We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter 13

Non-Isothermal Spontaneous Imbibition
Process Including Condensation Effects
and Variable Surface Tension

Bautista Oscar, Sanchez Salvador, Méndez Federico, Bautista Eric and Arcos Carlos

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51844

1. Introduction

Due to the continued miniaturization of semiconductor devices, power electronics, biosensors
and aerospace equipment, problems associated with overheating of these components have
increased. Accordingly, the innovative cooling techniques are required to meet the demands
of heat load removal from highly integrated electronic circuits and the electronic components
of spacecraft designed for advanced long-term spacecraft missions. Those demands result
in the rapid development of improved heat rejection techniques such as the interfacial
vaporization and condensation heat transfer of thin liquid films. Closed two-phase devices
such as heat pipes and thermosyphons have been and are being used successfully for the
above application. Whatever configuration is used, the heat energy removed at the chip
is transported away and rejected from the system by condensation at a remote location.
Therefore, a fundamental understanding of the condensation process in minichannels and
capillaries is important to optimize design considerations. In this direction, for possible use
in electronic cooling applications, Begg et al. [1] developed a mathematical model of annular
film condensation in a miniature tube. In this model, the liquid flow has been coupled with
the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux,
shear stress and pressure jump conditions. The model predicts the position of the liquid-vapor
interface. The numerical results show that complete condensation of the incoming vapor is
possible at comparatively low heat loads. L. P Yarin et al. [2] present a quasi-one dimensional
model of laminar flow in a heated capillary. In the frame of this model, the effects of
channel size, initial temperature of the working fluid, wall heat flux and gravity on two phase
capillary flow are studied. It is shown that hydrodynamical and thermal characteristics of
laminar flow in a heated capillary are determined by the physical properties of the liquid
and its vapor, as well as the heat flux at the wall. The effect of dimensionless parameters
such as the Peclet, Jakob numbers, and dimensionless heat flux or Nusselt number on the
velocity, temperature and pressure within the liquid and vapor domains has been studied.
In addition, the above authors conducted an experimental analysis for showing that the flow
in micro-channels appear to have distinct phase domains. On the other hand, the theory of
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two-phase laminar flow in a heated microchannels was presented by Yarin et al. [3]. They
studied the thermohydrodynamic characteristics of a two-phase capillary flow with phase
change at the meniscus by using a quasi-one-dimensional model for the flow. It takes into
account the principal characteristics of the phenomenon, namely, the effects of the inertia,
pressure, gravity, friction forces and capillary pressure due to the curvature of the interface
surface, as well as the thermal and dynamical interactions of the liquid and vapor phases.
To describe the flow outside of the meniscus in the domains of the pure liquid or vapor, the
one-dimensional mass, momentum and energy equations are used. The possible states of the
flow are considered, and the domains of steady and unsteady states are outlined. Meanwhile,
Qu et al. [4] established the physical and mathematical models to account for the formation
of evaporating thin liquid film and meniscus in capillary tubes. Their results show that in
regard to the capillary tubes of micron scale, the calculation results show that, the bigger the
inner radius or the smaller the heat flow, the longer the evaporating interfacial region will be.
There only exists meniscus near the wall, and nearby the axial center is flat interface. While
as to the capillary tubes of scale about 100 um, the evaporating interfacial region will increase
with heat flux. Compared to the capillaries of micron scale, the meniscus region will extend
to the center of capillary axis. Recently, the Lucas-Washburn equation [5, 7], was extended
by Ramon and Oron [8], describing the motion of a liquid body in a capillary tube so as to
account for the effect of interfacial mass transfer due to phase change, either evaporation
or condensation. They showed that the phase change affects the equilibrium height of the
meniscus, the transition threshold from monotonic to oscillatory dynamics, and the frequency
of oscillations. At higher mass transfer rates and/or large capillary radii, vapor recoil is
found to be the dominant factor. In general, evaporation decreases the equilibrium height,
increases the oscillation frequency and diminishes the transition threshold to oscillations. For
condensation, two regimes are identified: at high mass transfer rates similar trends to those of
evaporation are observed, whereas the opposite is found for low mass transfer rates, resulting
in an increased equilibrium height, lower oscillation frequencies and a shift of the transition
threshold toward monotonic dynamics. It must be noted that in the last mentioned work, a
difference of temperature or interfacial temperature resistance at the interface is imposed for
causing the phase change process. However, the temperature of the liquid bulk was assumed
constant. We consider that a more realistic case occurs when the temperature field in the
liquid is taken into account, causing a local variation of the interfacial temperature. In fact,
this point was commented by Ramon and Oron [8]. Therefore, the main purpose of this
paper is to solve the Lucas-Washburn equation in conjunction with the energy equation for
the liquid penetrating a capillary tube, considering that the imbibition front is also controlled
by a direct condensation process and considering a linear dependence on temperature of the
surface tension.

