
x̃t = −a − (xt − a0); if xt ∈ Bf−, then x̃t = +a + (a0 − xt).

Let us introduce the decoding as the mapping

(

y, (a, a0), x̃
)

→ ŝ ∈ {0, 1}n (78)
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(a, a0) = (.88, .76)

s2 s3 s5 s8 x̃2 = +.90 x̃3 = +.91 x̃5 = −.98 x̃8 = +.95

0 0 0 0 r2 ∈ rBf− r3 ∈ rBf− r5 ∈ rBf+ r8 ∈ rBf−

0 0 0 1 r2 ∈ rBf− r3 ∈ rBf− r5 ∈ rBf+ r8 ∈ rSg+

0 0 1 0 r2 ∈ rBf− r3 ∈ rBf− r5 ∈ rSg− r8 ∈ rBf−

0 0 1 1 r2 ∈ rBf− r3 ∈ rBf− r5 ∈ rSg− r8 ∈ rSg+

0 1 0 0 r2 ∈ rBf− r3 ∈ rSg+ r5 ∈ rBf+ r8 ∈ rBf−

0 1 0 1 r2 ∈ rBf− r3 ∈ rSg+ r5 ∈ rBf+ r8 ∈ rSg+

0 1 1 0 r2 ∈ rBf− r3 ∈ rSg+ r5 ∈ rSg− r8 ∈ rBf−

0 1 1 1 r2 ∈ rBf− r3 ∈ rSg+ r5 ∈ rSg− r8 ∈ rSg+

1 0 0 0 r2 ∈ rSg+ r3 ∈ rBf− r5 ∈ rBf+ r8 ∈ rBf−

1 0 0 1 r2 ∈ rSg+ r3 ∈ rBf− r5 ∈ rBf+ r8 ∈ rSg+

1 0 1 0 r2 ∈ rSg+ r3 ∈ rBf− r5 ∈ rSg− r8 ∈ rBf−

1 0 1 1 r2 ∈ rSg+ r3 ∈ rBf− r5 ∈ rSg− r8 ∈ rSg+

1 1 0 0 r2 ∈ rSg+ r3 ∈ rSg+ r5 ∈ rBf+ r8 ∈ rBf−

1 1 0 1 r2 ∈ rSg+ r3 ∈ rSg+ r5 ∈ rBf+ r8 ∈ rSg+

1 1 1 0 r2 ∈ rSg+ r3 ∈ rSg+ r5 ∈ rSg− r8 ∈ rBf−

1 1 1 1 r2 ∈ rSg+ r3 ∈ rSg+ r5 ∈ rSg− r8 ∈ rSg+

x̃1 = x̃4 = x̃6 = x̃7 = 0

r1, r4, r6, r7 ∈ rZr

Table 4. The list of vectors r that are encrypted by the vector x̃, defined in (74).

Let the verifier set ŝ1 = · · · = ŝn = 0 and, for all t = 1, . . . , n, use the rule:

x̃t 6= 0

|yt| > T

sgn(x̃t) = sgn(yt)



















⇒ ŝt = 1 (79)

where the value of the threshold T is a function of (a, a0), which will be specified later.
The verifier can then check whether Hash(ŝ) is equal to the value of Hash(s), stored in the
database, or not. If the answer is positive, then the acceptance decision is made. If the answer
is negative, then the rejection decision is made.

Without loss of generality, let us suppose that
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x1, . . . , xn ∈ Sg+ ∪ Bf+ ∪ Zr (80)

The decoding error in the case, when the vector r
′ is a noisy version of the vector r, occurs

in one of two situations (see Figure 12).

E10: (st, ŝt) = (1, 0). Then xt ∈ (+a,+1), as it follows from (80) and st = 1. Furthermore,
yt < +T, since ŝt = 0 implies that the conditions at the left-hand side of (79) are not
satisfied. Hence,

xt − yt ≥ (+a)− (+T) (81)

E01: (st, ŝt) = (0, 1). Then xt ∈ (+a0,+a), as it follows from (80) and st = 0, ŝt 6= 0.
Furthermore, yt < −T, since ŝt = 1 implies that the conditions at the left-hand side
of (79) are satisfied. Hence,

xt − yt ≥ (+a0)− (−T) (82)

If the channel Xt → Yt would be an additive channel, then its probabilistic description does
not depend on the input to the channel, and the differences at the left-hand sides of (81),
(82) specify the magnitudes of the noise. The differences at the right-hand sides give lower
bounds on these magnitudes. If T = (a − a0)/2, then these differences are equal. However,
as the created channel is not an additive channel, we will use another assignment of T.

