
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 8 

 

 

 
 

© 2012 Deng and Liu, licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Analytical Solutions to 3-D Bioheat Transfer 

Problems with or without Phase Change 

Zhong-Shan Deng and Jing Liu  

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/52963 

1. Introduction 

Theoretical analysis on the bioheat transfer process has been an extremely important issue in 

a wide variety of bioengineering situations such as cancer hyperthermia, burn injury 

evaluation, brain hypothermia, disease diagnostics, thermal comfort analysis, cryosurgery 

and cryopreservation etc. In this chapter, the theoretical strategies towards exactly solving 

the three-dimensional (3-D) bioheat transfer problems for both cases with and without 

phase change were systematically illustrated based on the authors’ previous works. Typical 

closed form analytical solutions to the hyperthermia bioheat transfer problems with space or 

transient heating on skin surface or inside biological bodies were summarized. In addition, 

exact solutions to the 3-D temperature transients of tissues under various phase change 

processes such as cryopreservation of biomaterials or cryosurgery of living tissues subject to 

freezing by a single or multiple cryoprobes were also outlined. Such solution is 

comprehensive enough by taking full account of many different factors such as generalized 

initial and boundary conditions, blood perfusion heat transfer, volumetric heating of 

hyperthermia apparatus or heat sink of cryoprobes etc. For illustrating the applications of 

the present methods, part of the solutions were adopted to analyze the selected bioheat 

transfer problems. The versatility of these theoretical approaches to tackle more complex 

issues was also discussed. The obtained solutions are expected to serve as the basic 

foundation for theoretically analyzing bioheat transfer problems.  

2. Motivations of analytical solutions to bioheat transfer problem 

Analytical solutions to bioheat transfer problems are very important in a wide variety of 

biomedical applications [1]. Especially, understanding the heat transfer in biological tissues 

involving either raising or lowering of temperature is a necessity for many clinical practices 

such as tumor hyperthermia [2], burn injury evaluation [3, 4], brain hypothermia 
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resuscitation [5], disease thermal diagnostics [6], thermal comfort analysis [7], cryosurgery 

planning [8, 9], and cryopreservation programming [10]. The bioheat transfer problems 

involved in the above applications can generally be divided into two categories: with and 

without phase change. In this chapter, the phase change especially denotes the solid-liquid 

phase transition of biological hydrated tissues. The cases without phase change usually 

include tumor hyperthermia, burn injury evaluation, brain hypothermia resuscitation, 

disease diagnostics, and thermal comfort analysis, while the cases with phase change 

include cryosurgery and cryopreservation. 

To guarantee optimal clinical outputs for such applications, it is essential to predict in 

advance the transient temperature distribution of the target tissues. For example, in a tumor 

hyperthermia process, the primary objective is to raise the temperature of the diseased 

tissue to a therapeutic value, typically above 43°C, and then thermally destroy it [11]. 

Temperature prediction would be used to find an optimum way either to induce or prevent 

such thermal damage to the target tissues. In contrast to the principle of hyperthermia, 

cryosurgery realizes its clinical purpose of controlled tissue destruction through deep 

freezing and thawing [12]. Applications of this treatment are quite wide in clinics owning to 

its outstanding virtues such as quick, clean, relatively painless, good homeostasis, and 

minimal scaring. An accurate understanding of the extent of the irregular shape of the 

frozen region, the direction of ice growth, and the temperature distribution within the ice 

balls during the freezing process is a basic requirement for the successful operation of a 

cryosurgery. Therefore, solving the bioheat transfer problems involved is very important for 

both hyperthermia and cryosurgery. Moreover, in thermal diagnostics, thermal comfort 

analysis, brain hypothermia resuscitation, and burn injury evaluation, similar bioheat 

transfer problems are also often encountered [13]. 

It is commonly accepted that mathematical model is the basis for solving many practical 

problems. Because modeling bioheat transfer is of the utmost importance in many 

biomedical applications such as proper device or heating/cooling protocol design, a number 

of bioheat transfer equations for living tissue have been proposed since the landmark work 

by Pennes published in 1948 [14], in which the perfusion heat source/sink was introduced. 

Until now, the classical Pennes equation is also commonly accepted as the best practical 

approach for modeling bioheat transfer in view of its simplicity and excellent validity [15]. 

This is because most of the other models either still lack sound experimental grounding or 

just appear too complex for mathematical solution. Although the real anatomical geometry 

of a biological body can be incorporated, the Pennes equation remains the most useful 

model for characterizing the heat transport process in most biomedical applications. For 

brevity, here only cases for space-dependent thermal properties will be mainly discussed. 

Then a generalized form of the Pennes equation for this purpose can be written as: 

 b b a

m r

( , )
( ) ( , ) ( ) ( , )

( , ) ( , ) ,

b

T t
c k T t c T T t

t
Q t Q t

ρ ρ ω
∂

   = ∇ ⋅ ∇ + −   ∂
+ + ∈ Ω

X
X X X X

X X X

    (1) 
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where, ρ , c are the density and the specific heat of tissue, respectively; bρ  and bc  denote 

the density and the specific heat of blood, respectively; X  contains the Cartesian 

coordinates x , y  and z ; Ω  denotes the analyzed spatial domain; ( )k X  is the space 

dependent thermal conductivity; and b( )ω X  is the space dependent blood perfusion. The 

value of blood perfusion represents the blood flow rate per unit tissue volume and is mainly 

from microcirculation including the capillary network plus small arterioles and venules. aT  

is the blood temperature in the arteries supplying the tissue and is often treated as a 

constant at 37°C; ( , )T tX  is the tissue temperature; m( , )Q tX  is the metabolic heat generation; 

and r( , )Q tX  the distributed volumetric heat source due to externally applied spatial 

heating. 

