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1. Introduction

As is known, such advantages of silicon carbide as a high hardness (4th place after dia‐
mond) [36, 37], high chemical and radiation resistance, high melting point, etc. became the
basis of its wide application not only in microelectronics [1], but also as refractory and abra‐
sive materials. Silicon carbide is included in the oxidation resistant composite materials [42]
used in coating system for "Space Shuttle", capable of withstanding temperatures up to
1500°C at the entrance of the ship into the atmosphere. In many attempts to develop an ef‐
fective oxidation-protection coating for carbon-carbon composites with excellent mechanical
properties at elevated temperature, silicon carbide coating has shown the best performance
for short periods of up to 1900K [39]. For longer periods and higher temperature applica‐
tions, a challenging coating system should be developed.

Silicon carbide is regarded by researchers as a suitable material for the front wall structures
of fusion reactors. The boers, cutting disks, grinding paper of SiC can be used for boring,
drilling, surface grinding and cutting of steel, nonferrous metals, natural stone, concrete,
wood and plastic.

The stability of silicon carbide to high temperature treatment is of special interest. As a spe‐
cial application, silicon carbide can be thermally oxidized in the form of SiO2, and the devi‐
ces which can be easily fabricated on Si substrate (Power MOSFET, IGBT, MOS controlled
thyristor, etc.) can also be fabricated on SiC substrate [23]. In paper [23] the parabolic growth
of thickness of thermal oxide versus oxidation time was observed, and the slope of the plots
increases with increasing temperature. The thickness values of oxide films were about 23-77
nm (Si-face, wet oxidation), 18-63 nm (Si-face, dry oxidation), 210-810 nm (C-face, wet oxida‐
tion) and 125-260 nm (C-face, dry oxidation) for oxidation time 6 h and depend on tempera‐
ture value (1000, 1050, 1110 or 1150°C).

© 2013 Nussupov and Beisenkhanov; licensee InTech. This is an open access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Doped with different impurities, silicon carbide is used in semiconductor technology [63, 12].

Field-effect transistors, diodes and other electronic devices based on SiC have several ad‐
vantages compared to similar silicon devices, for example, the opportunity to work at tem‐
peratures up to 600°C, high speed and high radiation resistance. A large number of
polytypes of SiC makes it possible to create heteropolytype structures [31, 32, 33]. Currently,
using the methods of vacuum sublimation [48], molecular beam epitaxy [15], the epitaxial
and heteropolytype layers based on the cubic 3C-SiC and two hexagonal 6H-SiC, 4H-SiC on
substrates of SiC, are grown. Heteroepitaxial layers of 3C-SiC on substrates of Si by chemical
vapor deposition (CVD) [41] are grown. At the temperatures below 1200°C there are condi‐
tions for the growth of both poly- and nanocrystalline SiC with different degrees of crystal‐
linity and structure of the cubic polytype 3C-SiC. Such conditions were realized in the
magnetron sputtering [25, 56], laser ablation [53] and plasma deposition [36], plasma-en‐
hanced chemical vapor deposition [19, 43], molecular beam epitaxy [16]. At temperatures
below 1500°C in the direct deposition of carbon and silicon ions with energy of ~100 eV, the
growth of nanocrystalline films with a consistent set of the polytypes 3C, 21R, 27R, 51R, 6H
is possible [49, 50, 51].

In recent years there has been an intensification of studies on the synthesis of SiC by high-
dose carbon ion implantation into Si [37, 35]. In addition, the synthesis of SiC by high dose
implantation of carbon ions into silicon is also of fundamental scientific interest due to the
wide practical application [9 - 11, 47], for example, to create a coating and insulating SiC lay‐
ers in the manufacture of integrated circuits. High quality crystalline β-SiC film on SiO2 can
be obtained by multiple implantations of carbon ions into silicon and subsequent selective
oxidation of the top layer of Si [52]. Intensively developing area is the formation by this
technique in SiO2 of nanostructured systems with inclusions of nanocrystals and clusters of
Si, SiC and C, providing at the expense of size effects luminescence throughout the visible
spectrum [57]. The study of the stability of these films to high temperature treatment is also
of special interest.

The ion synthesis of silicon carbide and studies of crystallization process attract attention of
researchers [12, 35, 37, 63]. The implantation of single energy carbon ions with a Gaussian
distribution on the depth in silicon is of interest due to a presence of wide range of nanolay‐
ers with different concentrations of carbon and silicon atoms and, therefore, a presence of
different clusters and nanocrystals of silicon, carbon and silicon carbide in the implanted
layer after implantation and annealing. The properties of these layers have been investigat‐
ed in detail. In previous investigations, the carbon ions with energy of 40 keV were used for
considered purposes in a number of papers [8, 13, 20], and doses ranged 1016-1018 cm-2 were
used in almost all of investigations, when the ion synthesis of a silicon carbide film was car‐
ried out [2]. The IR absorption technique was widely applied for the investigation of these
layers [26, 55]. It has been used, mainly, to confirm the formation of silicon carbide in the
implanted layer and, to obtain the new information about the layer structure as well. In
some papers, the dependence of both shift of the wave length of a minimum of IR transmis‐
sion peak and the change of its half width versus the annealing temperature are used for
interpretation of IR transmission spectra. In our opinion, it is necessary to investigate such
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important characteristics as a change of an area under a curve of IR transmission spectrum
band and a change of peak amplitude at 800 cm-1 versus the annealing temperature which
contains very valuable information about the structure changes in an implanted layer. If the
thickness of ion-synthesized film is comparable or smaller than the wavelength of incident
electromagnetic radiation, under certain geometric conditions of the experiment, one can ob‐
serve not only the transverse optical oscillations of atoms (TO-phonons), as well as longitu‐
dinal optical lattice oscillations (LO-phonons) [3]. The detection of LO-phonon peak of SiC
and its change after film annealing give additional information on the crystallization proc‐
esses. It is necessary to carry out the circumstantial investigations devoted to an analysis in
detail of change in a wider temperature interval of an half width of IR transmission peak
which characterizes the degree of structure order of an ion implanted layer.

In the majority of analogous studies, the post-implantation isochronous annealing of sam‐
ples was carried out at temperatures from 400 up to 1200°C [11, 14, 2, 27]. However, in sev‐
eral studies [28, 47] the temperature range was extended and, the ion implanted layers had
been annealed at temperatures 1300 and 1405°C. We believe also, that the temperature inter‐
val 400-1200°C is not sufficient for a annealing of disordered layer and completion of crys‐
tallization processes. A more detailed investigation of processes at temperatures ranged
from 20 up to 1405°C permits to observe a number interesting effects taking place in an im‐
planted layer.

The authors of papers [11, 2, 5, 55] declare about a significant diffusion of carbon and, con‐
trariwise, that is negatived in works [13, 26, 27]. The authors of papers [8, 4, 47, 34] show
that a layer has the electron conduction after annealing. The data of [28] give of evidence
about the p-type conduction.

In a number of studies [6, 2, 5] a synthesis of SiC on a (100) oriented silicon substrate is considered
as preferable, but at the same time in papers [13] the orientation (111) of substrate is de‐
clared as a most suitable. [4] investigated the optical and photoelectric properties of the SiC-
Si structure, formed by implantation into (100), (110) and (111) oriented n- and p-type silicon
of 12C ions with energies of 40 and 70 keV, and doses of 4.3 × 1017 and 5 × 1017 cm-2. Analysis
of the IR absorption spectra of silicon layers implanted by carbon ions with energy of 70 keV
allowed finding a significant dependence of crystallinity of the SiC layer on the orientation of
the substrate after annealing at temperatures of 700−900°C. Although the tetrahedral Si−C-
bonds more intense formed at an orientation of the substrate (100), annealing at 1100°C all
evens out differences in the absorption spectra for all three substrate orientations (100), (110)
and (111). The photovoltage photoresponse was obtained in all implanted structures. Investi‐
gation of current-voltage characteristics showed improvement in the rectification effect of the
structure after annealing. The possibility of creating of β-SiC—Si heterostructures by ion
implantation technique (band gap of 2.39 eV and 1.11 eV, respectively) was shown.

Frangis et al. [17, 18] formed β-SiC in silicon by high-temperature implantation (850–950°C) of
carbon ions with energies 200 keV and doses ranged within (0.2−1)×1018 cm-2. Implantation was
carried out into silicon wafers of orientation (100) and (111). In both cases, β-SiC was formed
with the same orientation as the matrix. It also reported that implantation at a lower temper‐
ature (500°C), but at higher energy (300 keV) leads to the formation of good quality β-SiC.
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Aleksandrov et al. [6] carried out the synthesis of single-crystal SiC layer with one-step technique
of high current ion implantation of carbon atoms into silicon substrates with orientations (001)
and (111). Single crystal layer of SiC, which contains a small number of twins, was synthe‐
sized by the implantation of carbon ions with dose of 6×1017 cm-2 into (001) oriented silicon
wafer using a focused ion beam with current density of 300 A/cm2. When the ion current
density was 150 A/cm2, a single crystal SiC layer with a high concentration of twins was formed
at the interface with the substrate Si. On top of this layer is formed a layer of polycrystalline
SiC. When the implantation of carbon ions was carried out into (111) oriented silicon, single
crystal β-SiC layer is not formed even when implanted into substrate heated up to a temper‐
ature of 850°C. Polycrystalline SiC layer at the surface and single-crystal SiC layer with a high
density of twins near the interface with the crystal Si matrix, are formed.

This chapter presents the study of silicon carbide and carbon layers on silicon synthesized
by ion beam techniques. The investigations of silicon layers implanted by carbon ions with
energy 40 keV and dose 3.56×1017 cm-2 after annealing over a wide temperature range from
20 up to 1400°C using the special IR analysis are described. The features of change of the
SiC-peaks in the spectra of the infrared transmission due to the influence of the Gaussian
profile of the distribution of carbon in silicon are shown. Experiments to observe the longi‐
tudinal optical oscillations (LO-phonons) associated with the silicon carbide were carried
out. A type of a conduction of synthesized silicon carbide was studied. Definite information
from a shape analysis of the IR transmission curve was obtained. A particular attention was
attracted on some problems which were disputable in previous investigations. IR studies of
high-temperature instability of homogeneous layers of silicon carbide on (100) and (111) ori‐
ented silicon substrates synthesized by multiple implantation of carbon ions with energies E
= 40, 20, 10, 5 and 3 keV, are described. By IR spectroscopy, Auger electron spectroscopy and
X-ray reflectometry the composition and the processes of structural adjustment of the layer
during annealing are analyzed. By ion-beam sputtering and magnetron sputtering techni‐
ques the SiC0.8 and C films on the silicon wafers were deposited. Characteristics of the films
by X-ray reflectometry are analyzed.

2. Experimental

Carbon implantation was carried out under completely oil-free conditions using elaborated
accelerator. A vacuum in the implantation chamber is created by help of the ceolite vacuum
pumps (6.5×10-2 Pa) and titan magnet discharge pumps (1.3×10-4 Pa). These pumps permit to
except completely the organic compounds in volume which could be to contaminate the surface
of the implanting samples. Gas (dioxide of carbon) has been used to obtain the single-charg‐
ed ions of 12C+. The implantation dose was determined by integrating of the beam current
registrated on the target with suppression of a secondary emission. In order to prevent a sample
heating during implantation, the ion current density was kept at a level less than 3 mkA/cm2.
The temperature of the target during the implantation is controlled by a thermocouple and, it
not exceeds 20–25°C. The implantation of carbon ions was carried out into single-crystal (100)
and (111) oriented silicon wafers of sizes 7×12×0.4 mm3 with an electrical resistivity 4–5 and
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10 Ohm cm, respectively. After cleaning and removing the native surface oxide in a chemi‐
cal etch, the samples were mounted in the target chamber of the implanter.

A set of these silicon wafers were implanted by 12C+ ions with energy 40 keV and dose
3.56×1017 cm-2 at room temperature. To observe the longitudinal optical oscillations (LO-pho‐
nons) of atoms in synthesized film, a rotating shaft was incorporated into work chamber of
infrared spectrometer. A sample holder is attached on this shaft. This system permits to
make the IR transmission measurements of an ion implanted layer versus an angle of inci‐
dence of electromagnetic radiation on sample surface over the range 0-360° with step of 5°.
However, in practice, at measuring of spectra we change the angle of incidence from 0 up to
±75°. It was observed no differences in transmission spectra measured from samples sloped
to the radiation at a rotation of shaft both clockwise and anti-clockwise from the normal. Iso‐
chronous annealing of ion implanted samples was carried out in vacuum over the tempera‐
ture range 200-14000C with steps of 50-200°C. The annealing was carried out in a low-inertia
economical vacuum furnace especially elaborated and created for these purposes. It was car‐
ried out in conditions of completely oil-free pumping-out at a residual pressure ~ 1.3×10-4 Pa.
The temperature was controlled by a help of tungsten-rhenium thermocouple.