The decoding error probability, denoted by Λ(T|x), can be bounded from above as

Λ(T|x) ≤ Λ10(T|x) + Λ01(T|x) (83)

where

Λ10(T|x) = Pr
noise

{Yt < +T, for some t ∈ T (Sg)(x) | Xn = x}

= 1 − Pr
noise

{Yt ≥ +T, for all t ∈ T (Sg)(x) | Xn = x}

= 1 − ∏
t∈T (Sg)(x)

Pr
noise

{Yt ≥ +T | Xt = xt}

≤ 1 − ∏
t∈T (Sg)(x)

Pr
noise

{Yt ≥ +T | Xt = +a}

= 1 −
(

1 − ϕ(+T |+ a)
)n(Sg)(x)

(84)
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+1

+a

+a0

−a0

−a

−1

Significant+ zone

Buffer+ zone

Zero zone

Buffer− zone

Significant− zone

st = 1

ŝt = 0

st = 0

ŝt = 1

xt = x̃t

yt

xt

x̃t

yt

+T

−T

∗

∗

❄

❄

Figure 12. Illustration of the events, when the decoding error occurs and xt ∈ Sg+ ∪ Bf+ .

and

Λ01(T|x) = Pr
noise

{Yt < −T, for some t ∈ T (Bf)(x) | Xn = x}

= 1 − Pr
noise

{Yt ≥ −T, for all t ∈ T (Bf)(x) | Xn = x}

= 1 − ∏
t∈T (Bf)(x)

Pr
noise

{Yt ≥ −T | Xt = xt}

≤ 1 − ∏
t∈T (Bf)(x)

Pr
noise

{Yt ≥ −T | Xt = +a0}

= 1 −
(

1 − ϕ(−T |+ a0)
)n(Bf)(x)

(85)
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The products on t at the right-hand sides are written because the observation channel is
memoryless and the inequalities follow from the assumption (50). Notice that, by (55),

ϕ(+T|+ a) =
1

2
+

1

2
erf

( ρ

σ

(

erf−1(T)− erf−1(a)
))

(86)

ϕ(−T|+ a0) =
1

2
−

1

2
erf

( ρ

σ

(

erf−1(T) + erf−1(a0)
))

(87)

and assign T in such a way that

Λ10(T|x) = Λ01(T|x) (88)

Suppose that there is a blind attacker, who does not have access to the database and wants
to pass through the verification stage with the acceptance decision. We also assume that the
attacker can fix a small δ > 0 in such a way that 1− δ > a. Let the attacker submit a vector r′,
which is mapped to the vector y ∈ {−1 + δ,+1 − δ}n, i.e., the t-th component of the vector
y is either equal to −1 + δ or +1 − δ. Let the decision, whether the t-th component of the
vector r

′ is equal to r(−1 + δ) or r(+1 − δ), be made with probabilities 1/2. The probability

of the acceptance decision is equal to 2−n(Sg)(x̃), since the verifier "punctures" n − n(Sg)(x̃)
components x̃t equal to 0 and sets the t-th component of the binary vector equal to 1 if
and only if sgn(x̃t) = sgn(yt). By (77), the obtained probability is exactly the same as the
probability of success of an attacker, who knows the vector x̃. Thus, we attain the property
of a perfect algorithmic secrecy of the designed verification scheme: although the database
is open and an attacker may know the vector x̃, he cannot include this information into the
guessing strategy.

Suppose that the vector x ∈ F
n is generated by a memoryless source according to a uniform

probability distribution over the set F. One can see that the probability that there are
i, i0, n− i − i0 components of the vector x whose magnitudes belong to the (a, 1), (a0, a), (0, a)
intervals, respectively, is equal to

Qa,a0 (i, i0) =
n!

i!i0!(n − i − i0)!
(1 − a)i(a − a0)

i0 (1 − a − a0)
n−i−i0 (89)

and

arg max
(i,i0)∈{0,...,n}, i+i0≤n

Qa,a0 (i, i0) =
(

(1 − a)n, (a − a0)n
)

(90)

Hence, the typical distribution of magnitudes under considerations (see Figure 13) is
specified as

(a, a0) =
(n − w

n
,

n − w0

n

)

⇒
(

(1 − a)n, (a − a0)n
)

= (w, w0 − w) (91)

where w, w0 ∈ {0, . . . , n} are integers, fixed in such a way that w ≤ w0.
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1

a = (n − w)/n

a0 = (n − w0)/n

0

w components (Significant zone)

w0 − w components (Buffer zone)

n − w0 components (Zero zone)

Figure 13. The typical partitioning of the values of magnitudes in three zones.