From the historical viewpoint, we can find that the development of the bioheat transfer’s art 

and science can be termed as one to modify and improve the Pennes model [15]. Among the 

many efforts, the blood perfusion term in the Pennes equation has been substantially 

studied which led to several conceptually innovative bioheat transfer models such as 

Wulff’s continuum model [16], Chen-Holmes model addressing both the flow and perfusion 

properties of blood [17], and the Weinbaum-Jiji three-layer model to characterize the heat 

transfer in the peripheral tissues [18]. The bioheat transfer equation and its extended forms 

can be directly used to characterize the thermal process of the biological bodies subject to 

various external or interior factors such as convective interaction with a heated or cooled 

fluid, radiation by fire or laser, contact with a heating or freezing apparatus, electromagnetic 

effect, or a combination among them. Such issues can be treated using different boundary 

conditions as well as spatial heating or freezing patterns. Generally, the geometric shape, 

dimensions, thermal properties and physiological characteristics for tissues, as well as the 

arterial blood temperature, can be used as the input to the Pennes equation for a parametric 

study. According to a specific need in clinics, the bioheat transfer model can even be 

modified by taking more factors into concern [19]. Traditionally, for solving bioheat transfer 

problems, people relied too heavy on numerical approaches such as finite difference 

method, finite element method, and boundary element method etc. Numerical simulation is 

necessary when the analytical solutions are not available. But if both analytical and 

numerical solutions can be obtained for the same issue, the analytical one is often preferred. 

Except for its simplicity being used to compile computer codes, the analytical solution is 

very attractive since its efficiency depends weakly on the dimensions of the problem, in 

contrast to the numerical methods. For analytical method, solution at a desired point can be 

performed independently from that of the other points within the domain, which can be an 

asset when temperatures are needed at only some isolated sites or times. But for most of the 

conventional numerical methods (except Monte Carlo simulation), the temperatures at all 

mesh points must be simultaneously computed even when only the temperatures at a single 

point are needed [20]. In this sense, the analytical solution will save computational time 

greatly, which is valuable in clinical practices. 

Based on the above considerations, we aimed in this chapter to present several typical 

closed form analytical solutions to bioheat transfer problems with or without phase change, 
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in which relatively complex boundary or heating/cooling conditions, and existence of 

discrete large blood vessel were included. Derivation of the solutions was mainly based on 

the Green’s function method, which is beneficial for dealing with the non-homogeneous 

problems with spatial or transient heating source and initial temperature distribution, as 

well as complex cooling or boundary conditions. For generalized and practical purpose, 

complex bioheat transfer problems encountered in several typical clinical applications as 

well as basic studies such as tumor hyperthermia, cryosurgery, cryopreservation, and 

interpretation of physiological phenomena etc. will be especially addressed. 

3. Bioheat transfer problems without phase change 

3.1. Generalized analytical solutions to 3-D bioheat transfer problems 

Derivation of the solutions was based on the Green’s function method, since the Green’s 

function obtained for the differential equation is independent of the source term. Therefore 

it can be flexibly used to calculate the temperature distribution for various spatial or 

temporal source profiles. Furthermore, the Green’s function method is capable of dealing 

with the transient or space-dependent boundary conditions. Up to now, quite a few studies 

have applied the Green’s function method to solve the bioheat transfer problems [21-25]. 

However, in most of the existing analytical studies, the available solutions to the bioheat 

transfer problem are for the cases with one dimensional geometry, steady state, infinite 

domain, constant heating, or heat conduction equations not considering blood perfusion, 

which may not be practical for some real bio-thermal situations. In this section, the 

generalized analytical solutions, which have incorporated relatively complex situations such 

as the 3-D tissue domain, the transient or space-dependent boundary conditions, and 

volumetric heating, were especially addressed. Such solutions are expected to be very useful 

in a variety of bio-thermal practices. The 3-D computational domain with widths s1 = s2 = 

0.08m and height L = 0.03m was depicted as the shadowed region in Fig. 1, where s1 and s2 

were widths of the tissue domain to be analyzed in y and z directions, respectively; the skin 

surface was defined at x=0 while the body core at x=L. 