To obtain a rectangular profile of the distribution of carbon atoms in the silicon, implanta‐
tion of carbon ions of different energies and doses into second set of single-crystal silicon
wafers of n- and p-type of conductivity was carried out sequentially in the following order:
1) E = 40 keV, D = 2.80×1017 cm-2, 2) 20 keV and 0.96×1017 cm-2, 3) 10 keV and 0.495×1017 cm-2,
4) 5 keV and 0.165×1017 cm-2, 5) 3 keV and 0.115×1017 cm-2. The ratio of the concentrations of
carbon and silicon atoms in the depth was about NC/NSi = 0.7. Post implantation annealing of
the samples was performed in a vacuum in the temperature range 200-1200°C for 30 min
with a step of 200°C. Then, the SiC films were subjected to prolonged isothermal annealing
at the temperature of 1200°C for several hours in an atmosphere of inert gas (Ar) and, after
specific time intervals infrared transmission spectra were recorded. The IR transmission
spectra were recorded in differential regime on double-beam infrared spectrometer
(400−5000 cm-1). The spectra both at perpendicular incidence of infrared rays on the sample
surface and at an angle of 73° with respect to the normal to the sample surface were meas‐
ured. The composition of the layers was examined by Auger electron spectroscopy. The pa‐
rameters were as follows: incident electron beam of diameter 1 μm, energy 10 keV, angle of
incidence 45°, diameter of scanning region 300 μm, vacuum 1.33 ×10-8 Pa, angle of Ar+ beam
incidence 45°. Parameters of films were investigated using the X-ray reflectometry at small
glancing angles by recording the angular dependence of the reflection coefficient for two
spectral X-ray lines CuKα (0.154 nm) and CuKβ (0.139 nm) at the facility "ComplexXRay C6".
Selection of spectral lines CuKα and CuKβ from polychromatic spectrum was carried out us‐
ing thin semi-transparent and thick untransparent monochromators, respectively, made
from the pyrolytic graphite with a mosaic angle of 0.5°.

SiC films on the silicon substrates (25°C) were also synthesized by ion-beam sputtering of a
two-component target of graphite and silicon. The C films on the silicon substrate (75°C) by
magnetron sputtering were synthesized. Parameters of SiC and C films on Si substrates
were determined using the X-ray reflectometry.
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3. Results and discussion

3.1. A model of an carbon implanted silicon layer and the mechanism of the low
temperature formation of Si- and SiC crystallites

In Fig.1 the calculated profile of carbon atom distribution in Si constructed basing on data Rp

and ∆Rp from [21] are presented. The Gaussian profile (Fig.1, curve 1) was calculated for the
implantation of carbon ions with energy 40 keV and dose 3.534×1017 cm-2, when the carbon
concentration in the distribution peak is equal to stoichiometric composition of SiC, i.e.
NC/NSi = 1, where NC/NSi is the ratio of the concentrations of C and Si atoms. The curve 2 in
Fig.1 shows the calculated profile, corresponding to dose D = 3.56×1017 cm-2 of carbon ions
used in this investigation.

3.1.1. LO-phonons and their applications to analysis of an implanted layer

As it is well known [45, 66], during interaction of electromagnetic waves with an infinite
crystal lattice, the transversal optical oscillations (TO-phonons) of atoms are excited. In over‐
whelming majority of previous investigations, the synthesis of silicon carbide was identified
by help of spectra of transversal optical phonons. No attempts was made to detect the longi‐
tudinal optical oscillations (LO-phonons) of atoms of lattice for a Gaussian concentration
profiles of carbon in spite of that majority of studies in the field of ion synthesis of silicon
carbide was carried out using these profiles. [3] found that an absorption at wave number
980 cm-1 is observed, if the angle of incidence of irradiation on the sample surface deviate
from perpendicularity. Implantation of carbon ions with energies of 24 and 40 keV and a
dose of 4.3 × 1017 cm-2 carried out at room temperature into a (111) oriented Si plate of p-type
conductivity. Annealing was performed in a vacuum at temperatures of 900 and 1100°C for
30 minutes. The presence in the transmission spectrum of bands associated with the LO-and
TO-phonons made possible to calculate such parameters of SiC, as high frequency, ε∞, and
the low-frequency dielectric constant, ε0, attenuation coefficient of the phonons, the effective
charge е*/e and the force constant ρ. So, the detection of LO-phonons may be used to obtain
additional information about a structure of ion implanted layer. Morever, the frequency val‐
ues of both the transversal- and longitudinal oscillations permit to determine the parameters
of efficient charge which is a quantitative criterion of a compound polarity. The efficient
charge value permits to calculate a mobility of free charge carriers.

If a thickness of ion synthesized film is less or comparable with a wave length of the electro‐
magnetic radiation incident on film's surface, the limitations related with the condition of in‐
finity of crystal lattice are lifted. As a result, one can to observe the longitudinal optical
oscillations of lattice atoms at definite geometrical conditions of experiments [66]. In this re‐
lation, the special experiments to observe these phonons were carried out. For this purpose,
the IR transmisssion spectra versus an angle of incidence of electromagnetic radiation on
sample surface with step of 5° were measured.
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Figure 1. The calculated profiles of distribution of carbon atoms in Si constructed basing on data of Rp and ∆Rp from
[21]. The energy of carbon ions is 40 keV, dose 3.534×1017 cм-2 (curve 1) and 3.56×1017 cм-2 (curve 2).

In Figs.2 and 3 the IR transmission spectra of both (100)- and (111) oriented silicon samples
implanted by carbon ions with energy 40 kev and dose 3.56×1017 cm-2, after isochronous an‐
nealing over the temperature range 200-1400°C, are presented. The spectra at both perpen‐
dicular incidence of infrared rays on the sample surface and at an angle of 73° with respect
to the normal to the surface were measured. In Fig.4 the wave number values in maximum
of IR transmission versus the annealing temperature are presented. The curves on this figure
were constructed using the experimental data presented on Figs.2 and 3. The curves for TO-
phonons were constructed basing on the infrared transmission spectra measured by using of
perpendicular incidence of the infrared rays on the sample surface.

Figs. 2 and 3 show the appearance of an IR absorption peak at 965-970 cm-1 in the spectra
from samples inclined to IR irradiation at an angle of 73° with respect to the normal to the
sample surface. This absorption peak begins to be appeared after annealing at 1000°C for
both types of substrate orientation together with the main peak at 797-800 cm-1 which corre‐
sponds to the transversal optical atomic oscillation of SiC. Basing on the values of wave‐
length of this peak, its amplitude and synchronous modification together with the peak for
transversal optical oscillation of SiC during annealing as well, the peak at 965-970 cm-1 was
associated with longitudinal optical phonons of silicon carbide. The temperature of LO-pho‐
non appearance is about 300°C higher, than that for TO-phonons of SiC (700°C). It may be
caused by smallness of the LO-phonon peak amplitude and, in consequence of this, by diffi‐
culties of their registration.

For (100) oriented substrates, the increase of the annealing temperature over the range
1000−1350°C leads a linearly increase of LO-phonon wavelength at minimum of amplitude
from 930 to 965 cm-1 and, then wavelength increasing is saturated. As for (111) oriented sub‐
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strates, unlinearly increase of LO-phonon wavelength in the range 955−970 cm-1 up to
1400°C is observed. Thus, the formation of SiC crystallites, i.e. the intensive formation of Si-
C tetrahedral bonds of necessary length and bond angles, in the case of (111) oriented sub‐
strate is not completed up to the silicon melting point, as for (100) oriented substrate that is
completed at 1350°C. The difference between the LO-phonon curves behaviour for (100) and
(111) oriented substrates indicates on the differences in the crystallization mecanism. One
can see an influence of silicon substrate orientation on SiC crystallization in the implanted
layer from the TO-phonon curve also (Fig.4).

Figure 2. The IR transmission spectra of (100) oriented Si samples implanted by +C12 ions (E = 40 kev, D = 3.56×1017

cm-2, after isochronous annealing over the temperature range 200-1400°C: a) α = 90°; b) β = 73°.
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In some investigations no changes in the IR transmission spectra after annealing at 700°C
[8], 850°C [14], 875°C [11], 900°C [26], 1100°C [2] were observed. That was explained by fin‐
ishing of the β-SiC formation process. Really, that may be correct, if we are based on the
analysis of TO-phonon curve only. However, as is seen from Fig.4, the TO-phonon curves
show the saturated absorption and give no addititional information over the temperature
range of 900–1400°C, as the LO-phonon curves undergo the substantial changes at these
temperatures indicating on the structural changes in the ion implanted layer. Thus, one can
conclude that the observation and measurement of LO-phonon peak are important for an
analysis of crystallization process.

As it is known [38], the TO- and LO-phonons frequences are bounded with the equation:
 

νLO
νTO

=(
ε0
ε∞

)
1/2

(1)

 

Where ε0 and ε∞ are the low-frequency and the high-frequency dielectric constants, respec‐
tively. The effective charge e*/e is determined from the equation [54]:
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where ω0 is the resonance frequency, N = 4.84×1022 cm-3 is the concentration of ion pairs, Mn

= (M+M-)/(M++M-) = 1.396×10-23 g is the reduced mass of ion pair, νTO = 2.395×10-13 cm-1 is the
frequency of TO-phonon irradiation.

The dimensionless parameter, ρ, which is proportional to the absorption quantity, is deter‐
mined from the equation:

ρ =
ε0−ε∞

4π
(3)

The values of ε0, e*/e and ρ determined from the equations (1)—(3) are equal to 9.82, 0.89,
and 0.25, respectively. The value of ε∞ has been chosen to be equal to 6.7, because according
to [45] the sufficiently great dispersion of this value leads an insignificant changes. So, both
the detection and the measuring of LO-phonons have been permited to determine some
characteristics of synthesized film.
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Figure 3. The IR transmission spectra of (111) oriented Si samples implanted by +C12 ions (E = 40 kev, D = 3.56×1017

cm-2), after isochronous annealing over the temperature range 200–1400°C: a) α = 90°; b) β = 73°.
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Figure 4. Wave numbers of IR transmission minimum for TO- and LO-phonon peaks of SiC versus an annealing tem‐
perature for carbon implanted silicon layers on Si substrates (E = 40 kev, D = 3.56×1017 cm-2): 1 - Si(000); 2 - Si(111).

3.1.2. The IR transmission analysis of ion-implanted layer on (100) and (111) oriented silicon

In Figs.5a and b, the values of amplitude and halfwidth (FWHM) of the IR transmission
peak, respectively, versus an incidence angle of the infrared radiation on the carbon im‐
planted (100) oriented silicon samples, are presented. These data were obtained after iso‐
chronous annealing of samples over the range 200-1200°C for 30 min with the step of 200°C.
Beginning from an angle α = 50° (Fig.5a), almost linear decreasing of TO-phonon peak am‐
plitude and simultaneous increasing of LO-phonon peak amplitude are observed. The
changes of LO- and TO-phonons peak amplitudes are correlated with one another.

The halfwidth (FWHM) changes of the peak have a more complicated dependence from the
incidence angle of the infrared radiation on the sample surface (Fig.5b). This dependence
has no correlation with the data in Fig.5a. The half-width of the peak is usually dependent
on the quality of the crystal structure of the film and should not depend on the angle of inci‐
dence of IR radiation. Apparently, the decreasing of halfwidth of the TO-phonon peak can
be explained by the presence of non-tetrahedral Si-C-bonds of a certain type, which are ori‐
ented in the space of the film in such a way that with increasing angle α above 35° they
cease to absorb infrared radiation at frequencies near 800 cm-1. This is equivalent to the effect
of decay of these bonds, since it leads to a decrease in the amplitude and the narrowing of
the TO-phonon peak, but can not testify about improving the structure of the layer. This is
also accompanied by the appearance of deformed LO-phonon peak in the frequency range
near 950 cm-1. With the increase of the angle α up to 73°, the narrowing of LO-phonon peak
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and an increase in its amplitude are taken place. The interpretation of these results requires
further investigation.

Figure 5. Amplitude (a) and halfwidth (FWHM) (b) of TO- and LO-phonons peaks of SiC of the IR transmission versus
the incidence angle of IR radiation on the surface of the carbon implanted Si.