2. Formulation

A long vertical capillary tube of radius R, as shown in Figure 1, is filled with a saturated
vapor at temperature Ts whose density is p,. At time t = 0, the bottom of the capillary tube
comes into contact with a large reservoir of a liquid whose density is p, viscosity # and thermal
diffusivity «, assumed constant. The liquid reservoir is kept at temperature Ty, which is below
the vapor temperature Ts; for t > 0, the contact originates a spontaneous non-isothermal
imbibition process of the liquid into the capillary tube. It is assumed that the liquid wets
the capillary inner wall completely, for which case the contact angle, 6, is set equal to zero
[9]. For instance, a typical substance that satisfies this condition for the equilibrium contact
angle, is the silicone oil [10]. Due the temperature difference, Ts — Tj, condensation occurs
at the moving vapor-liquid interface. In addition, we assume that the temperature interface
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Figure 1. Schematic diagram of the studied physical model.

is maintained at Ts. Using a one-dimensional formulation of the average conservation laws,
we derive the corresponding dimensionless momentum and energy equations for the liquid
penetrating the capillary. In addition, the imbibition front is characterized by a uniform
capillary pressure. In this manner, the fluid flow is governed by the continuity, momentum
and energy equations, given by

V-v=20 1
\
0oy =P8 = VP +uVv @)
DT
T kV2T + @ 3)

where v (r,t) and p (r, ) represent the velocity and pressure fields, respectively. In cylindrical
coordinates r = (r, 0, z), with the origin of the coordinates at the tube inlet and the z axis along
its axis, the radial distance (0 < r < R) is measured from the z axis (Figure 1). The velocity

components v = (vy, vy, ;) are along the T, 6 and z, respectively. In this work, unidirectional
flow is assumed and admits the azimuthally symmetrical solution v =v,z, with vy = v, = 0.
Therefore, Eq. (1) yields dv;/dz = 0, which means that the v, is a function of the radial
coordinate and time, i.e., v; = v, (r,t). However, at the capillary inlet and in a small zone
beneath the meniscus interface, the velocity deviates from its value v, (r, f) inside the column
and depends on z. Therefore, with Eq. (2), the z component acquires the form

00, 00, _187;7_ i o < 8vz>

ot % T ez 8T prar Uar @
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We assume further that the fully developed velocity profile in the capillary tube that gives rise
to the viscous force is given by the equation

zkaj):z@&u»{1—(%)1 5)

where 5 R
<mm:ﬁ4%mmm ©)

is the flow velocity averaged over the capillary cross section. In the specialized literature, it is
accepted that the parabolic velocity profile in a pipe is well established at a distance Z from
the fluid entry such that Z/d ~ Re/30, where d is the pipe diameter and Re is the Reynolds
number, defined as Re = p (v; (t)) d/p. For typical values of capillary rise, where Re < 1, the
profile of Eq. (5) is well established at a distance smaller than the capillary radius.