 

Figure 1. Calculation geometry for 3-D case [13] 
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For brief, only 3-D case with constant thermal parameters will be particularly studied, which 

is a good approximation when no phase change occurred in tissue. The corresponding 3-D 

Pennes equation can be derived from Equation (1) as: 

 ( ) ( )
2 2 2

2 2 2
, , ;b b b a m r

T T T T
c k k k c T T Q Q x y z t

t x y z
ρ ω ρ

∂ ∂ ∂ ∂
= + + + − + +

∂ ∂ ∂ ∂
  (2) 

The generalized boundary conditions (BCs) often encountered in a practical clinical 

situation can be written as: 

 ( )1 , ; , 0
T

k f y z t x
x

∂
− = =

∂
 (3) 

or 

 2( , ; ) , 0f

T
k h f y z t T x

x

∂
 − = − = ∂

 (4) 

where, ( )1 , ;f y z t  is the time-dependent surface heat flux, ( )2 , ;f y z t  is the time-dependent 

temperature of the cooling medium, and fh  is the heat convection coefficient between the 

medium and the skin surface. In this chapter, Equation (3) was named the second BC and 

Equation (4) the third BC. 

The body core temperature was regarded as a constant ( cT ) on considering that the 

biological body tends to keep its core temperature to be stable, i.e. 

 ,cT T x L= =   (5) 

The BCs at y and z directions can be expressed as 

 0, 0
T

k y
y

∂
− = =

∂
  (6) 

 10,
T

k y s
y

∂
− = =

∂
    (7) 

 0, 0
T

k z
z

∂
− = =

∂
  (8) 

 20,
T

k z s
z

∂
− = =

∂
   (9) 

The reason for adopting the adiabatic conditions in the two ends of the y  and z  directions 

is from the consideration that at the positions far from the beam center of the heat 

deposition apparatus, the temperatures there were almost not affected by the external 
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heating, which generally has a strong decay in y  and z  directions. However, it should be 

mentioned that more generalized boundary conditions in y  and z  directions can also be 

dealt with by the present approach, but they were not listed here for brevity. 

The initial temperature is 

 ( ) ( )0, , ;0 , , , 0T x y z T x y z t= =    (10) 

where, ( )0 , ,T x y z can be approximated by the 1-D solution, representing the initial 

temperature field for the basal state of biological bodies, which can be obtained through 

solving the following equation sets: 
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f
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 + − + =  


= =

  − = − = 

 (11) 

where, 0h  is the apparent heat convection coefficient between the skin surface and the 

surrounding air under physiologically basal state and is an overall contribution from natural 

convection and radiation, and fT  the surrounding air temperature. 

The solution to Equation (11) is: 
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( )
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0

( )

m
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b b b
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h Q
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k
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+

 (12) 

where, b b bA c kω ρ= . Through using the following transformation [13] 

 ( ) ( ) ( )0, , ; , , , , ; exp b b bc
T x y z t T x y z W x y z t t

c

ω ρ

ρ

 
= + ⋅ − 

 
 (13) 

Equation (2) was transformed to the following form: 

 
( )2 2 2
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where, k cα ρ=  is the thermal diffusivity of tissue. The corresponding boundary and initial 

conditions are: 

 ( )1 , ; , 0
W

k g y z t x
x

∂
− = =

∂
  (15) 
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Using Green function method, ( ), , ;W x y z t  can be solved from the combined Equations (14-

24). The Green’s functions 1G  and 2G  to the second and third BCs can finally be obtained: 

 2 2 2

1
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1 0 01 2
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where, 
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The Eigen-values pβ  are the positive roots of the following equation 

 cot( )p p fL h kβ β⋅ = −   (33) 

Then, the solution of Equation (14) can be easily obtained. For the second BC at the skin 

surface, one has 
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For the third BC, the solution is 
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Then the tissue temperature field can be constructed as: 
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 ( ) ( ) ( )0, , ; , , , , ; exp b b bc
T x y z t T x y z W x y z t t

c

ω ρ

ρ

 
= + ⋅ − 

 
   (36) 

Clearly, the above method can also be extended to solve some other three-dimensional 

problems such as in spherical and cylindrical coordinates. But they will not be listed here for 

brevity. To illustrate the application of the above analytical solutions, a selective 3-D 

hyperthermia problem with point heating sources was particularly studied as an example. 

Accordingly, the temperature distribution of tissue subject to the point heating in volume 

was analytically solved. Practical examples for the point heating can be found in clinics 

where heat was deposited though inserting a conducting heating probe in the deep tumor 

site. Previously, such problems received relatively few attentions in compared with other 

heating patterns. Here, the point-heating source to be studied can be expressed as: 

 1 0 0 0( , , , ) ( ) ( ) ( ) ( )rQ x y z t P t x x y y z zδ δ δ= − − −   (37) 

where, 1( )P t  is the point-heating power, δ  is the Dirac function, 0 0 0( , , )x y z  is the position 

of the point-heating source. 

The results were given in Fig. 2, which represent the temperature distribution in biological 

bodies heated by one and two-point sources, respectively. In calculations, the typical tissue 

properties were applied as given in Table 1. In Fig. 2(a), the single heating source was fixed 

at position (0.021m, 0.04m, 0.04m); in Fig. 2(b), the two point-heating sources were at 

(0.021m, 0.032m, 0.04m) and (0.021m, 0.048m, 0.04m), respectively. It makes clear that the 

maximum temperatures of the tissues occur at the positions of the point-heating sources. 