In previous IR investigations of implanted by 12C+ ions silicon layers, a shift in frequency of
an absorption maximum versus the annealing temperature, and also the changes of half-
width and amplitude of peak were observed. Analyzing the IR transmission spectra present‐
ed in Figs.2 and 3, one can see not only the changes of these parameters. A base-line to each
spectrum (Fig.2, 1350°C) was drawn. As is seen, the areas of obtained figures are changed,
too (Fig.6). In our opinion, the area under the IR transmission curve is associated with the
number of absorbing objects in the ion-implanted layer and better shows the transformation
of these objects during isochronal annealing. As the object may be not only the crystallites of
SiC, but also the another types of infrared active compounds of carbon atoms with carbon or
silicon atoms, and silicon atoms one with another, which one can unify under one common
appellation - clusters.

Basing on the mentioned above, the IR transmission spectra (Figs.2 and 3) were analyzed in
detail accordingly to all listed points. In Fig.6 an area of the IR transmission peak (see Fig.2)
associated with TO-phonons of SiC obtained both at perpendicular incidence of infrared
rays on the sample surface (curve 1) and at an angle of 73° with respect to the normal to the
sample surface (curve 2), versus the annealing temperature are presented. Area values can
be determined by direct measurement or by using the expression (Fig.2, 1350°C):

A=
1
2 (T1 + T2)(ν2−ν1)− ∫τ(ν)dν ≈

1
2 (T1 + T2)(ν2−ν1)−∑ τ(ν)δν (4)

where A − total absorption (or transmission) in relative units in the wave number range
ν1<ν<ν2, τ(ν) − transmission at frequency ν, T1 and T2 − the values of IR transmission at wave
numbers ν1 and ν2, respectively, δν − step of measurements, equal to 2.5 or 5 cm-1. The areas
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corresponded to LO-phonons have been not measured due to of their infinitesimal. Further
the data obtained for a perpendicular incidence of IR-rays on sample surface will be dis‐
cussed, as an analysis of the curve 2 is difficult due to the absence of the reflection data. As
is seen from Fig. 6 (curve 1), the four peaks at 600, 1000, 1200 and 1350°C are evidently ob‐
served, which, seemingly, are related with four physical processes occuring in ion implant‐
ed layer in four temperature ranges. The same maxima are observed for curve 2 in
approximately the same temperature ranges. On this curve a fifth maximum at 200°C is also
observed.

It is necessary to note, that in most previous investigations, mainly, the informations corre‐
sponding to the peak in range 900-1000°C are obtained using the dependences of halfwidth
and a shift in frequency of an absorption maximum from the annealing temperature. The
physical processes corresponded to the peaks of both 600 and 1200-1400°C have not been
studied in detail, partly, due to the hard access of the temperature range of 1200-1400°C and,
partly, due to weak defined processes at 600°C. It follows from the Fig.6 that the change of
area of SiC-peak takes place over the whole temperature range from 20°C up to 1400°C.

In Fig.7 the values of IR transmission amplitude for TO-phonons of SiC at wavenumber 800
cm-1 and for LO-phonons of SiC versus an annealing temperature for spectra presented in
Figs.2 and 3 (curves 1, 1’ − for the perpendicular incidence of IR rays on sample, the curves
2, 2’, 3, 3’ − for an angle of 73°), are shown. When constructing these dependences we have
believed that the IR transmission amplitude at 800 cm-1 is proportional to the concentration
of tetrahedral oriented Si−C-bonds of atoms incorporated into crystallites of SiC. All factors
which can affect on a broadening of peak corresponding to an infinitely thin ideal film of
SiC have been neglected. This approximation is to some extent, may distort the true picture
of the physical phenomena occurring in ion-implanted layer. However, this assumption is
very important in a qualitative sense, since it allows understanding the general course of the
process and separating a region of the IR transmission peak [30] due to the contribution of
crystallites of SiC in the area value, from a region due to the optically active clusters. As seen
in Fig.7, the overall shape of the curves 1 and 2 for the TO-phonons is about the same and
has a number of features, in particular, at 1300°C, which is also found on the curve 3 for the
LO-phonons. The changes of amplitude take place over the all temperature range from 20
up to 1400°C. There are differences in the crystallization processes of carbon implanted sili‐
con layers for the orientation of the substrate (100) and (111).

In Fig.8 the half-width of the TO-phonon peak of SiC at perpendicular incidence of IR radia‐
tion on sample surface for spectra shown in Figs.2 (curve 1 − for substrate Si(100)) and 3
(curve 1' − for substrate Si(111)), versus an annealing temperature, is presented. The analo‐
gous dependences have been presented in previous papers [8, 47, 26]. However, the temper‐
ature range was narrower and, therefore, the maxima at 1200 and 1350°С were not found.

To explain these effects let us consider the ideal case again. We assume that the broadening
of the absorption band due to different processes is absent and, therefore each frequency in
the transmission spectrum corresponds to one or other bond between the atoms of the im‐
planted layer. On this basis, we can see that, immediately after the implantation the contour
of the transmission curve covers a wide range of frequencies, i. e. in ion-implanted layer
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there are many different bonds that absorb at different frequencies. If one attributes the fre‐
quency of 800 cm-1 to the tetrahedral oriented Si-C-bond of length of 0.194 nm (bond charac‐
teristic of the silicon carbide), so in the implanted layer there are the systems with the bond
lengths of both larger and smaller than this. In general, the presence of different bond
lengths between the atoms of the ion-implanted layer is completely natural because atoms
can stop at different distances from each other in the process of implantation.

In our case, the most interesting bonds are the single-, double- and triple silicon-silicon (Si–
Si, Si=Si, Si≡Si), silicon-carbon (Si–C, Si=C, Si≡C) and carbon-carbon (C–C, C=C, C≡C) bonds
presented in Fig.9. Simple covalent bond C–C, formed by the overlap of two sp3-hybrid
electron clouds along the line connecting the centers of atoms, is σ-bond. One of the electron
pairs in the double C=C bond forms σ-bond, and the second bond is formed by p-electrons
with the clouds in the form of "eight", which overlapping, form a π-bond. Triple C≡C bond
is a combination of one σ-bond and two π-bonds [22]. The lengths of single bonds are
shown in proportion to ones which are characteristic for these bonds in a tetrahedral orien‐
tation, although they can have various values in the ion implanted layer. And in the case of
double and triple bonds they may be either higher or lower than the values given. The
length of a single bond of the same type of atoms was taken equal to twice the covalent radi‐
us of atoms, and the length of the Si–C-bond was taken as half the sum of double the values
of covalent radii of Si- and C without correction for their ionicity. The lengths of double and
triple bonds were taken at 0.021 and 0.034 nm shorter than a single bond, respectively. Tri‐
ple bond between two atoms can be represented by two tetrahedra sharing a common face,
and for the double bond - by two tetrahedra sharing a common edge [44].

Figure 6. An area of the IR transmission peak for TO-phonons of SiC at perpendicular incidence of the radiation on the
sample surface (curves 1, 1') and at 73° from a normal (curves 2, 2') for spectra presented in Figs.2 (curves 1, 2 - sub‐
strate Si(100)) and 3 (curves 1', 2' - substrate Si(111)), versus an annealing temperature.
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Figure 7. The IR transmission amplitude values for TO-phonons of SiC (curves 1, 1', 2, 2') at 800 cm-1 and for LO-pho‐
nons of SiC (curves 3, 3') at perpendicular incidence of the radiation on the sample surface (curves 1, 1') and at 73°
from a normal (curves 2, 2', 3, 3') to surface for spectra presented in Figs.2 (curves 1, 2, 3 - substrate Si(100)) and 3
(curves 1', 2', 3' - substrate Si(111)), versus an annealing temperature.

Figure 8. Half-width of the TO-phonon peak of SiC at perpendicular incidence of IR radiation on sample surface for
spectra presented in Figs.2 (curve 1 − substrate Si(100)) and 3 (curve 1' − substrate Si(111)), versus an annealing tem‐
perature.
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Figure 9. Various types of bonds between silicon, carbon atoms or their combination.

In the process of implantation of carbon into silicon vast majority of the covalent bonds of the
substrate, starting with the amorphization threshold, are not covalent, because of violation of
bond lengths and angles between them. However, among the formed Si–C-bonds there are
tetrahedral bonds, the distances and angles between atoms of which correspond exactly to the
crystallites of silicon carbide. This is confirmed by the presence of absorption at 800 cm-1 and
by the results of the authors [26] who identified by electron diffraction the presence of sili‐
con carbide crystallites immediately after the implantation of carbon into silicon.

We believe that the ion-implanted layer consists mainly of various combinations of the nine
types of bonds, shown in Fig. 9. Moreover, it is possible the presence in the implanted layer
of the single elongated bonds, sesqui, free ("dangling") and hybridized bonds, as well as res‐
onances and other higher order interactions as well. By making these assumptions, we pro‐
ceed not only from the contour of the spectrum of infrared transmission, covering a wide
range of frequencies. We are basing also on the ability of carbon and silicon atoms to form
besides single bonds also double and triple bonds [29, 44, 64, 46]. In paper [27], an aggregate
of carbon atoms was named as a cluster. In this paper, as a cluster we have in mind all the
nine types of bonds and combinations thereof, from which are formed during annealing a
three-dimensional clusters and crystallites of Si and SiC.

Table 1 presents the values of the binding energy for all nine types of bonds, shown in Fig‐
ure 9. The sum of the energies of two and three single C–C bonds are equal to 688 and 1032
kJ mole-1, respectively, such that by 73 and 220 kJ mole-1 higher than energy values of the
C=C and C≡C bonds listed in Table 1. This suggests that the structures of the C=C and C≡C
bonds for one bond has less energy than the structures with a single C–C bonds.
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Types of bond Binding

energy,

kJ mole-1

Types of bond Binding

energy,

kJ∙mole-1

Types of bond Binding

energy,

kJ∙mole-1

Si–Si 187 Si–C 290 C–C 344

Si=Si <374 Si=C <580 C=C 615

Si≡Si <561 Si≡C <870 C≡C 812

Table 1. The values of binding energy for nine types of bond.

By analogy, reasonable to assume that clusters Si=Si, Si≡Si, Si=C, Si≡C per bond also has less
energy than clusters with single Si–Si and Si–C bonds. Consequently, the energy of double
and triple bonds Si=C, Si=Si, Si≡C and Si≡Si must be less than the sum of the energies of two
or three single Si–Si and Si–C bonds, as is shown in Table 1. It is evident that the most
strongly bonds are the carbon-carbon and then carbon-silicon and silicon-silicon clusters.

Let us consider the special features of the curves on Figs.6–8 basing on the assumptions pre‐
sented above.

The temperature range 20-600°C

It is known [65] that a typical recrystallization temperature of amorphous silicon lies in the
temperature range 500–600°C. When the dose of the implanted carbon ions is much higher
than the amorphization threshold and, the implanted atoms combining with the silicon
atoms can form the inclusions of new compounds of considerable volume, the crystalliza‐
tion of silicon, in the case of a Gaussian distribution profile of implanted atoms, starts at the
surface and the interface "disturbed layer – substrate" and goes in the direction to the maxi‐
mum of the carbon distribution with increasing annealing temperature. The silicon crystalli‐
tes are formed in regions where the concentration of silicon atoms exceeds the concentration
of carbon.

The values of concentration ratio NC/NSi (Fig.1) are small on the edges of distribution and, a
significant number of silicon atoms falls at each implanted carbon atom. In this temperature
range, such combinations of clusters in ion-implanted layer are decaying which consist
mainly of bonds of Si−Si, Si=Si and elongated Si−C, as they have the lowest energy dissocia‐
tion among the types of bonds listed above. As decay of the clusters, we mean such regroup‐
ing of the atoms in system and the change the lengths of chemical bonds and angles
between them, which lead to the most energetically favorable state of system. In such state
there is a system of atoms with tetrahedrally oriented bonds, which are the most stable and
durable. All other types of bonds and their geometrical arrangements are energy unprofita‐
ble; they are insufficiently stable and can decay during annealing.