Because it is required to determine the temporal change of the meniscus height h(t), the
azimuthally symmetric terms of Eq. (4) are averaged over the volume of the moving liquid
column [11]. The time derivative of the velocity on the left-hand side of Eq. (4) is:

v\ 2 h(t) R _ d(vs)
<m>‘ﬁam&£ MAU”W_ T @
The averaged pressure gradient term is obtained by taking into account that p (z = 0) = 0 and
p(z="h(t)) = —20cos (6;) /R, where 0, is the dynamic contact angle (in the present work
0, ~ 0):
2 R h(t) 9p 20
h@ﬁArWA 24 = TR ®)

Supposing that the flow rate at the tube inlet v,|, ., — 0 and at the meniscus interface
vz (1, )|, —pry — vz (1, 1), the averaged inertial convective term per Eq. (5) is

2/2 _2(vz(t))
m/m/ 2= 3 ©)

For the averaged viscosity term,

2u R19 [ ou ney o 8u
h(t)RZ/o rar< ar>rdr/o 92 = "2 (10)
With the mass balance equation, and considering the possibility of phase change
(v (t)) =u=dh/dt+j/p, (11)

where j is the interfacial mass flux due to the condensation process, given by [6].

K <aT)
= — . 12
=0 (52) (12)

In the above equation (12), k; and hy, are the thermal conductivity and the latent heat of
vaporization of the liquid, respectively. Additionally, we need the liquid temperature field,
T. Therefore, substituting Egs. (7)-(10) into Eq. (4), we obtain the Lucas-Washburn equation
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that describes the rise of the liquid within the capillary [8]

8u & d 20
or LA == 1
pgh+R2hu+pv+pdt (hu) R (13)
with the following initial conditions
h(t=0)=0, (14)
1/2
Z (%) (15)
dt o \pR

where the surface tension is assumed to be dependent on temperature through the
relationship: ¢ = 09 — o7 (T — Ty), with 0p,or =constants> 0 [12]. It must be noted that
Eq. (15) is obtained by a balance between inertia and capillary forces, ignoring the influence
of viscosity and gravity close to the contact moment between the capillary and the liquid
reservoir. Quéré [13] deduced this expression, analytically and experimentally, establishing
that for a short time the height of the liquid column increases linearly.

In order to solve the Eq. (13), additionally we need the energy equation of the liquid phase:

oT oT 02T

5 + Uer =g, (16)
with the following initial and boundary conditions
T(z,t =0) =T, (17)
T(z=0,t) =Ty, (18)
T(z =h(t),t) = Ts. (19)

In the above formulation we have assumed thermodynamic equilibrium condition at the
interface, meaning that the phase change does not alter the interface temperature. In order
to obtain the suitable characteristic scales for the problem, we conduct an order of magnitude
analysis from the momentum and energy equations for the liquid penetrating the capillary
tube. In this context, the competition between thermal and dynamics penetrations generates a
non-isothermal capillary flow, which is developed inside the capillary tube. After an elapsed
time ¢, the non-isothermal imbibition front reaches an average distance, /(t). Therefore, the
thermal and imbibition effects introduce two time scales: the thermal penetration scale, t;,,
and the imbibition scale t;, which will be determined in the Order of magnitude analysis
section.

3. Order of magnitude analysis and theoretical analysis

In this section we carry out an order of magnitude analysis, similar to that used by O. Bautista
et al. [14] and ]J. P. Escandon et al. [15], in order to determine the characteristic scales of this
problem. From Eq. (13) we can readily identify, by using an order of magnitude analysis, one
characteristic time scale, t,, associated with the characteristic equilibrium height, /.. Similarly,
from Eq. (16), we recognize two characteristic time scales associated with the thermal energy
transported by the imbibed fluid: a convective scale t.ony and a conductive scale t.,,4. For
estimating the characteristic scales mentioned before, we conduct the following order of
magnitude analysis. From Eq. (13), the order of magnitude for the characteristic equilibrium
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time t, of the imbibition process is determined by a balance between the surface tension and
viscosity forces, as follows:

h
2Rop ~ %, (20)
e

where &, can be easily evaluated from a balance between the surface tension and viscosity
forces, that is,

te
Combining relationships (20) and (21), we obtain

2 .
2Roy ~ 84 (h€+h;]>. (21)

2
_ IR
209 1 200y

e ™ :
R 8pj
%4 1+ R2p%g

h

(22)