Further, one can still observe that the temperature for the tissues surrounding the point-

heating sources can fairly be kept at a lower temperature on the whole. This is very 

beneficial for the hyperthermia operation since one can then selectively control the 

temperature level at the diseased tissue sites while the healthy tissues at the surrounding 

area will just stay below the safe threshold. This may be one of the most attractive features 

why the invasive heating probes are frequently used to thermally kill the tumor in the deep 

tissue, although they may cause mechanical injury. The above solutions are expected to be 

valuable for such hyperthermia treatment planning. 

 

Figure 2. Temperature distribution at cross-section 0.04z m=  after 1200s’ heating 



 

Heat Transfer Phenomena and Applications 214 

 Unit Value 

Air temperature (Tf) °C 25 

Artery blood temperature (Ta) °C 37 

Blood perfusion of tissue (ωb) ml/s/ml 0.0005 

Body core temperature (Tc) °C 37 

Density of tissue (ρ) Kg/m3 1000 

Density of blood (ρb) Kg/m3 1000 

Heat convection coefficient (h0) W/m2· °C 10 

Heat convection coefficient (hf) W/m2· °C 100 

Metabolic heat generation of tissue (Qm) W/m3 33800 

Specific heat of tissue (c) J/Kg· °C 4200 

Specific heat of blood (cb) J/Kg· °C 4200 

Temperature of cooling medium (f2) °C 15 

Thermal conductivity of tissue (k) W/m· °C 0.5 

Table 1. Typical thermophysical properties of soft biological tissues [13]. 

3.2. Analytical solutions to 3-D bioheat transfer involved in hyperthermia for 

prostate 

Localized transurethral thermal therapy has been widely used as a non-surgical modality 

for treatment of benign prostatic hyperplasia [26]. One of the critical issues in clinical 

application is to effectively heat and cause coagulation necrosis in target tissue while 

simultaneously preserving the surrounding healthy tissue, especially the prostatic urethra 

and rectum. This requires administration of an optimal thermal dose which can induce the 

desired three dimensional tissue temperature distributions in the prostate during the 

therapy. In this section, the analytical approach to solving the transient 3-D temperature 

field was illustrated, which can be used to predict point-by-point tissue temperature 

mapping during the heating. 

The transurethral microwave catheter (T3 catheter) was used as the heating apparatus in this 

section. Geometric presentation of the prostate with the inserted T3 catheter was shown in 

Fig. 3. It was modeled as a cylinder of 3.4cm in diameter and 3cm in length with constant 

temperature T∞  at the surface which is near the body core temperature. The catheter was 

represented by the inner cylinder. The induced volumetric heating in tissue is [26]: 

 ( )
( ) ( ) ( )

( )
( ) 2/2 / 0

2

2 cos
2 cos 2

, ,
cos

z L z

r s

r t N

r s N e
Q r z C Q e

r s

ε θ
ε θ

θ
θ

− −

− −  − + −
=

−
 (38) 

where Q is the applied microwave power, Ct is a proportional constant, ε is the microwave 

attenuation constant in tissue, and z0 is the critical axial decay length along the catheter 

while L is the total length of the prostate. 
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Practically, the microwave antenna is located with an offsets from the geometrical center to 

produce an asymmetric microwave field, which can prevent overheating the rectum. The 

chilled water at a given temperature flows between the antenna and the inner catheter wall. 

The Pennes equation for the 3-D temperature field in the prostate can then be applied as: 

 ( )
2 2

2 2 2

1 1
b b b a m r

TT T T
k r k k c T T Q Q c

r r r tr z
ω ρ ρ

θ

∂ ∂ ∂ ∂ ∂
+ + + − + + = 

∂ ∂ ∂∂ ∂ 
 (39) 

 

Figure 3. 3-D configuration of the prostate under microwave heating [26] 

To obtain an analytical solution, all these parameters were assumed to be uniform 

throughout the prostate and remained constant except for ωb which varied with respect to 

the heat power. The cooling effect from the chilled water running inside the catheter was 

modeled by an overall convection coefficient h. The external boundary at the capsule was 

prescribed as the body core temperature T∞ . Therefore, one has: 

 ( ) 0,f

T
k h T T r R

r

∂
= − =

∂
 (40) 

 2,T T r R∞= =    (41) 

where, R0 and R2 are the urethra and prostate radius, respectively; Tf is the coolant 

temperature. Considering the Gaussian distribution of microwave power deposition along 

the z direction, adiabatic conditions can be used at two ends of the prostate: 

 0, 0,
T

k z L
z

∂
= =

∂
 (42) 

The initial temperature is 
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 ( ) ( )0, , ,0 , , , 0T r z T r z tθ θ= =      (43) 

Using transformation: 

 2

2 0 0

ln( / )
( )

ln( / ) / ( )f

r R
T T T T

R R k hR∞ ∞= Δ + + −
+

   (44) 

One can rewrite the above equations (Equations (39-43) as: 
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Q r zC

r
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0,k h r R

r

∂Δ
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∂
 (46) 

 20, r RΔ = =    (47) 

 0, 0,k z L
z

∂Δ
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∂
 (48) 

 ( ) ( ), , ,0 , , , 0r z F r z tθ θΔ = =    (49) 

where,  

 ( ) ( ) ( ) ( )
( ) ( )
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2 0 0
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ln / /r m b b b a f

r R
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2 0 0

ln /
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r R
F r z T r z T T T

R R k hR
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The Green’s function for the above equation sets can be obtained as: 
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αβ τ