As it is seen from curves 1 and 1’ in the Figs. 6 and 7, the increasing of both an area of SiC-
peak of IR transmission and its amplitude at 800 cm-1 takes place over the temperature range
20−600°C, i.e. the formation of SiC crystallites takes place at temperatures significantly less
that it is necessary for the SiC formation by a thermal growth. The mechanism of this phe‐
nomenon is of interest.
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In the system "implanted layer − substrate", the phonons are generated in the process of an‐
nealing. This system is a single entity and, it is reasonable to assume that between the im‐
planted layer and the substrate there is a continuous interaction of phonons. Since the
thickness of the substrate is much greater than the thickness of the implanted layer, then,
with respect to the layer, the substrate can act as a huge reservoir of phonons, which able,
due to its heat capacity, receive or deliver the phonons to the implanted layer. As the im‐
planted layer is thermodynamically nonequilibrium system, the process of interaction of
phonons with the atoms will go towards reducing the free energy of the system. During
each collision of a phonon with cluster of the implanted layer, the phonon absorption will
occur if the energy of the system will decrease.

Energy released during the decay of clusters, is transferred to the lattice, which can accumu‐
late and transfer it to another cluster, followed by the formation of energetically favorable
system, in this case, the crystallites of Si and SiC. It is also possible direct transfer of energy
of the decaying Si−Si-cluster to other types of clusters. In this temperature range, mainly,
weakly bound Si−Si-clusters can decay during the interaction with phonons. More energy
requires for the formation of crystallites of Si and SiC. This energy is transfered to the react‐
ing atoms by the lattice. The considered above mechanism of formation of crystallites of Si
and SiC, the so-called over-barrier mechanism, when the interacting atoms overcome the en‐
ergy barrier of height E ≅  En, is shown in Fig.10. This mechanism of formation of tetrahe‐
drally oriented bonds Si−Si and Si−C from an energy point of view is advantageous for the
crystal lattice, since it thereby reduces its free energy.

All possible mechanisms of the tetrahedral oriented Si−Si- and Si−C-bonds formation should
be energy profitable for the crystalline lattice to decrease free energy of system. The forma‐
tion of crystallites of Si and SiC in the range 20−600°C occurs mainly due to the decay of
clusters such as the longest Si−Si- and Si−C-bonds, but also partly due to the disintegration
of other types of clusters. A number of studies have shown [5, 26], that immediately after the
implantation, the presence of a minute quantity of SiC crystallites with hexagonal structure
is observed in the ion implanted layer and, they are transformed into β-SiC at the tempera‐
ture of 400°C and higher. It is impossible to identify the presence of Si crystallites due to
their optical inactivity in this range of the infrared absorption. However, their presence is
not in doubt, as much less energy is required to expend for their formation than for the for‐
mation of SiC crystallites at the implementation of over-barrier mechanism. As we showed
earlier, in layers SiC0.03 with a low carbon concentration the crystallites of Si increase their
sizes from 2 to 3 nm in the range 20−700°C (Fig.11).
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Figure 10. Illustration of the over-barrier mechanism of the formation of the tetrahedral oriented bonds

Figure 11. X-ray diffraction patterns of the SiC0.12 layer after implantation (a) and average sizes of crystallites in the (111)
plane after implantation and annealing (b): 1 − Si (for layer SiC0.03), 2 − Si (for layer SiC0.12), 3 − SiC (for layer SiC0.12).

Peak area immediately after implantation is not zero, i. e. a part of the carbon atoms is included
into composition of the optically active clusters (Fig.6). If we assume that, after annealing at
1000-1250°C almost all carbon atoms are optically active and optically inactive clusters broke
up, we see that immediately after the implantation of carbon into the (100) and (111) orient‐
ed silicon at least 65% and 60% of carbon atoms were concentrated in optically inactive clusters,
respectively, if the implantation was carried out by a dose sufficient to obtain the stoichiomet‐
ric concentration (E = 40 keV, D = 3.56×1017 cm-2). A number of carbon atoms is included into
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stable types of optically inactive clusters which stable up to melting point of silicon. It is known
[44], that the optically inactive objects consist of the clusters and their chains that lie in one
plane. The formation of clusters and chains of planar systems of nets may be due to energy
considerations. For example, in [5] the formation of alternating layers of single crystal sili‐
con with amorphous silicon precipitates enriched with carbon in the ion-implanted layer,
attributed to the fact that the system in such a way reduces its free energy.

Spatial pattern of ion-implanted layer is difficult to model, since a Gaussian distribution
profile of implanted atoms is characterized by the change by depth of the concentration of
carbon atoms NC/NSi and, thus, the mechanism of physical processes from one layer to layer
is changed. We can construct a flat infrared inactive net in the middle of layer where NC/NSi

= 1. Flat optical inactive net consisting of C and Si atoms, linked by single, double and triple
bonds, may also contain free ("dangling") bonds of the silicon and carbon atoms. These
bonds may connect to atoms of the other flat net or on the association of the atoms which do
not lie in one plane. The atoms which do not lie in one plane, can form an association of op‐
tically active clusters.

With increasing annealing temperature at first the decay of elongated single bonds at two
atoms united by a triple bond, is taken place. These pairs of atoms inhibit the diffusion of
atoms in the layer. Then, the energetically unfavorable single bonds of atoms are disintegrat‐
ed in the planar nets of clusters. The subsequent increase in annealing temperature would lead
to the disintegration of the planar nets forming a number free carbon and silicon atoms, as
well as pairs of Si and C atoms, linked together by multiple bonds. Free carbon and silicon
atoms can move on short distances and join to form the crystallite Si or SiC, which is profita‐
ble from an energy point of view and, as a result, the energy of system is decreased.

In addition to the planar nets of clusters, the ion-implanted layer may contain long chains of
clusters, which are also optically inactive. The chains can be formed by alternating different
types of bonds, and their degradation temperature may be different. There are also local
clusters non-interacting with the surrounding atoms and consisting of three-, four- and
more atoms linked together by double bonds. They are most stable clusters due to the full
richness of their bonds. Perhaps these clusters are not disintegrated up to the melting point
of layer.

In Fig.12 the IR transmission amplitude versus the annealing temperature for different fre‐
quencies is shown. It is evident that clusters absorbing at frequencies of 850 and 900 cm-1, in
the range 20–600°C did not disintegrated, as their amplitude remains unchanged. The posi‐
tion of minimum of IR transmission peak does not change and is located at 757 cm-1 (Fig.4).
This indicates the dominant role of one type of clusters, which absorb at 757 cm-1. The in‐
crease of the amplitude of the peak (Fig. 12, curve 3) indicates an increase in the concentra‐
tion of these clusters with increasing annealing temperature. At the same time the
concentration of clusters, which absorb at 700 cm-1 and correspond to the elongated single
bond, is simultaneously increased. The energy of both the formation and decay of these
bonds is a least one (E = hν), as they absorb the radiation of lowest frequencies among con‐
sidered. It follows from Fig.7 (curve 1) and 12 (curve 1), that the bonds being very similar to
tetrahedral bonds of SiC which absorbs at 800 cm-1, are formed in the implanted layer. That

Physics and Technology of Silicon Carbide Devices66



follows also from decrease of peak halfwidth (Fig.8) in temperature range 20–400°C. Its in‐
crease in range 400–600°C may be associated with intensive restructuring of Si–Si bonds of
amorphous silicon before recrystallization at the surface and near the substrate, where the
concentration of carbon is low. The increase in peak area of the TO-phonon SiC in this range
(Fig. 6, curves 1, 1 ') is caused by an increase in the number of tetrahedral bonds and close to
them, which absorbs in the range 750-850 cm-1 (Fig.12, curves 1, 3, 5).

No significant differences between the properties of the films on the substrate orientation (100)
and (111) in this temperature range were observed, except for the fact that the area of SiC-
peak and amplitude at 800 cm-1 are slightly higher for the orientation (111), which indicates a
higher number of tetrahedral bonds of SiC and a smaller number of optically inactive clusters.

Figure 12. Amplitude of IR transmission for various wavenumber values versus an annealing temperature. (1 - □) 700
cm-1, (2 - ∆) 750 cm-1, (3 - ○) 800 cm-1, (4 - ▲) 850 cm-1, and (5 - ■) 900 cm-1.

The temperature range 600-800°C

The area under IR spectrum curve is decreased in this temperature range (Fig.6) due to the
decay of the optical active clusters absorbing at the frequencies close to 700 and 750 cm-1

(Fig.12). As shown in previous studies (Fig. 13d, e), this is due to the decay of elongated Si
−C-bonds in the layers with a low concentration of carbon. An intensive process of disinte‐
gration of these bonds occurs in layers SiC0.4 and SiC0.12 between the surface and the maxi‐
mum of the carbon distribution. In addition of the decay of the optical active non-
tetrahedral Si−C-bonds, seemingly, deformed Si-Si bonds are disintegrated, too.

The intensive rearrangement of clusters is characterized for this temperature range. As a re‐
sult of multiple collisions the atoms of clusters, successively passing from the initial-
through the intermediate states to the most energy favorable end position, form the
tetrahedrally oriented bonds of Si- and SiC crystallites. A significant change of halfwidth of
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the Si−C-peak of IR spectrum begins for film on (100) oriented substrate (Fig.8). In case of
(111) oriented silicon substrate the same is taken place some later. A certain increase of the
concentration of clusters absorbing on the wavenumbers ranged from 850 to 900 cm-1 (Fig.
12, curves 4, 5) is simultaneously taken place. The ordering of layer structure in region near
the substrate is taken place, too.

Figure 13. Effect of the annealing temperature on the IR transmission amplitude at wavenumbers of (1-□) 700 cm-1,
(2-∆) 750 cm-1, (3-○) 800 cm-1, (4-▲) 850 cm-1, and (5-■) 900 cm-1 under normal incidence of IR radiation on the sam‐
ple surface: a) SiC1.4; b) SiC0.95; c) SiC0.7, d) SiC0.4, e) SiC0.12; f) SiC0.03.

The temperature range 800-1000°C

Accordingly to Figs. 6-8 and 12 almost whole ion implanted layer takes place in the process
of crystallization of Si and SiC in this temperature range. The probability of over-barrier
mechanism of the formation of Si- and SiC crystallites, seemingly, is increased as is seen
from the significant increase of the IR transmission amplitude at 800 cm-1 (Fig.7, curves 1, 1’).
The flat net of clusters and the chains of them in a great extent are disintegrated. The inten‐
sive decay of the infrared active non-tetrahedral Si–C-bonds is taken place and, the sesquial‐
teral- and, partially, the double silicon-silicon bonds simultaneously with the infrared
inactive single bonds can disintegrated as well. Seemingly, the energy of the phonons may
be sufficient for the disintegration of the infrared inactive C–Si-, C–C- and even C=Si-bonds.
Simultaneously, the formation of the most energy favorable tetrahedrally oriented bonds of
Si- and SiC-crystallites is taken place (Figs. 6, 7, curves 1, 1’; Fig.12, curve 3). The continious
process of the formation of the infrared active clusters absorbing on the frequencies close to
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700−800 cm-1 is taken place in the layer and, the concentration of these clusters with the in‐
creasing of the annealing temperature is increased. The absorption at 800 cm-1 begins signifi‐
cantly predominate over the ones at another frequencies. That leads to the significant
increase of the IR transmission amplitude at this frequency in comparison with the increase
of amplitude at another ones (Fig.12, curve 3) and, that is perceived as a frequency shift of
the IR absorption maximum (Fig.4). The increase of concentration of clusters absorbing on
frequencies higher than 800 cm-1 is observed, too (Fig. 12, curves 4, 5).

So, the increase of the area under the IR transmission curve in the temperature range
800-1000°C is caused, mainly, by the absorption at frequency of 800 cm-1, i.e. by bonds char‐
acteristic to the SiC-crystallites and, by bonds absorbing on frequencies both more and less
than 800 cm-1 as well. In the case of the (100) oriented substrate the number of tetrahedral Si
−C-bonds reached at 1000°C some maximum and does not change up to 1200°C, whereas in
the case of orientation (111) it increases going smoothly in the range 900-1300°C. Compari‐
son with the data in Fig.13 shows that such flat areas of curves at these temperatures are
typical for the layers SiC0.7, and especially for SiC0.4. The total dose of implanted ions of car‐
bon in the case of SiC0.7 was D(SiC0.7) = 4.54×1017 cm-2, and D(SiC0.4) = 2.72×1017 cm-2, and is
comparable to the dose of carbon ions with an energy of 40 keV for the considered Gaussian
distribution of carbon: D (40 keV) = 3.56×1017 cm-2. The halfwidth of IR-spectrum maximum
(Fig.8) in the range 800-1000°C is rapidly decreased. That is an evidence of a significant or‐
dering of the ion implanted layer structure caused by the formation of Si- and SiC-crystalli‐
tes. It goes more intensively in case of (100) orientation of substrate.