From this last relationship, the terms j2R /2090, and 8yj/R?p?g are very small compared to
the unity; in such case, the order of magnitude for the equilibrium height is h, ~ 20y9/pgR ,
and the corresponding equilibrium time, from Eq. (20) is

te ~ 4uh?/oyR. (23)

On the other hand, an energy balance between the transported thermal energy by the motion
of the liquid and the accumulation energy term dictates that

AT AT 4)
tcom) hth

where, AT = Ts — Ty and u. , hy, and teonp represent the characteristic average velocity
associated with the velocity of the imbibition front, the characteristic thermal penetration
and the characteristic convective time scale, respectively. Therefore, from Eq. (24), the
characteristic convective time scale is given as,

h
teono ~ ﬂ (25)
C
In a similar way, from Eq. (16), a balance between diffusive and accumulation terms, dictates
that,
AT AT
~ X5, (26)
teond hth
and using the above relationship, the characteristic diffusive time scale, t.,,,4, is given by
h2
teond ~ fh (27)

To obtain the order of magnitude of the characteristic thermal penetration, we compare the
convective and diffusive terms of the energy equation,

AT AT
U7 OCT, (28)
hth hth
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obtaining that
o
hy, ~ —. 29
th™ o (29)
The characteristic average imbibition velocity, in a first approximation, is easily derived from
Eq. (11), assuming that the mass flux j at the interface is very small, therefore

he B pgR2
Up ~ T = Suoy” (30)

By considering Egs. (23), (25) and (27), we obtain

t
te < 2% 1. (31)

cond

The analysis of this transient heat transfer process can be characterized by adopting as
characteristic time the imbibition time scale t,. The characteristic scales determined previously
will be used to nondimensionalize the governing equations properly in the following section.

4. Model formulation and numerical solution

Introducing the following dimensionless variables

T= -, = 0=, 32
the system of Egs. (13)-(15) and (16)-(19), is transformed to
0 ay Ja Ja 96 B
S (Ydr ) +Y—|—Y——I—E 317 =1 —T7Ja, (33)
where I' = hj,0r/0pcy
Y(t=0)=0, (34)
ay 1
;i%':: £T7§’ (35)
and
pav jaoo| oo _ 1%
ﬁa (YdT+Y2 ) Yoy (36)
together with the following initial and boundary conditions,
0(t=0)=1, (37)
0(n1=0)=1, (38)
0(n=1)=0. (39)

In the above equations, the dimensionless parameters ¢,  and the Jakob number Ja are defined

as
_ PpgR? gR%p?

12800 yz

(40)
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— e _ ZO% 41
ﬁ hth 40(}1 > 1, ( )
and CAT. T
ja= ST To), 42)
hiy
The solution of the problem (33)-(39) shall provide ¥ = Y (1;¢8,Ja,I) and 0 =

6 (17,7;¢ B,]a,T). To solve the system of Egs. (33)-(39), we use a regular perturbation method
[16], based on the fact that in direct condensation, the characteristic values of the Jakob
number are usually small. This permits to consider the Jakob number, Ja, as the parameter
of perturbation. We assume the following perturbation expansions, in power of Ja, for the
dimensionless imbibition front and dimensionless temperature:

Y=Yy+JaY;+-- (43)

and

=60+ Jab1+---, (44)
where Yj and 6 are the leading-order solutions, i. e., the case where no phase change occurs
at the interface; Y7 and 6; are higher order corrections to the leading order that include the
phase change. Substituting the expansions (43) and (44) in the system of Egs. (33)-(39), and
collecting terms of the same powers of Ja, we obtain, for O ( ] ao) :

Yy \? d*Yy dYo _
S<E> +€Y0d7+YO+YO%_1 , (45)
and )
a0 dYy 96 0-0
200 0 909 0
70 piin_ RSl 3 4
PYoor TP 0 gy = a2 e)
The initial and boundary conditions associated with Egs. (45) and (46) are, respectively
Yy (T =0) =0, (47)
dYO (T = 0) . 1
dt el/2’ (48)
0o (t=0)=1, (49)
6p(n=0)=1, (50)
6o (y=1)=0. (51)
For the first order solution, O (Jal),
dYy dYq d%y, d2Y; e 9 96y
—_—— &Yy s e 2
g ar T T T e gy 52)
Yy dy; 1 96
+Y1+YT—+Yy—— +- — = —
at dt B on |,
and )
a0 a0 dYyy [00 a6 0-0
242 9V1 2 0 2 0 1 2 0 1
— — — | = i) — | = —5 .
BG L + 28200 50 + B [aq +(1+pM) 817} o (53)
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The initial and boundary conditions for Egs. (52) and (53) are, respectively