θ ξ η λ τ

κ α ξ γ λ τ
µ µ θ η γ

∞ ∞ ∞
− −

= = =

=

−
− + −     

 (52) 

where  

 
1, 0

2, 1,2,3...

l

l
κ

 =
= 

=
  (53) 

 ( ) ( )* *
2 2n m n m nA J R N Rµ µ= −  (54) 

 , 0,1,2,3...l

l
l

L

π
γ = =    (55) 
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lβ  can be found by 

 2 2 2 , 0,1,2,3...l l n lβ γ µ= + =    (56) 

nµ  can be calculated from 

 *2 b b b
n n

C

k

ω ρ
µ µ= +   (57) 

*
nµ  are the positive roots of the following equation: 

 ( ) ( ) ( ) ( )* * * *
0 0 0 0' 'm n n m n m n n m nk J R A N R h J R A N Rµ µ µ µ   + = +      

 (58) 

Here Jm and Nm are the Bessel functions of the first kind and the second kind, respectively. 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

0

2

0

* *
0 0 * * 2

0 0

* *

* * 2

, 0
2

, 1,2,3,...,

n n n R

n n nR

mn

m n n m n R

m n n m nR

J A N
r J r A N r dr m

F
J A N

r J r A N r dr m

ξ µ ξ µ ξ
µ µ

π

ξ µ ξ µ ξ
µ µ

π

  +     + =   
= 

  +     + = ∞  





  (59) 

H(t-τ) is a heavy-side unit step function which has the following properties: 

 
( )

( )
dH t

t
dt

δ=     (60) 

 ( )
1 0

0 0

for t
H t

for t

 >
= 

≤
  (61) 

Finally, the temperature field was constructed as: 

 
( )

( )
( )

( ) ( )

2

0

2

0

0 0

0

* , ,
, , , , , , ; , , ,

, , , ; , , ,0 , ,

t R L

R

R L

R

Q
r z t d G r z t d d d

k

G r z t F d d d

π

π

π

π

ξ η λ
θ τ θ ξ η λ τ ξ η λ

θ ξ η λ ξ η λ ξ η λ

α

−

−

−
Δ = ⋅

− ⋅
+

   

  
   (62) 

where, ( )* , ,Q r zθ  and ( ), ,F r zθ  were given in Equations (50-51), respectively. 

This analytical solution has been applied to perform parametric studies on the bioheat 

transfer problems involved in prostate hyperthermia [26].  

3.3 Analytical solutions to bioheat transfer with temperature fluctuation 

Contributed from microcirculation including the capillary network plus small arterioles and 

venules of less than 100μm in diameter, blood perfusion plays an important role in the 
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transport of oxygen, nutrients, pharmaceuticals, and heat through the body [27]. Although 

generally treated as a constant, blood perfusion is in fact a transient value even under 

physiological basal state. This is due to external perturbation and the self-regulation of 

biological body. The pulsative blood flow behavior also makes blood perfusion a fluctuating 

quantity. It is well accepted that blood perfusion is a fluctuating quantity around a mean 

value. Corresponding to the pulsative blood flow and very irregular distribution of blood 

vessels with various sizes, temperatures in intravital living tissues also appear fluctuating. 

To address this issue, we have obtained before an analytical model to characterize the 

temperature fluctuation in living tissues based on the Pennes equation [27]. It provides a 

theoretical foundation to better understanding the temperature fluctuation phenomena in 

living tissues. The Pennes equation used for the analysis can be rewritten as 

 ( )2
b b a m

T
C K T W C T T Q

t
ρ

∂
= ∇ + − +

∂
   (63) 

Considering that small perturbations of arterial blood temperature, blood perfusion, and 

metabolic heat generation will result in tissue temperature fluctuation, each of these 

parameters can be expressed as the sum of a mean and a fluctuation value, i.e. 

 T T T′= +   (64) 

 a a aT T T′= +    (65) 

 b b bW W W′= +    (66) 

 
m m mQ Q Q′= +   (67) 

where, symbol “ — ” represents the mean value, and  “ ' ” the fluctuation one. Here, 

temporal averaging is adopted and defined as: 

 ( ) ( )
2

2

1
, , ; , , ;

t

t
A x y z t A x y z dτ τ

+Γ

−Γ
=

Γ 
  (68) 

where, ( ), , ;A x y z t  denotes the transient physical quantity at the vicinity of point ( , ,x y z ), 

and Γ  the temporal averaging period. 