Let (w, w0) = (32, 64). Compute (a, a0) using the expressions at the left-hand side of (91),
and consider the typical case when the distribution of magnitudes of components, belonging
to the Significant and the Buffer zones, is given by the right-hand side of (91), i.e., there are
32 magnitudes belonging to the Significant zones, 64 − 32 = 32 magnitudes belonging to the
Buffer zones, and n − 64 magnitudes belonging to the Zero zone. Thus, the vectors x under

consideration are such that n(Sg)(x) = n(Bf)(x) = 32. Then (88) is equivalent to the equality
ϕ(+T|+ a) = ϕ(−T|+ a0). One can see that the equality above implies the assignment

(F, Φr) = (FG0,ρ, FGr,σ)

n(Sg)(x) = n(Bf)(x)







⇒ T = erf
( erf−1(a)− erf−1(a0)

2

)

(92)

independently of ρ and σ. The corresponding vectors x̃ contain 32 + 32 = 64 non–zero
components, and the secrecy of the verification scheme, evaluated by the probability of
correct guess of the vector s on the basis of the vector x̃ (see (77)), is equal to 2−64. Notice

that if the attacker would know that n(Sg)(x) = n(Bf)(x) = 32, then this probability is equal

to (64
32)

−1
. Some numerical results are included in Table 5, and one can see that the decoding

error probability is very small even for noisy channels and relatively small lengths.

The presented version of the verification algorithm uses only the signs of components of
the vector x̃, and this vector can be transformed further to a ternary vector whose contain
either 0 or the sign. An improvement of the performance is attained by using the maximum
likelihood decoding rule, when we construct the vector ŝ in such a way that

ŝt =







1, if x̃t 6= 0, v(yt|x̃t) ≥ va,a0 (yt|sgn(x̃t))

0, if x̃t = 0 or x̃t 6= 0, v(yt|x̃t) < va,a0 (yt|sgn(x̃t))
(93)

New Trends and Developments in Biometrics330



σ

n a a0 T 1/2 1/3 1/4 1/5 1/6

128 .750 .500 .188 > 1 1.9 · 10−1 8.4 · 10−3 1.6 · 10−4 1.4 · 10−6

256 .875 .750 .152 2.2 · 10−1 1.8 · 10−3 2.5 · 10−6 6.2 · 10−10 2.8 · 10−14

512 .938 .875 .131 2.2 · 10−2 1.1 · 10−5 3.5 · 10−10
< 10−15

< 10−15

1024 .969 .938 .116 1.9 · 10−3 5.4 · 10−8 2.8 · 10−14
< 10−15

< 10−15

Table 5. Values of the upper bound on the decoding error probability, when (w, w0) = (32, 64), (a, a0) are expressed by the
left-hand side of (91), and (F, Φr) = (FG0,1, FGr,σ).

where

( va,a0 (yt|1), va,a0 (yt|0) ) =
( 1

a − a0

∫ −a0

−a
v(yt|x) dx,

1

a − a0

∫ +a

+a0

v(yt|x) dx
)

(94)

6. Conclusion

We believe that there is a request for general theory of processing biometric data, caused by
a large variety of parameters that can be taken into account and their different descriptions.
It is usually difficult to find a probabilistic models for biometric observations received both
at the enrollment and the verification stages that agree with practical situations. One of the
most important features is privacy protection, which makes the reconstruction of outcomes
of biometric measurements on the basis of the corresponding record record, stored in the
database difficult. Another part of privacy protection should make the generation of artificial
outcomes of the measurements that allow an attacker to pass through the verification with
the acceptance decision difficult. The algorithms presented above can be considered as
candidates for the inclusion into such a theory. We introduce the F-transformation of input
data, where F specifies some probability distribution. As a result, the data are mapped
into the (−1,+1) interval and, if the actual probability distribution is memoryless and
it coincides with the multiplicative extension of F, then we attain a uniform probability
distribution over the (−1,+1) interval. Otherwise, a uniform distribution can be approached
using a generalized version of the F-transformation. The use of the proposed technique
for noisy observations at the verification stage leads to an interesting effect that rare
outcomes over the artificial ensemble, defined by the probability distribution F and the
corresponding probability density function P, are reliably transmitted over any additive
observation channel, since P(r(y)) appears in the denominator of the constructed probability
density function (see 48). This property allows us to transmit large magnitudes over the
constructed X → Y channel with high reliability. Notice that this claim is not affected by
the match of the actual probability distribution of input data and the introduced probability
distribution F.

The points above can be translated to different verification strategies. Our verification
algorithm can be viewed as a secret sharing scheme where the input vector r is converted
to a pair of vectors (x̃, s). The vector x̃ is published, while the vector s is supposed to be
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decoded on the basis of the vector x̃ and a noisy version of the vector r. An important
ingredient of the presented algorithms is the dependence of the threshold T on the pair
(a, a0). This dependence assumes that the verifier assigns this pair depending on the vector
x received at the enrollment stage. Some other verification schemes are described in [20].
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