Y1 (t=0)=0 (54)
dY; B

| =0 (55)
01(t=0)=0, (56)
61(n=0) =0, (57)
61 (n=1)=0. (58)

As a particular case and neglecting the inertial term, from Eq. (45), we can derive the well
known case of the imbibition process without phase change, whose solution is given by,

Yo =14 W (x) (59)

where, W (x) represents the Lambert function [17], being x the argument of this function,
givenby x = —exp (—1 — 7). Eq. (59) represents the zeroth-order solution for the momentum
equation, without phase change and constant surface tension.

In order to obtain the zeroth-order solution for the dimensionless temperature in the liquid
bulk, we apply the following finite difference scheme to the Eq. (46):

911-1—1_ 1 At
0(i) — > N2 (A2
B(¥5) (47

+1
(Yo' — %) N <93<z'+1> Y1) > g
o
Yii 2A7 @)
where, Y is obtained by integrating numerically the Eq. (47) with the classical fourth order
Runge-Kutta method. In Eq. (60), i is the spatial node in the liquid bulk and n denotes the
time step. Introducing the numerical solution of Egs. (47) and (60) in Eq. (52), we obtain the
next higher order equation for the imbibition front, Y7 , which was solved by the conventional
fourth order Runge-Kutta method. For simplicity, the details are omitted.

(93(i+1) — 265 + 98(1’—1)) (60)

5. Results and discussion

In this chapter we conduct a semi-analytical approach to describe the imbibition process
of a fluid into a capillary tube including the direct condensation at the imbibition
front, considering that the surface tension at the liquid-vapor interface can be a function
of the temperature. The present analysis serves to emphasize that the inertial terms
in the momentum equation, the phase change at the imbibition front together with
temperature-dependent surface tension effect, are very important for determining the
temporal evolution of the imbibition front. This is reflected as a consequence of the main
involved dimensionless parameters in the analysis: ¢, the Jakob number, Ja and the parameter
I'. In all numerical calculations presented in this section, we have selected representative
values for aforementioned parameters. Because the range of these parameters can be very
large, the assumed values in our numerical results are representative of typical cases. The
numerical results are plotted in Figs. 2-6. In these, we have emphasized the importance of the
aforementioned dimensionless parameters on the imbibition process, and should be noted
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that the zeroth-order solution for the momentum equation is independent of the temperature
tield (see Eq. (46)). In Fig. 2 we evidence the importance of the parameter I' on the imbibition
front as a function of the dimensionless time. In this figure, the dimensionless height is plotted
as a function of the dimensionless time for ¢ = 0.5, § = 600, Ja = 0,0.1,0.3. Here, it is very
clear that the sensitivity of the imbibition front to the assumed values of the parameter I’;
for increasing values of above parameter, for a given dimensionless time, the dimensionless
height of the imbibition front tends to decrease.

1.0

0.8

0.6
0.4
0.2
X
0.0 0.5 1.0 1.5 2.0 25 3.0
T

Figure 2. Dimensionless height of the imbibition front as a function of the dimensionless time for the
case of ¢ = 0.1, = 600, Ja = 0.3 and three values of the parameter I'(= 5 x 107°,1 x 10_6'0.)

In Fig. 3, the initial occurrence of oscillations is observed for the case of ¢ = 0.5. The
oscillations are damped and tend to the Jurin’s height (h. ~ 20/pgR). The above result occurs
for a dimensionless time T ~ 4, for the case of the € used in this figure. From this figure it is
clear that increasing the Jakob number increases the dimensionless height of the imbibition
front. On the other hand, a similar behavior in comparison with Fig. 2 is appreciated
by considering the effect of the parameter I'; for increasing values of this parameter, the
imbibition front decreases.