Compared with the mean value, the fluctuation value is generally a small quantity. Then 

one has the following statistical relation: 

 0 , 0 , 0 , 0a b mT T W Q′ ′ ′ ′= = = =     (69) 

Substituting Equations (64-67) into Equation (63) leads to: 

 2( )
( ) ( ) ( ) ( )b b b a a m m

T T
C K T T W W C T T T T Q Q

t
ρ

′∂ +  ′ ′ ′ ′ ′= ∇ + + + + − + + + ∂
  (70) 
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Further, 

 2( )
( ) ( ) ( ) ( )b b b a a m m

T T
C K T T W W C T T T T Q Q

t
ρ

′∂ +  ′ ′ ′ ′ ′= ∇ + + + + − + + + ∂
   (71) 

Using Equation (69), Equation (71) was simplified as: 

 2 ( )b b a b b a b b m

T
C K T W C T T C W T C W T Q

t
ρ

∂
′ ′ ′ ′= ∇ + − + − +

∂
   (72) 

Subtracting Equation (72) from Equation (70) leads to: 

 
2 ( )b b a b b a b b

b b b b b b a b b a m

T
C K T W C T T C W T C W T

t

W C T W C T W C T W C T Q

ρ
′∂

′ ′ ′ ′ ′ ′= ∇ + − − +
∂

′ ′ ′ ′ ′ ′ ′− − + + +

   (73) 

Equations (72) and (73) consist of the theoretical models for characterizing the temperature 

fluctuation in living tissues. Derivation of the perturbation Equation (73) is similar to that of 

the well known Reynolds equation in fluid mechanics. Compared with the Pennes equation, 

there are two additional terms appearing in Equation (72) both of which have explicit 

physical meaning: b b aC W T′ ′ and b bC W T′ ′−  represent the mean transferred energy due to 

perfusion perturbations and temperature fluctuations in tissue and arterial blood, 

respectively. It is from Equation (73) that the temperature fluctuation ( T′ ) and the pulsative 

blood perfusion, arterial blood temperature and metabolic heat generation ( W ′ , aT′ , and 

mQ′ ) were correlated. Clearly, since the mean tissue temperature T  is a space dependent 

value, T′  is expected to be different at various tissue positions. To solve for Equation (72) 

and (73), dimension analysis was performed to simplify the model. One can express the 

orders of magnitude of the mean and pulsative physical quantities as: 

 ~ (1) ~ (1) ~ (1) ~ (1)

~ ( ) ~ ( ) ~ ( ) ~ ( )
a b m

a b m

T O T O W O Q O

T O T O W O Q Oδ δ δ δ′ ′ ′ ′
   (74) 

where ( )O δ  stands for the value far less than (1)O , since the pulsative physical quantities 

investigated in this study is a small value. 

Omitting those terms less than (1)O  in Equation (72) and those less than ( )O δ  in Equation 

(73), the Equations (72) and (73) can be respectively simplified as: 

 2 ( )b b a m

T
C K T W C T T Q

t
ρ

∂
= ∇ + − +

∂
   (75) 

 2 ( )b b a b b b b a m

T
C K T W C T T W C T W C T Q

t
ρ

′∂
′ ′ ′ ′ ′= ∇ + − − + +

∂
     (76) 

For the interpretation of temperature fluctuation in living tissues, it is reasonable to apply 

the 1-D degenerated forms of Equations (75) and (76). The boundary condition at the skin 

surface can be chosen as convective case which is often encountered in reality, i.e. 
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 ( ), 0f f

T
K h T T x

x

∂
− = − =

∂
  (77) 

At the body core, a symmetrical or adiabatic condition can be used, namely 

 0,
T

K x L
x

∂
− = =

∂
     (78) 

Then using the relations in Equations (64-67), the boundary and initial conditions of 

Equations (75) and (76) can be respectively obtained as: 

 ( ) , 0f f

T
K h T T x

x

∂
− = − =

∂
  (79) 

 0 ,
T

K x L
x

∂
− = =

∂
  (80) 

 0( ) , 0T T x t= =   (81) 

 , 0f

T
K h T x

x

′∂
′= =

∂
 (82) 

 0 ,
T

K x L
x

′∂
− = =

∂
  (83) 

 0 , 0T t′ = =   (84) 

where, 0x =  is defined as the skin surface while x L=  the body core; fh  is the apparent 

heat convection coefficient between the skin and the environment which is the contribution 

from the natural convection and radiation; fT  the environment temperature; and 0( )T x  the 

initial temperature distribution. The following transformation was introduced [27] 

 ( , ) ( , ) exp b bW C
T x t R x t t

Cρ

 
 = ⋅ −
 
 

   (85) 

Then Equations (75) and (79-81) were respectively rewritten as: 

 
2

2
expb b a m b bW C T Q W CR R

t
t C Cx

α
ρ ρ

 +∂ ∂
 = + ⋅
 ∂ ∂  

  (86) 

 exp ( ) , 0b b
f f

W CR
K h T t H t R x

x Cρ

  ∂   − = ⋅ ⋅ − =
 ∂    

 (87) 
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 0 ,
R

K x L
x

∂
− = =

∂
    (88) 

 0( ) , 0R T x t= =   (89) 

where, K Cα ρ=  is the diffusivity of tissue, and 
0 , 0

( )
1, 0

t
H t

t

 <
= 

>
 the Heaviside function. 