The temperature range 1000-1100°C

In spite of the fact that the formation of new SiC crystallites in the implanted layer at these
temperatures is not taken place (Fig.7, curve 1, 1’; Fig.12 and 16, curves 3), the decrease of
area of SiC-peak of IR transmission curve is significant (Fig.6, curves 1, 1’). As it was shown
earlier (Fig.11), the dimensions of Si- and SiC-crystallites are enlarged with the increase of
the annealing temperature. Thereby, we believe that in this temperature range the uniting of
small crystallites of Si and SiC in the larger ones is taken place, resulting the frequency shift
of LO-phonon peak in IR spectrum to a higher frequency (Fig. 4), as well as the growth of its
amplitude (Fig. 7, curve 3). When combining the crystallites, in the area of their union the
decay of the both optically active and inactive clusters is taken place. This explains the de‐
crease in the amplitude of the infrared transmittance for clusters absorbing at frequencies of
800-900 cm-1 (Fig. 12) and the corresponding decrease in the area (Fig. 6). Apparently, this
temperature is insufficient for the decay of clusters C=Si and C=C and, as a result the forma‐
tion of new SiC crystallites is not observed. However, a volume of polycrystalline Si is con‐
tinuously increased due to the disintegration of Si-Si, Si=Si bonds in regions with low
concentration of carbon (Fig.1, regions I and II).

In the case of the substrate orientation Si(111), the SiC-peak area is reduced to a lesser ex‐
tent, and is larger after annealing at 1100°C than the peak area for the substrate Si(100) due
to the fact that the number of tetrahedral bonds and crystallites continues to grow.

The temperature range 1100-1200°C
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Both the area of Si–C-peak (Fig. 6) and its half-width (Fig. 8) increase in this temperature
interval, while the volume of the polycrystalline SiC is unchanged (Fig. 12, curve 3 and Fig.
7, curve 1), as the further growth of SiC crystallite size due to their association (Fig. 4, curves
of LO-phonons) is taken place. The growth of the area and half-width of Si–C-peak are
caused by the formation of new optically active clusters absorbing at frequencies of 750-900
cm-1 (Fig. 12) due to the decay of stable clusters. As a result, the ion-implanted layer de‐
grades the structure (increase in half-width of the peak).

The temperature range 1200-1250°C

No significant changes in the formation of new infrared active clusters over this range are
taken place. The decaying clusters with short Si−C-bonds, absorbing at frequencies of
800−900 cm-1 (Fig. 12, curves 1-3) are converted into clusters with long bonds, absorbing at
700 and 800 cm-1 (Fig. 12, curves 4 and 5). Therefore, the area of Si−C-peak is not changed
(Fig.6) for both orientations of substrate (100) and (111). The annealing temperature 1250°C
may be sufficient for the decay of sesqui- and double Si−C-bonds. As a result, the concentra‐
tion of tetrahedrally oriented Si−C-bonds increases, the atoms are combined into crystallites
of SiC, and the amplitude of the IR spectrum at 800 cm-1 increases (Fig. 12, curve 3). There is
a further streamlining of the structure of the ion-implanted layer (Fig. 8), both due to the for‐
mation of new crystallites of SiC, as well as due to an increase in their size (Fig. 4, curve of
LO-phonons).

The temperature range 1250-1300°C

Seemengly, there may be competing processes here. Firstly, in the case of the substrate
Si(100) in this interval there is a decay of a large number of tetrahedral bonds (Fig. 7, curve
1), which is the main reason for reducing the area of SiC-peak at 1300°C (Fig. 6, curve 1). At
the same time the amplitude of the LO-phonon is decreased (Fig. 7, curve 3) and the half-
width of the peak is increased (Fig. 8, curve 1), indicating a deterioration of the structure. In
contrast, in the case of the substrate Si(111) the peak area (Fig. 6, curve 1') and the amplitude
at 800 cm-1 (Fig. 7, curve 1') are increased, and this is accompanied by a decrease in the half-
width of the TO-phonon peak and an increase in amplitude of the LO-phonon peak (Fig. 7,
curve 3'), i.e. by the improving of the layer structure. We assume that there may be two
dominant mechanism of the influence of substrate orientation on the layer structure at high
temperatures. During the recrystallization of the damaged layer in the interface "the SiC film
– Si substrate", both a destruction of the silicon crystallites and the uniting of their atoms
with the substrate are taken place. The difference of the recrystallization of the substrate
Si(100) may be the appearance of forces and conditions for the destruction of the defective
crystallites of silicon carbide. This leads to a decrease in amplitude at 800 cm-1 and increase
the half-width of the peak due to the appearance of non-tetrahedral Si−C-bonds. The second
mechanism may be associated with different concentrations of carbon near the surface of sil‐
icon. After implantation into (100) oriented Si substrate, the carbon-riched surface layer is
much thicker than in case of Si(111) substrate, so the sublimation and desorption of carbon
at high temperatures will lead to a significant decrease in the amplitude values of the SiC-
peak at all frequencies. Ie, the experiments to study an influence of substrate orientation on
the desorption of implanted carbon are necessary.
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The temperature range 1300-1350°C

Despite the increase in the desorption of carbon, the area of SiC-peak (Fig. 6), as well as the
amplitude at all frequencies of spectra are increased in case of the film on the substrate Si(100)
(Fig. 12, curves 1-5). The atoms of clusters, which formed due to the destruction of defective
crystallites of SiC in the previous temperature range, re-unite again in form of the crystalli‐
tes of SiC, as well as in form of optically active clusters, which absorb at frequencies near 800
cm-1. In addition, stable clusters with Si=C, Si≡C and C=C bonds are disintegrated (Fig. 9).
Growth of SiC crystallite size leads to a frequency shift of LO-phonons peak in the short-
wavelength region (Fig. 4). Since in an isolated system unacceptable the processes occurring
with increasing free energy, the uniting of two crystallites occurs, if is accompanied by a gain
in energy in comparison with the energy expended in their decay. In the case of the orienta‐
tion of the substrate Si(111) a decrease of the area of SiC-peak (Fig. 6, curve 1'), as well as the
amplitude at 800 cm-1 (Fig. 7, curve 1') occur due to increased desorption of carbon.

The temperature range 1350-1400°C

Although at these temperatures the decay of optically inactive clusters, formation of both
new crystallites and optically active SiC-clusters should be the greatest, nevertheless the
growth of area and the amplitude of the SiC-peak of IR spectrum is not observed. On the
contrary, they decrease (Fig. 6 and 7), which can be explained to the dominant influence of
sublimation and desorption of carbon. The volume of polycrystalline SiC is also reduced,
which is accompanied by a decrease in the amplitude of LO-phonons (Fig. 7, curve 3). A fur‐
ther ordering of the structure of ion-implanted layer occurs, as evidenced by the decrease in
the peak half-width of IR spectrum.

In conclusion, it is necessary to note that the quantity of absorbing Si−C-bonds in the silicon
layer with Gaussian distribution of implanted carbon reaches a maximum at 1000°C for
(100) oriented substrate and, at 1000 and 1250°C for (111) oriented substrate (Fig. 6). Most of
the carbon atoms combine with atoms of silicon, forming the tetrahedrally oriented bonds of
SiC (Fig. 12, curve 3). Seemingly, there are flat nets and chains of clusters (Fig. 9), which con‐
sist mainly of bonds Si–Si, Si = Si, C–Si, C–C and, this temperature is sufficient for their de‐
cay. Some significant part of the carbon atoms form bonds of higher order, which decay at
temperatures of 1200-1400°C and above. At high temperatures, 1300-1400°C (Figs. 6 and 7)
occur intense desorption processes of carbon.

A shape of IR transmission peak

All presented spectra (Fig.2) have shape different from simply dispersive spectrum (theoret‐
ically calculated). The transmission band both left and right from the transmission peak are
perceptible asymmetric and, one can not describe it's shape by a simple analytical function.
The shape asymmetry is decreased with the annealing temperature increasing and, it is min‐
imal in the temperature range 1300–1350°C. The further increase of the annealing tempera‐
ture leads to the increase of asymmetry, too. The contour of the transmission peak for TO-
phonons at perpendicular incidence of electromagnetic radiation on sample surface after
annealing at 1350°C is most close to the dispersive one.
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Obviously, the asymmetry of IR transmission contour is related with the presence of the in‐
frared active clusters in the ion implanted layer, and the concentration of clusters is minimal
when the asymmetry is minimal, i.e. at 1350°C. In this relation, a largest area of SiC-peak
corresponds to maximum amplitude of absorption at wavenumber 800 cm-1 (Figs.7 and 8).
As is seen from amplitude values in Fig.12 (curves 1, 2, 4, 5), there is a certain quantity of the
non-tetrahedral optical active clusters at 1350°C. Seemingly, a presence of very stable optical
inactive clusters, which are not disintegrated even at the melting point of Si, is possible.

Measurement of a conduction type of carbon implanted silicon layer

The (100) oriented substrates of n- and p-Si of dimensions 7×5×0.3 mm3 with resistivities 4−5
Ом см have been implanted by carbon ions with values of energy 40 keV and dose 3.56×1017

cm-2 to determine a type of conduction. After implantation, the samples have been isochro‐
nously annealed in vacuum over the temperature range from 200 up to 1200°C with step
200°C for 30 min. A surface layer of the annealed samples have been removed by etching in
an acid mixture HF:HNO3 in composition of 1:10. A type of conduction of the implanted
surface has been determined using thermo-emf after each 0.5 mm along both horisontal and
vertical directions. The thermo-emf have fixed with approximately equiprobability the both
n- and p-type of conduction on n-Si substrates, while on the p-Si substrates the thermo-emf
have shown the p-type of conduction only. We believe that p-type of conduction on the n-Si
substrates is provided by the SiC crystallites. The conduction of the Si crystallites is similar
to the conduction of the substrate. If the substrate is p-Si, so the both Si- and SiC-crystallites
have the p-type of conduction. So, the synthesized SiC-crystallites have p-type of conduc‐
tion independently from the type of substrate.

3.2. Investigation of high-temperature instability of solid SiC films synthesized by ion
implantation

As stated in paragraph 2, for construction of a rectangular profile of the distribution of car‐
bon atoms in the silicon, the implantation of carbon ions of different energies and doses in
the second group of single-crystal silicon wafers of n- and p-type conductivity was carried
out sequentially in the order according to Table 2. The doses of ions were chosen in such a
way to obtain a layer SiC0.7 with the ratio of the concentrations of carbon and silicon atoms
through a depth of about NC/NSi = 0.7. Postimplantation annealing of the samples was per‐
formed in a vacuum in the temperature range 200-1200°C for 30 min with a step 200°C. In
some cases, to compare also were analyzed the samples with films SiC0.95.

E, keV 40 20 10 5 3

D(SiC0.7), 1017 cm-2 2.80 0.96 0.495 0.165 0.115

D(SiC0.95), 1017 cm-2 4.48 1.54 0.792 0.264 0.184

NC(Gibbons) profile [21]
Rp(E), nm 93.0 47.0 24.0 12.3 7.5

ΔRp(E), nm 34.0 21.0 13.0 7.0 4.3

Table 2. Values of energy, E, dose, D, projected range, Rp(E), and straggling, ΔRp(E), for 12C+ ions in Si, used for
constructing a rectangular distribution profiles SiC0.7 and SiC0.95.
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3.2.1 Influences of annealing, sputtering and the film composition changes during high
dose implantation on the thickness and shape of the distribution profile of carbon atoms

Fig. 14 shows the calculated profile NC(Gibbons) of distribution of carbon atoms through the
depth of silicon for the energies and doses of ions according to Table 2, which is the sum of
Gaussian distributions constructed with the use of Rp(E) and ∆Rp(E) by [21] (LSS) in accord‐
ance with the expression:

N (x)=
D

ΔRp(2π)1/2 exp −
(x −Rp)2

2ΔRp2 (5)

where x – the distance from the surface.

Figure 14. distribution profiles in Si produced by ion implantation (see Table 2). (a) SiC0.7; (b) SiC0.95; NC(Gibbons) is the
profiles calculated according to [21], where NC(Gibbons) = NC(40 keV) + NC(20 keV) + NC(10 keV) + NC(5 keV) + NC(3
keV). NC(20°C), NC(1250°C) and NO(1250°C) are the Auger profiles of carbon and oxygen, respectively, in a layer after
high-dose implantation and annealing at 1250°C for 30 min.