The influence of the parameter ¢, is shown in Fig. 4. Here we plotted the imbibition height
as a function of the dimensionless time, for B = 600, three values of ¢ and two values
of the parameter I'. Black and hollows symbols represent the cases of I' = 1 x 107¢ and
1 x 1072, respectively. As can be seen, the parameter e results in the occurrence of oscillations,
which appear for a value of ¢ = 0.5. For higher values of this parameter, greater imbibition
heights are reached. As can be appreciated, for values of the parameter ¢, it takes a larger
dimensionless time for reaching the equilibrium height, given by the Jurin’s law. Therefore,
the first term (inertial term) at the right hand of Eq. (33), has a great influence on the
hydrodynamic solution of the present problem. From the physical point of view, this behavior
occurs for liquids of very low viscosity or for increasing values of the capillary radius (see
relationship (40)) for a given liquid.

In Fig. 5, the dimensionless interfacial velocity of the liquid as a function of the dimensionless
time is plotted, for B = 600, Ja = 0.1, ¢ = 0.1 and four vales of the parameter I'. This figure
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Figure 3. Dimensionless height of the imbibition front as a function of the dimensionless time for the
case of £ = 0.5, = 600, Ja(=0, 0.1, 0.3). Black and hollow symbols correspond toI' =1 x 10~% and
1 x 107>, respectively.
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Figure 4. Dimensionless height of the imbibition front as a function of the dimensionless time for three
values of ¢ (= 0,0.5,2),8 = 600, Ja=0.1 and two values of I['(=1 x 107¢,1 x 107).

shows the case where no oscillations are present, and for the value of T ~ 3, the motion of
the imbibition front is practically decelerated. From this figure, and according to the Fig. 2,
increasing values of the parameter I' tends to decrease the velocity of the imbibition front.

On the other hand, in Fig. 6, negative values for dY/dT are obtained. In this figure, we show
that for the case where oscillations are present, the equilibrium of the imbibition front occurs
for larger dimensionless times in comparison with the case of ¢ = 0.
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Figure 5. Dimensionless interfacial velocity as function of the dimensionless time, for § = 600, Ja=0.1, e =
0.1, and four values of the parameter I'(=1 x 1072,5 x 107°,1 x 107, 0).
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Figure 6. Dimensionless interfacial velocity as function of the dimensionless time, for f =600, ¢ =1,
three values of the Jakob number (Ja = 0,0.1,0.2) and two values of the parameter I'(=1x107%,1 x 107°).

The effects of the Jakob number, the parameter ¢ and the dimensionless parameter I' on the
maximum dimensionless imbibition height are shown in Fig. 7. For the case of Ja = 0, the
effect of the dimensionless parameter I' has no influence on the imbibition front; however,
for a fixed value of the Jakob number (Ja # 0), for increasing values of the parameter T’, the
maximum imbibition height decreases. This behavior is according to those shown in Figs. 2-4.
From the same figure, Ja = 0 corresponds to that of isothermal case, i. e., there is no phase
change process at the imbibition front.

The dimensionless temperature profiles in the liquid are shown in Fig. 8, as a function of
the dimensionless coordinate 7, for different values of the dimensionless time, two values of
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Figure 7. Maximum imbibition height as a function of the dimensionless parameter ¢, for = 600, three
values of the Jakob number, Ja(= 0,0.1,0.2) and two values of T (=1 x 107%,1 x 1072).

the parameter f(= 600,1000), with ¢ = 0. In this figure it is evident that the dimensionless
temperature profile in the liquid shows a linear behavior for large values of the dimensionless
time, whereas for short dimensionless time, large temperature gradients exist near the
imbibition front.

1.0 - vy
0.8
=600
06 €=1.5
0 —a—1=1
—e—1=2
0.4 =3
—— =14
—<+—1=38
0.2 —+ =105
0.0 y T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
n

Figure 8. Dimensionless temperature of the liquid as a function of the dimensionless variable
1, evaluated at different dimensionless times, § = 600 and ¢ = 1.5
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