If the Green’s function for the above equation system is obtained, its transient solution can 

thus be constructed [13]. Through introducing an auxiliary problem corresponding to 

Equations (86-89), the Green’s function G can finally be obtained as: 

 ( )
( ) ( )

( )
2

2
2

( )

2
21

2

, ; , cos ( ) cos ( )n

n f
t

n nR
n

n f f

h K H t

G x t e L x L

L h K h K

αβ τ
β τ

ξ τ β β ξ

β

∞
− −

=

 
+ −  = ⋅ ⋅ − ⋅ −

 
+ +  

   (90) 

where, the Eigen-values nβ  are the positive roots of the following equation 

 tan( )n n fL h Kβ β⋅ =   (91) 

Then, the solution to Equation (86) can be obtained as 

 

( ) ( )

( )

( )

0 0

0 0

00 0

, , ; , exp ( )

, ; , exp

, ; , ( )

t b b
f fR

t L b b a m b b
R

L

R

W C
R x t G x t h T H d

k C

W C T Q W C
d G x t d

C C

G x t T d

ξ

τ

α
ξ τ τ τ τ

ρ

τ ξ τ τ ξ
ρ ρ

ξ τ ξ ξ

=

=

 
 = ⋅ ⋅ +
 
 

 +
 ⋅ +
 
 



 



  (92) 

Substituting Equation (92) into Equation (85) leads to the mean temperature ( , )T x t . The 

above solution is applicable to any transient environmental temperature ( )fT t  and space-

dependent metabolic heat generation ( , )mQ x t . For the fluctuation temperature, the solving 

process is as follows. Using the similar transformation as Equation (85) 

 ( , ) ( , ) exp b bW C
T x t R x t t

Cρ

 
′ ′  = ⋅ −

 
 

    (93) 

Equations (76) and (82-84) can be respectively converted to 

 
2

2

( )
expb b a b b a m b bW C T T W C T Q W CR R

t
t C Cx

α
ρ ρ

 ′ ′ ′− + +′ ′∂ ∂
 = + ⋅
 ∂ ∂  

 (94) 
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  , 0f

R
K h R x

x

′∂
′= =

∂
  (95) 

 0 ,
R

K x L
x

′∂
− = =

∂
   (96) 

 0 , 0R t′ = =    (97) 

Following the same procedure described above, the Green’s function of this equation set is: 

 ( ) ( ), ; , , ; ,R R
G x t G x tξ τ ξ τ′ =   (98) 

where, ( ), ; ,
R

G x t ξ τ  was given in Equation (90). 

Consequently, the fluctuation variable R′  in Equation (94) can be obtained as 

 ( ) ( )
0 0

( )
, , ; , exp

t L b b a b b a m b b
R

W C T T W C T Q W C
R x t d G x t d

C C
τ ξ τ τ ξ

ρ ρ′

 ′ ′ ′− + +
′  = ⋅

 
 

   (99) 

where, the mean temperature ( , )T x t  was given by Equation (85). Substituting Equation (99) 

into Equation (93), the temperature fluctuation ( , )T x t′  can be obtained. As illustration, two 

calculation examples using the above analytical solutions were presented in this section to 

investigate the temperature fluctuation phenomena in living tissues. In the following 

illustration calculations, the typical values for tissue properties were taken from [27]. For 

clarity, only effect of the pulsative blood perfusion bW ′  alone will be considered while the 

pulsative arterial temperature and metabolic heat generation were not taken into account, 

namely, 0 , 0a mT Q′ ′= = , and a constant mean blood perfusion bW  was assumed. Here, the 

pulsative blood perfusion bW ′  was far less than the mean value bW , and its simplest form 

can be expressed as a periodic quantity with constant frequency and oscillation amplitude 

such as cosbmW tω  (where ω  is frequency, bmW  the amplitude, and 
bm bW W<< ). However, 

to be more general, a stochastic pulsative perfusion form as ( )0.1 0.5b bW W ran′ = −  (where, 

ran is random number generated by Fortran function) was adopted for calculations. 

 

Figure 4. Temperature fluctuation due to pulsative blood perfusion ( 30.5bW kg m= °C) 



 
Analytical Solutions to 3-D Bioheat Transfer Problems with or without Phase Change 223 

Fig. 4 depicted both the skin surface temperature fluctuation (the mean perfusion 
30.5bW kg m= °C) and the blood perfusion perturbation bW ′  causing this behavior. As a 

comparison, Fig. 4(a) and Fig. 4(b) gave temperature fluctuations spanning two different 

time scope. It can be seen that small perturbation on blood perfusion resulted in an evident 

and observable temperature fluctuation in the living tissues. This result accords with the 

commonly observed phenomenon that the measured tissue temperature appears as 

fluctuating even when the measured animal is under physiologically basal state. It can also 

be found that the frequency of temperature fluctuation appears much smaller than that of 

the blood perfusion fluctuation, which implies that intravital biological tissue tends to keep 

its temperature stable. This result indicates that the stochastic fluctuation of blood perfusion 

in intravital biological tissue may also contribute to the tissue temperature oscillations, and 

the internal relations between blood perfusion fluctuation and the temperature oscillation 

need further clarification.  

In this section, the perturbation model for characterizing the temperature fluctuation in 

living tissues was illustrated and its exact analytical solution was obtained which has wide 

applicability. One of the most important results in this section is perhaps that small 

perturbation in blood perfusion result in evidently observable temperature fluctuation in the 

living tissues. And the larger blood perfusion, the more liable for the living tissues to keep 

its temperature stable. This model provides a new theoretical foundation for better 

understanding the thermal fluctuation behavior in living tissues. 