Fig. 14 also shows the experimental curves (Fig. 14, curves NC(20°C), NC(1250°C) and
NO(1250°C)), obtained by Auger electron spectroscopy, showing the ratio of the concentra‐
tions of carbon and oxygen atoms to silicon (NC/NSi и NO/NSi) through the depth of the sam‐
ple after implantation (20°C) and annealing at 1250°C for 30 min in an argon atmosphere
containing some oxygen. These distributions are constructed through a depth, taking into
account the condition that the number of carbon atoms in silicon and, consequently, the inte‐
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grals and the area under the curves NC(Gibbons) and NC(20°C) must be equal one another at

a first approximation. The areas under the curves were equal to SG = S20°C = ∫(NC / NSi)dx = 90

units (or 100%), and after annealing at 1250°C: S1250°C = 71 units (or 79.4%) due to the forma‐
tion of silicon oxide layer. When evaluating the number of carbon atoms in a thin surface
region (8 nm), where NC/NSi is very great due to the low content of silicon atoms (NSi<<
5×1022 cm-3), an approximation was made that the NC/NSi does not exceed 2.3 (Ngraphite =
11.6×1022 cm-3 and Nsilicon = 5×1022 cm-3). At the same time, the area under the profile curve for
the region x> 22.2 nm were estimated SG = 78 units, S20°C = 66 units and S1250°C = 65 units. That
is, the areas under the profile curves before and after annealing for x > 22.2 nm are almost
equal, but less than calculated value, since part of the carbon atoms after implantation was
concentrated near the surface (x <8 nm), and during annealing occur desorption of carbon
from the layer (x<22.2 nm) and the formation of silicon oxide. The interface "the SiC film - Si
substrate" in the experiment was more abrupt than it was expected. After annealing for 30
minutes, almost 20% of the total number of carbon atoms desorbed from the carbon-rich sur‐
face layer of the film. Fig. 14 shows that the average concentration of carbon and oxygen
were: NC/NSi = 0.7 in the depth 22.2 < x < 110 nm and the NO/NSi ≈ 3.0 at the surface layer x <
22.2 nm. In this case there is penetration of oxygen atoms into the layer up to 30 nm.

Some difference between the shape of the experimental and calculated curves of the profile
is observed (Fig. 14). The distribution NC(Gibbons) was made without taking into account
the effects of sputtering and composition changes in the layer by high dose implantation.
Accounting for the effect of surface sputtering during high dose of implantation of carbon
ions (E = 40 keV, D = 2.8×1017 cm-2) allows to assume the displacement of profile further into
the layer with increasing dose, to some expansion of the profile and, consequently, to reduce
the carbon concentration at the peak of the distribution in comparison with the calculated
value. However, changing the composition of the single-crystal silicon substrate up to a mix‐
ture of C and Si atoms during the implantation suggests the formation of a significant
amount of double and tripple Si–C- and C–C-bonds, which are more strong than the Si–Si-
bonds, as well as the formation of stable carbon and carbon-silicon clusters. This results a
decrease of Rp(E) and ∆Rp(E) during implantation.

The decrease of Rp(E) decreases the influence of surface sputtering on the position of the dis‐
tribution maximum of carbon atoms, i.e., the maximum should remain nearly on the same
depth. Moreover, the decrease of ΔRp(E) will increase the carbon concentration at the maxi‐
mum of peak and a more sharp decrease in concentration in the direction to the substrate
and to the surface. This will cause a decrease in the depth of the interface "film SiC – the
substrate Si», which becomes more sharp with increasing dose, as well as an occurrence of
depression between peaks 40 and 20 keV, and possibly between 20 and 10 keV. The appear‐
ance of depression between peaks 40 and 20 keV in Fig. 14 for layers SiC0.7 and SiC0.95 may be
due to these reasons.

The surface sputtering during the implantation of carbon ions with energies of 10, 5 and 3
keV is more intense with decreasing ion energy. This should lead to an increase in carbon
concentration near the surface due to shift of the distribution maxima of these ions one to
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another (NC(3 keV) and NC(5 keV) in the direction of NC(10 keV)). As a result, significant in‐
crease in the concentration of carbon in the surface layer is observed.

It is seen in Fig.14b that the average concentration of carbon and oxygen were: NC/NSi = 0.95
in the depth of the layer from 20 to 110 nm and the NO/NSi ≈ 2.33 at the surface layer up to a
depth of about 20 nm. At the same time observed the penetration of oxygen up to 80 nm to

the depth. It was found for a layer SiC0.95 that SG = S20°C = ∫(NC / NSi)dx = 144 units (or 100%),

and after annealing at 1250°C: S1250°C = 103 units (or 71.3%). Thus, it appears that after an‐
nealing for 30 minutes, almost 30% of the carbon atoms desorbed from the surface layer of
the film. At the same time the appearance of a layer of oxygen atoms at the surface is re‐
vealed. The area under the profile curve for the region x > 25 nm were estimated SG = 121
units, S20°C = 99 units and S1250°C = 95 units. i.e., the area under the curves of the profile before
and after annealing for region x > 25 nm are similar in magnitude, but again less than calcu‐
lated one, since part of the carbon atoms after implantation was concentrated near the sur‐
face (x < 19 nm), and after annealing, there was desorption of carbon from layer (x <25 nm)
and the formation of silicon oxide. The interface "the SiC film – Si substrate" in the experi‐
ment also was sharper than the expected one.

The presence of a sharp interface "the SiC film – Si substrate" permits to suppose that is pos‐
sible to obtain promising results on the measurement of film thickness by X-ray reflectome‐
try, although this method is typically used for films deposited with a very sharp interface "a
film - substrate" and for ion-implanted layers usually does not apply. The parameters of the
SiC0.7 film by this method were investigated at small grazing angles θ by recording the an‐
gular dependence of the reflection coefficient using two spectral lines CuKα (0.154 nm) and
CuKβ (0.139 nm) on the installation "ComplexXRay C6" [61]. The oscillations of intensity
were observed, assigned to the interference of X-ray reflections in the layers SiC0.7 and SiO2

(Fig. 15).

The first maximum of reflection with intensity I1 = 93207 pulses at an angle of 2θ = 0.418° is
observed (Fig. 15). The angle of total external reflection is evaluated as an angle where the
intensity is equal to a half of the first maximum (I = I1/2 = 46603 pulses), ie 2θс = 0.449°, or θс

= 0.2245° = 3.918 mrad. Using the Henke program is determined that this value of θс corre‐
sponds to the value of film density 2.37 g/cm3, which is close to the density of cristobalite
(SiO2) 2.32 g/cm3. Further, with increasing of the incidence angle, the intensity of reflection
increases again up to I2 = 76831 pulses and that indicates the presence of a more dense struc‐
ture. If the intensity falls up to the value I = I2/2 = 38415 pulses, the value 2θc = 0.486°, the
critical angle is equal to θc = 0.243° = 4.241 mrad, which corresponds to a density 2.77 g/cm3

and is close to the density of quartz (SiO2) 2.65 g/cm3. As shown in Fig. 15, then there is a
second increase in intensity up to I3 = 34416 pulse which corresponds to a denser structure.
If the intensity falls up to the value I = I3/2 = 17208 pulse, the value 2θc = 0.526°, and θc =
0.263° = 4.590 mrad. This corresponds to a density ρ = 3.25 g/cm3, which is close to the densi‐
ty of silicon carbide - 3.2 g/cm3.

The layer thickness is determined by the formula 2d sin θ = λ, or taking into account the small
values of θ: d = λ/2 θ nm, where λ - the wavelength of CuKα (0.154 nm) or CuKβ (0.139 nm)
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radiation, and 2θ  av was determined as an average from several (j - i) peaks (Table 3). To
determine the thickness, four narrow peak of SiC, and two broad bands of SiO2, probably from
two different phases - cristobalite and quartz (Fig. 15), were used. The second broad band
consists of 3 bands. The thickness of the resulting system (SiO2 − SiC0.7 − Si) was about 100 nm.

Figure 15. X-ray reflectometry using two spectral lines CuKα (0.154 nm) and CuKβ (0.139 nm) ("ComplexXRay C6") of
parameters of the SiC0.7 films, synthesized by multiple implantation of carbon ions with energies of 40, 20, 10, 5 and 3
keV into silicon, after annealing at 1250°C.

Layer (2θ)j (2θ)i j – i 2θ av =[(2θ)j−(2θ)i]/(j-i) λ d = λ/2θ, nm

SiC 1.138 0.598 4 0.135 0.15405 65.4

SiO2 3.154 2.012 3 0.38 0.15405 23.2

SiO2 2.012 1.178 1 0.83 0.15405 10.6

Table 3. Determination of the thickness of the layers in the system (SiO3 − SiC0.7 − Si) by X-ray reflectometry according
equation 2 d∙ sin θ = λ.

Similar measurements for the SiC0.95 layer also led to the observation of the intensity oscilla‐
tions of X-ray reflections. The first maximum of reflection with intensity I1 = 98703 pulses at
an angle of 2θ = 0.396° is observed (Fig. 16). The critical angle of total external reflection is
evaluated as an angle where I = I1/2 = 49352 pulses, but in this case in the position of a mini‐
mum I = 53961 pulse, i.e. 2θc = 0.458°, and θс = 0.229° = 3.979 mrad. This angle corresponds to
the film density 2.46 g/cm3, which is close to the density of optical glass 2.51 g/cm3. Further,
with increasing of incidence angle, the intensity of reflection is again increased up to I2 =
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57255 pulses, which indicates the occurrence of a more dense structure. If the intensity falls

up to the value I = I2/2 = 28627 pulses, the value 2θc = 0.510°, the critical angle is equal to θc =

0.255° = 4.451 mrad. This corresponds to a density 3.06 g/cm3, which is close to the density of

silicon carbide - 3.2 g/cm3.

Figure 16. X-ray reflectometry of parameters of the films SiC0.95, synthesized by multiple implantation of carbon ions
with energies of 40, 20, 10, 5 and 3 keV into silicon after annealing at 1150°C.

To determine the thickness of the layers, four narrow peaks of SiC, and two broad bands of

SiO2 (Fig. 16) were used.

Layer (2θ)j (2θ)i j – i 2θ av =[(2θ)j−(2θ)i]/(j-i) λ d = λ/2θ, nm

SiC 1.066 0.690 4 0.094 0.15405 93.9

SiO2 2.19 1.426 2 0.382 0.15405 23.1

Table 4. Determination of the thickness of the layers in the system (SiO2.33 − SiC0.95 − Si) by X-ray reflectometry.

The thickness of the system (SiO2.33 − SiC0.95 − Si) was 117 nm, which was comparable to the

estimated thickness of the film. SiO2 peaks are visible not clearly. Perhaps this is because the

annealing temperature was taken at 100°C lower (1150°C).
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3.2.2 The study of the high-temperature instability of solid SiC0.7 films synthesized by ion
implantation

In Fig. 17, the IR transmission spectra of the homogeneous SiC0.7 films, synthesized on sub‐
strates of Si(100) with resistivity 4−5 Ohm cm (a) and Si(111) with resistivity 10 Ohm cm (b),
subjected to isothermal annealing at the temperature 1200°C for several hours in an atmos‐
phere of inert gas (Ar), are presented. Comparing these two figures (a) and (b), one can see
that the nature of the SiC films formed on substrates with different crystallographic orienta‐
tions, are different. This difference manifests itself in the amplitudes and half-widths of the
peaks corresponding to the excitation of both transverse and longitudinal optical lattice os‐
cillations of SiC (TO- and LO-phonons).

Figure 17. The dependence of the IR transmission spectra of implanted by +C12 ions Si on the annealing time at the
temperature 1200°C: a) n-Si, the orientation of substrate Si(100), b) p-Si, the orientation of substrate Si(111).

After annealing at 1200°C for 30 min in the IR spectra an intense peak at 800 cm-1 which
associated with the TO phonons of SiC, as well as a peak at 960 cm-1 corresponding to the LO-
phonons of SiC, are observed. It is seen that in contrast to the spectra of film on (100) orient‐
ed Si substrate, the transmission spectra of oscillation modes of SiC of film on the (111) oriented
silicon substrate are more blurred and the level of the transmission spectra of the two modes
are superimposed on each other, and does not achieve the initial zero level in the wave number,
equal to 915 cm-1. This is caused by the half-width of these peaks (Fig. 17 and 18).

The narrowing of the peak (Fig. 18) up to 40 cm -1 occurs as a result of intensive formation of
the tetrahedrally oriented Si−C-bonds absorbing at 800 cm -1, as well as the decay of bonds
which absorb at frequencies different from the value of 800 cm-1.  Since the tetrahedral bond
corresponds to the crystalline phase of silicon carbide, the narrowing of the peak of the IR
spectrum with a minimum at 800 cm-1 is associated with the process of ordering of the im‐
planted layer. As is seen from Fig. 18, for the SiC0.7 layer the narrowing of the peak is more
intense with increasing time of isothermal annealing up to 6.5 hours in the case of the (111)
oriented substrate in comparison with (100) orientation. After annealing for 8.5 hours or
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more a further narrowing of the peak is slowing, indicating a complete processes of SiC lat‐
tice ordering. Thus, it was established that the annealing duration of the less than 6.5 hours
at 1200°C is insufficient to form the structure of silicon carbide.

As is seen from Figs. 17 and 19, the amplitude values of the peaks with increasing of anneal‐
ing time at 1200°C are reduced. This indicates a decrease in the total volume of silicon car‐
bide due to disintegration of SiC and desorption of carbon. Since the amplitude of the SiC-
peak of infrared transmission is proportional to the concentration of Si−C-bonds, the
measurements of its value were made in the spectra after isothermal annealing at the tem‐
perature of 1200°C (Fig. 19). For (100) oriented silicon substrate of n-type conductivity, the
amplitude of the TO- and LO-phonon peaks of the infrared transmission (Fig. 19, curves 2
and 4) after annealing for 0.5−6.5 hours were higher than the same for (111) oriented silicon,
and then the decay of SiC in this layer becomes more intense. However, as is seen from Figs.
17 and 19, after annealing for 11.5 and 13.5 hours the disintegration of silicon carbide is al‐
most finished for the SiC0.7 layer on the (111) substrate, while for the (100) orientation is ob‐
served after annealing during up to 15.5 hours.

Figure 18. Dependence of the half-width of the TO-phonons peak of SiC of IR spectra on the annealing time at the
temperature of 1200°C for SiC0.7 layers: 1 - Si(111) substrate, 2 - Si(100) substrate.

It should be also noted that the signal from the LO-phonons in the spectra of both types of
substrate disappears earlier (Fig. 19) than the signal from the TO-phonons, and in particular,
at (111) orientation of substrate. Thus, a gradual decrease in the amplitudes of the TO-and
LO-phonon peaks of SiC in the IR transmission spectra of ion-synthesized SiC films at the
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increasing time of high-temperature annealing indicates the decay of the SiC structure, i.e.
the instability of these films to such regime of treatment.

Figure 19. Amplitude of TO- and LO-phonon peaks of SiC of IR transmission versus the annealing time at the tempera‐
ture of 1200°C for SiC0.7 layers on silicon substrates of (100) and (111) orientation: 1 – Si(111), TO-phonon peak; 2 -
Si(100), TO-phonon peak; 3 - Si(111), LO-phonon peak; 4 - Si(100), LO-phonon peak.

Since the amplitude of the infrared transmission at the wavenumber 800 cm-1 is proportional
to the concentration of the tetrahedrally oriented Si–C-bonds, its magnitudes were meas‐
ured in the spectra after isothermal annealing at the temperature of 1200°C (Fig. 20, curve 3).
Assuming that the amplitude at any frequency is proportional to the number of the Si–C-
bonds which absorb at this frequency, the amplitudes for the TO-phonons with wavenum‐
bers 700, 750, 850 and 900 cm-1 (Fig. 20) in the case of incidence of IR radiation to the sample
surface at an angle of 73° to the normal were also measured.

It is seen in Fig. 20a, b (curves 3) that after annealing at 1200°C for 0.5 hour of the SiC0.7 film
on the Si (100) substrate, the amplitude at wavenumber 800 cm-1 is higher than the same for
the Si(111) substrate (70 and 58%), indicating a higher content of the tetrahedrally oriented
SiC-bonds. It is also seen that the number of SiC-bonds which are close to tetrahedral orienta‐
tion and absorb at 750 and 850 cm-1, in the case of the substrate Si (100) is lower after anneal‐
ing for 0.5 h (Fig. 20, curves 2 and 4) in comparison with the substrate Si(111) due to their more
intense transformation into the tetrahedral SiC-bonds. The nonlinear nature of the curve 3 in
the region 0.5 − 8.5 hours may be due to the formation of tetrahedrally oriented SiC-bonds in
the layer simultaneously with their decay at the surface. The saturation of this process after
annealing during 6.5 hours results in a faster decrease in the number of bonds during fur‐
ther annealing.
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Figure 20. The amplitude of the infrared transmittance at fixed wavenumbers versus the duration of isothermal anneal‐
ing of the SiC0.7 layer (angle of incidence of infrared rays on the sample is 73° from the normal): 1 – 700 cm-1, 2 – 750
cm-1, 3 – 800 cm-1, 4 – 850 cm-1, 5 – 900 cm-1; a) the substrate orientation Si (100), b) the substrate orientation Si (111).

This process is clearly demonstrated on the time dependence of the area of SiC-peak, which
is proportional to the total number of optically active Si–C-bonds (Fig. 21). Although the peak
amplitude at the minimum of IR transmission (Fig.19, curve 2) and at 800 cm-1 (Fig.20, curve
3) for the Si substrates with (100) orientation are higher than in the case of (111) orientation,
the value of area of SiC-peak for (111) was higher after annealing for 0.5 hours. This is due to
a greater half-

Figure 21. The area of the TO-phonon peak of SiC in spectra of the IR transmission versus the annealing time at the
temperature of 1200°C for the SiC0.7 layers (angle of incidence of infrared rays on the sample surface - 73° from the
normal): 1 - the orientation of the substrate Si(111), 2 – the orientation of the substrate Si(100).

width of the peak caused by a significant amount of optically active Si−C-bonds close to
tetrahedrally oriented, which absorb at 750 and 850 cm-1 and, probably due to the smaller
amount of stable carbon silicon clusters in the film on (111) oriented silicon substrate. It is not
contradict to the data for the SiC layer with Gaussian distribution of carbon in silicon, for
which was shown that immediately after the implantation of carbon into the (100) and (111)
oriented silicon at least 65% and 60% of carbon atoms are concentrated in optically inactive
clusters, respectively (see 3.1.2, Fig. 6 “The temperature range 20-600°C”). The strong carbon
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clusters prevent the crystallization of SiC, and they are less susceptible to oxidation and prevent
the penetration of oxygen into the SiC-layer. The SiC film on (100) substrate has more quanti‐
ty of stable clusters after implantation and, as a result the smaller value of area of SiC-peak
and smaller amount of optically active Si−C-bonds after annealing for 0.5 hours and, it less
susceptible to oxidation at 1200°C – 15.5 h (instead of 13.5 h for (111) Si substrate). The relatively
rapid decay of close to tetrahedral Si-C bonds (Fig. 20b, curves 2 and 4) led to the decrease
with higher speed of the number of optically active Si−C-bonds in the case of (111) orienta‐
tion of Si substrate.  In general the dependence of the reduction of optically active Si−C-
bonds on the annealing time is linear. This implies that the rapid decay of close to tetrahedral
Si−C-bonds was occurring, mainly, due to their transformation into a tetrahedral bond. The
linear dependence indicates the homogeneity of the layer, and a rectangular profile of the
distribution of carbon atoms in silicon, as well as the fact that the decay rate of silicon car‐
bide does not depend on the depth of the oxidation front. Some decrease in the slope of angle
of the curves at the end of the annealing is occurring due to oxidation of the interface "the SiC
film – Si substrate".

The value of the wave number of the minimum of SiC-peak of the infrared transmission (the
position of the minimum of peak) defines a prevailing kind of optically active bonds which
absorb at this wavenumber at this temperature. For the considered layers after annealing at
1200°C for 0.5 h, the transmission peaks with values of minimum at wavenumbers 803 and
806 cm-1, characteristic of crystalline silicon carbide, are observed (Fig. 22). It was found that
with increasing annealing time, the position of the peak minimum varies smoothly and moved
in the direction of the wave number increase (Fig. 17 and 22).

Figure 22. Wave number of the minimum of SiC-peak of IR transmission versus the annealing time at 1200°С for the
SiC0.7 layers on silicon substrates of (100) and (111) orientations: 1 - Si (111), TO-phonons, 2 - Si(100), TO-phonons, 3 -
Si(111), LO-phonons, 4 - Si(100), the LO-phonons.
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In our opinion, the frequency shifts of SiC-peak upward indicate a decrease in crystallite
size of SiC. We have previously identified size effects, which manifested in the influence of
the crystallite sizes of silicon carbide on its optical properties. It was shown (Fig.23) that the
differences of the SiC0.03, SiC0.12 and SiC0.4 layers with low carbon concentration from the
SiC1.4, SiC0.95 and SiC0.7 layers with high carbon concentration are manifested in the absence
of LO-phonon peak of SiC in the IR transmission spectra and in a shift at 1000°C of mini‐
mum SiC-peak for TO-phonons in the region of wave numbers higher than 800 cm-1, charac‐
teristic for the tetrahedral bonds of crystalline SiC, which is caused by small sizes of SiC
crystallites (≤ 3 nm) and by an increase of contribution in the IR absorption of their surfaces,
and the surfaces of Si crystallites containing strong short Si−C-bonds as well.

Figure 23. Wavenumber of the IR transmision peak for TO- and LO-phonons SiC as a function of the annealing tem‐
perature: 1 - SiC1.4, 2 - SiC0.95, 3 - SiC0.7, 4 - SiC0.4, 5 - SiC0.12, 6 - SiC0.03.

In this case (Fig. 22), the increase of annealing duration of SiC0,7 layer leads to both the shift
of the minimum of the IR transmission peak up to 820 cm-1, and the reduction of the ampli‐
tude of the LO-phonon peaks and their subsequent disappearance, although SiC0.7 is consid‐
ered as the layer with a high concentration of carbon. At the same time more intense process
of the shift of the minimum of SiC-peak occurs after annealing for longer than 8.5 hours,
which leads to the disappearance of the peak of LO-phonons. This can occur when the pene‐
tration of oxygen deep into the layers, their interaction with the carbon atoms on the surface
of the crystallites of silicon carbide with the formation of molecules of CO/CO2. Desorption
of carbon atoms causes a decrease in the size of the SiC crystallites and their disintegration.
With increasing duration of annealing, the homogeneous SiC0.7 layer entirely transforms into
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SiO2, and then goes the oxidation of the interface “SiC film – Si substrate”, in which the car‐
bon concentration decreases uniformly with depth according to a Gaussian law. Thus, the
concentration of carbon in the remaining layer begins to decrease. This leads to the appear‐
ance of phenomenon which is characteristic for the SiC0.4, SiC0.12, SiC0.03 layers, namely, to
shift of the minimum of the IR transmission peak up to 820 cm-1, and to a decrease of the
amplitude of the LO-phonon peak and their subsequent disappearance. Thus, size effects
are confirmed, published by us in 2011.

3.3. Parameters of SiC and C films on Si substrates synthesized by magnetron and ion-
beam sputtering

3.3.1. Parameters of C films on Si substrates synthesized by by magnetron sputtering

Carbon thin films were obtained by reactive magnetron sputtering using an ARC 2000 sys‐
tem. A graphite target with a diameter ~50 mm and a thickness of 3 mm was used. The mag‐
netron sputtering mode parameters were: cathode voltage Uc = 470 V, the ion beam current
Iion = 35 mA and the argon pressure inside the chamber ~1 Pa. The carbon films were depos‐
ited on a set of cleaned silicon substrates. The temperature of the substrate was 75°C.

The presence of a sharp interface "C film - Si substrate" permits to investigate the thickness
and density of the film by X-ray reflectometry (CompleXRay C6) by recording the angular
dependence of the reflection coefficient using two spectral lines CuKα (0.154 nm) and CuKβ

(0.139 nm). The oscillations of intensity were observed, assigned to the interference of X-ray
reflections from the boundaries of carbon layer (Fig. 24).

It is known that the density of graphite is 2.2 g/cm3 and the density of diamond - 3.51 g/cm3.
Since the density of the resulting film was 3.32 g/cm3 (Table 5 and Fig.24), we concluded that
the diamond-like carbon film was synthesized.

Layer Imax Imax/2 2θc θc, grade θc, rad ρ, g/cm3

C 962849 481425 0.529 0.2645 4.616 3.32

Table 5. Determination of the density of the carbon layer by X-ray reflectometry and using the Henke program.

To determine the thickness, five narrow peaks of C, and a broad band of C were used (Fig.
24, table 5).

Layer (2θ)j (2θ)i j – i 2θav =[(2θ)j−(2θ)i]/(j-i) λ, nm d = λ/2θ, nm

C 1.684 1.164 5 0.104 0.15405 84.9

C 2.732 2.080 1 0.652 0.15405 13.5

Table 6. Determination of the thickness of the layers in the system (C - C - Si) by X-ray reflectometry.
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Simulation using the Henke program (http://henke.lbl.gov/optical_constants/) [24] allows to
obtain a theoretical curve, which is close to the experimental (Fig.25). The main parameters
of the layer system, which allow to obtain an acceptable agreement of experimental and the‐
oretical curves, were:

1. the diamond-like carbon film of thickness d = 84 nm, density ρ = 3.3 g/cm3, and surface
roughness σ = 1.5 nm;

2. a thin graphite layer of thickness d = 5 nm with the density ρ = 2.206 g/cm3, and the
roughness of (C− C) interface σ = 0.13 nm;

3. the silicon substrate with density ρ = 2.33 g/cm3 and the roughness of interface (C−Si) σ = 0 nm.

Thus, diamond-like carbon film of thickness d = 84 nm, density ρ = 3.3 g/cm3, and surface
roughness of σ = 1.5 nm on a silicon surface by magnetron sputtering was synthesized.

Figure 24. X-ray reflectometry using two spectral lines CuKα (0.154 nm) and CuKβ (0.139 nm) (CompleXRay C6) of pa‐
rameters of carbon films synthesized by magnetron sputtering: a) sample A; b) sample B.

Figure 25. Simulation using the Henke program [24] of experimental results obtained by X-ray reflectometry of pa‐
rameters of carbon films synthesized by magnetron sputtering.
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3.3.2. Parameters of SiC films on Si substrates synthesized by by ion-beam sputtering

SiC films were prepared by ion-beam sputtering. For the simultaneous deposition on silicon
substrates of C and Si atoms, a two-component target consisting of the overlapping wafers of
silicon and graphite was used. Sputtering of the target was carried out in an argon atmos‐
phere. The formation of Ar ion beam was happening in the ring electrode system (a hollow
cathode and an anode), and magnets with crossed electrical and magnetic fields. Discharge
power was 108 W (2.7 kV, 40 mA), argon pressure in the chamber 5.9×10-2  Pa, substrate
temperature - 20°C. Samples with SiC films were annealed at 1250°C in an argon atmos‐
phere for 30 min.

The presence of a sharp interface "the SiC film - Si substrate" permits to investigate the thick‐
ness and density of the film by X-ray reflectometry ("ComplexXRay C6"). The oscillations of
intensity were observed, assigned to the interference of X-ray reflections from the bounda‐
ries of silicon carbide layer (Fig. 26). It is known that the density of graphite is 2.2 g/cm3, and
of silicon - 2.33 g/cm3, of silicon carbide - 3.2 g/cm3 and of diamond - 3.51 g/cm3. Since the
density of the obtained film was 3.03 g/cm3 (Table 6 and Fig.26), we concluded, that the film
close to silicon carbide, was synthesized. The film contains approximately [(3.03-2.33)/
(3.2-2.33)] × 100% = 80.5% SiC, and [(3.2-3.03)/(3.2-2.33)] × 100% = 19.5% Si, i.e., about 80
atoms of C refer per 100 atoms of Si and the SiC0.8 layer was formed.

Layer Imax Imax/2 2θc θc, grade θc, rad ρ, g/cm3

SiC 101255 50628 0.508 0.254 4.433 3.03

Table 7. Determination of the density of the SiC layer by X-ray reflectometry and using the Henke program.

To determine the film thickness the position of maxima of five narrow peaks of SiC was
used (Fig.26).

Layer (2θ)j (2θ)i j – i 2θav =[(2θ)j−(2θ)i]/(j-i) λ, nm d = λ/2θ, nm

SiC 1.230 1.034 4 0.0490 0.15405 180.1

Table 8. Determination of the thickness of the layer in the system (SiC – Si) by X-ray reflectometry.

Simulation using the Henke program (http://henke.lbl.gov/optical_constants/) [24] allows
obtaining a theoretical curve, which is close to the experimental (Fig.27). The main parame‐
ters of the layer system, which allow to obtain an acceptable agreement of experimental and
theoretical curves, were:

1. the silicon carbide film of thickness d = 160 nm, the density ρ = 3.03 g/cm3, and surface
roughness of σ = 0.4 nm;

2. the silicon substrate with density ρ = 2.33 g/cm3 and the roughness of interface (SiC-Si)
σ = 1.5 nm.
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Figure 26. X-ray reflectometry using two spectral lines CuKα (0.154 nm) and CuKβ (0.139 nm) (CompleXRay C6) param‐
eters of silicon carbide films synthesized by ion-beam sputtering of the two-component target of silicon and graphite.

The film thickness d = 160 nm is different from the values of 180 nm, obtained from the aver‐
age distance between the peaks 2θav. The reasons for the differences require further studies.

Thus, the silicon carbide film of thickness d = 160 nm, the density ρ = 3.03 g/cm3, and surface
roughness of σ = 0.4 nm on the silicon surface by ion-beam sputtering of the two-component
target of silicon and graphite was synthesized.

Figure 27. Simulation using the Henke program [24] of experimental results obtained by X-ray reflectometry of pa‐
rameters of SiC films synthesized by ion-beam sputtering of the two-component target of silicon and graphite.
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Conclusion

1. For silicon layer with the Gaussian profile of implanted carbon atoms, the peak of longi‐
tudinal optical oscillations (LO-phonons) of SiC at 965-970 cm-1 is found and, it permits
to calculate a number of optical parameters of film. The values of the low-frequency
dielectric constant, ε0, the effective charge, e*/e, and the dimensionless parameter, ρ, are
equal to 9.82, 0.89, and 0.25, respectively. The dependences of LO-phonon peak ampli‐
tude, halfwidth and peak position from both an angle of incidence of the electromagnet‐
ic radiation on sample surface and the annealing temperature are determined. The difference
between the LO-phonon curves behaviour indicates that the formation of SiC crystalli‐
tes, i.e. the intensive formation of tetrahedral Si−C-bonds of necessary length and bond
angles, in the case of (111) oriented substrate is not completed up to the silicon melting
point, as for (100) oriented substrate that is completed at 1350°C.

2. The temperature dependence of an area under contour of IR spectrum curve in wide
temperature range 200 − 1400°C was used to obtain valueable new information about the
structure transformation in the carbon implanted silicon layer. The high sensitivity of
temperature dependence of area to a change of substrate orientation was found.

3. A model of the ion implanted layer in the form of the system of the carbon-silicon clusters
consisting of the carbon- and silicon atoms linked one with another by single-, double-
and tripple bonds, and by single elongated-, sesqui, free ("dangling") and hybridized
bonds, as well as resonances, is discussed. The infrared inactive flat nets and chains tied
together by the infrared active clusters and, by tetrahedrally oriented bonds which are
characteristic for silicon and silicon carbide, are described. Immediately after the implan‐
tation of carbon into the (100) and (111) oriented silicon at least 65% and 60% of carbon
atoms are concentrated in these optically inactive clusters, respectively, if the implanta‐
tion was carried out by a dose to obtain the stoichiometric concentration (E = 40 keV, D =
3.56×1017 cm-2) of carbon and silicon. An over-barrier mechanism of the formation of Si
and SiC crystallites is supposed and it explained by tendency of an isolated system to a
minimum of free energy.

4. For carbon implanted silicon layer (E = 40 keV, D = 3.56×1017 cm-2) on (100) and (111)
substrate the crystallization process in several temperature ranges was studied. For (100)
oriented Si substrate it was shown:

• 20-600°C – the formation of tetrahedrally oriented Si−C-bonds due to disintegration of
clusters which consist mainly of the Si−Si, Si=Si and elongated Si−C-bonds;

• 600−800°C − the formation of Si crystallites and tetrahedrally oriented Si−C-bonds due
to disintegration of strained Si-Si bonds and Si−C-bonds, which absorb at frequencies
close to 700 and 750 cm-1, recrystallization starts near the substrate and the surface and
goes to the middle of layer;

• 800−1000°C – begins to dominate the absorption at 800 cm-1, and near it, due to forma‐
tion of tetrahedrally oriented bonds of the SiC crystallites, as well as bonds close to
tetrahedral;

• 1000−1100°C - the growth of the crystallite size through consolidation of small crystal‐
lites of Si and SiC; decay of Si−C-bonds absorbing at 850 and 900 cm-1;
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• 1100−1200°C − formation of new optically active clusters absorbing at frequencies of
750, 850 and 900 cm-1 due to the decay of optically inactive clusters;

• 1200−1250°C − the transformation of clusters absorbing at frequencies of 800-900 cm-1,
into clusters, which absorb at 700 and 800 cm-1, and the growth of SiC crystallite size;

• 1250−1300°C − intensive decay of the tetrahedral Si−C-bonds, caused by the desorp‐
tion of carbon and the destruction of small crystallites;

• 1300−1350°C − the decay of stable clusters with multiple bonds and the increase in the
number and size of crystallites of SiC, and Si−C-bonds, close to tetrahedral;

• 1350−1400°C − a significant decrease of amount of the polycrystalline SiC due to de‐
sorption of carbon atoms.

5. An influence of substrate orientation on β-SiC formation has been studied. It was shown
that the SiC-synthesis in the temperature range 900−1000°C is more preferable on (100)
oriented silicon substrates and at 1200−1300°C − on (111) oriented silicon substrates. In
the case of the (100) oriented substrate the number of tetrahedrally oriented Si−C-bonds
reached at 1000°C some maximum and does not change up to 1200°C, whereas in the case
of orientation (111) the number of bonds increases smoothly in the range 900−1300°C.

6. Using thermo-emf, it was determined a type of conduction of Si- and SiC-crystallites. The
SiC-crystallites have p-type of conduction independently from the type of conduction of
substrate, while the Si-crystallites have the same conduction as a substrate.

7. During the prolonged high-temperature isothermal annealing (1200°C) a gradual de‐
crease in the amplitude of the TO- and LO-phonon peaks of IR transmission, characteris‐
tic of ion-synthesized SiC, indicates the disintegration of the structure of homogeneous
SiC film, ie the instability of these films at these temperatures.

8. It is shown that the deformation of the rectangular Auger profile of C12 distribution in Si
in comparison with the calculated profile, namely the thinning of the interface "the SiC
film – Si substrate", and the increase of the carbon concentration at the surface and in
regions near the maxima of the distributions for individual carbon ion energy (40, 20 keV),
is caused by both the surface sputtering and the change in the composition of the sili‐
con layer during high dose implantation of carbon.

9. The presence of  a sharp interface "the SiC film – Si  substrate"  permits to study the
composition, the density and the thickness of the SiC0.7 and SiC0.95 films by X-ray reflec‐
tometry (CompleXRay C6) at small grazing angles θ by recording the angular depend‐
ence of the reflection coefficient using two spectral lines CuKα (0.154 nm) and CuKβ (0.139
nm), although this method for ion-implanted layers usually does not apply. Using the
Henke program for SiC0.7 film was determined a surface layer with density 2.37 g/cm3,
which is close to cristobalite (SiO2) 2.32 g/cm3. Further located the film with a density 2.77
g/cm3 and is close to quartz (SiO2) 2.65 g/cm3. A structure of thickness 65 nm and densi‐
ty ρ = 3.25 g/cm3, is close to the silicon carbide - 3.2 g/cm3. The study of SiC0.95 film show
the presence of surface layer with density 2.51 g/cm3 (optical glass) and the silicon car‐
bide layer of thickness 94 nm and density 3.06 g/cm3.
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10. It is shown that the decomposition of optically active Si−C-bonds is more intense in the
case of the (111) orientation of the silicon substrate. Based on the linear nature of reduc‐
ing the number of Si−C-bonds in a homogeneous SiC0.7 layer with increasing annealing
time, it was concluded that the decay rate of silicon carbide does not depend on the depth
of the oxidation front.

11. It  was confirmed the size effect caused by the small size of nanocrystals,  which are
manifested in the shift of the minimum of the peak of IR transmission up to to 820 cm-1,
the decrease of the amplitude of the LO-phonon peak and its subsequent disappearance
during the oxidation of the interface “SiC film - Si substrate ”, where the concentration of
carbon atoms decreases.

12. Diamond-like carbon film of thickness d = 84 nm, density ρ = 3.3 g/cm3,  and surface
roughness of σ = 1.5 nm on a silicon surface by magnetron sputtering was synthesized.
The silicon carbide film of thickness d = 160 nm, the density ρ = 3.03 g/cm3, and surface
roughness of σ = 0.4 nm on the silicon surface by ion-beam sputtering of the two-compo‐
nent target of silicon and graphite was synthesized. Simulation using the Henke pro‐
gram allows obtain theoretical curves, which are close to the experimental curves.
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