4. Bioheat transfer problems with phase change 

4.1. Analytical solutions to 3-D phase change problems during cryopreservation 

Derivation such solutions was based on the moving heat source method, in which all the 

thermal properties were considered as constants, and phase transition was assumed to occur 

in a single temperature [28]. The density, specific heat and heat conductivity of solid phase 

were considered to be the same as those of the liquid phase, respectively. To simplify the 

problem, only computation in a regular geometry characterized by Cartesian coordinates 

was considered, as shown in Fig. 5. According to the geometrical symmetry, only 1/8 of the 

whole cubic tissue was chosen as the study object, whose center is set as the origin point, 

and l, s1, s2  represent the distances between the origin and the boundaries of the tissue along 

x, y, z directions, respectively.  

2
s

1
s

 

Figure 5. Schematic of 1/8 cuboidal tissue subject to cryopreservation [29] 
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The energy equations for different phase regions were then written. For the liquid phase: 

 2 ( , , , )
( , , , ) , in region , 0l

l l

T x y z t
k T x y z t c R t

t
ρ

∂
∇ = >

∂
 (100) 

For the solid phase: 

 2 ( , , , )
( , , , ) , in region , 0s

s s

T x y z t
k T x y z t c R t

t
ρ

∂
∇ = >

∂
 (101) 

where k , ρ , c denote thermal conductivity, density and specific heat of tissue, respectively; 

sT , lT  are the temperature distributions for solid and liquid phase, respectively; t is time; 

lR , sR  denote solid and liquid region; the subscript l, s represent the liquid and solid phase, 

respectively. To obtain an analytical solution, all the parameters were assumed as uniform 

and remain constant. 

It should be pointed out that the physical properties for the biological tissues would change 

during the phase change process. Therefore it may cause certain errors when assuming both 

the frozen and unfreezing regions take the same physical parameters. According to existing 

measurements, the density changes little and thus can be used as a constant. However, the 

other parameters, especially the thermal conductivity and the specific heat, would change 

significantly. For such case, one can choose to adopt an equivalent physical property to 

represent the original parameter, i.e. the parameters could take into concern contributions 

from both frozen and unfreezing phase, such that ( ) 2l sk k k k= = +  and ( ) 2l sc c c c= = + . 

This will minimize the errors via a simple however intuitive way. The solid and liquid 

phases are separated by an obvious interface, which can be expressed as 

 0 0 0 0 0 0 0( , , , ) ( , , ) 0S x y z t z s x y z= − =      (102) 

where, s denotes the moving solid-liquid interface, 0 0 0( , , )x y z  represents position of any 

point in this specific interface and each of them is time dependent. 

In the solid-liquid interface, conservation of energy and continuum of temperature read as 

 at S( , , , ) 0, 0s l

n

T T s
k k L x y z t t

n n t
ρ

∂ ∂ ∂
− = = >

∂ ∂ ∂
  (103) 

  =T at S( , , , ) 0, 0s l mT T x y z t t= = >   (104) 

where n is the unit normal vector; L is the latent heat of tissue; mT  is the phase change 

temperature; ( )n
n

s
v t

t

∂
=

∂
 represents the velocity of the interface. Based on the moving heat 

source method [28, 29], the above phase change problem can be equivalently combined to a 

heat conduction problem with an interior moving heat source term, i.e. 
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2

0

( , , ) 1
( ) , in region , 0s l

s x y tL T
T z z R R t

k t t

ρ
δ

α

∂ ∂
∇ + − = + >

∂ ∂
 (105) 

where, k cα ρ=  is the thermal diffusivity; 0z is z coordinate of the arbitrary point p in the 

interface; 0( )z zδ − is the delta function. For brief, Equation (105) can be rewritten as 

 
2 ( , , , ) 1rq x y z t T
T

k tα

∂
∇ + =

∂
 (106) 

where, a generalized volumetric heat source has been expressed as 

 0

( , , )
( , , , ) ( )r

s x y t
q x y z t L z z

t
ρ δ

∂
= −

∂
    (107) 

The typical cooling situations most encountered in a cryopreservation [8, 10] include the 

following cases: (a) convective cooling at all boundaries by liquid nitrogen; (b) fixed 

temperature cooling at all boundaries through contacting to copper plate with very low 

temperature; (c) fixed temperature cooling at upside and underside surface of tissues and 

convective cooling at side faces; (d) convective cooling at upside and underside surface of 

tissues and fixed temperature cooling at side faces. Usually, the boundary types as (c) and 

(d) were adopted to increase the cooling rate. In this section, the analytical solutions will be 

presented according to the above four cooling cases, respectively. 

Case (a): Convective cooling at all boundaries 

Clinically, one of the most commonly used cooling approaches is to immerse the processed 

tissue into liquid nitrogen and frequently shift it up and down so as to enhance the heat 

exchange between the tissue and the liquid. Such boundary conditions can be defined as 

 1

2

0 0; ( ) ;

0 0; ( ) ;

0 0; ( ) ;

f

f

f

T T
at x k h T T at x l

x x
T T

at y k h T T at y s
y y

T T
at z k h T T at z s

z z

∂ ∂
= = − = − =

∂ ∂
∂ ∂

= = − = − =
∂ ∂

∂ ∂
= = − = − =

∂ ∂

   (108) 

where, fT  is temperature of the cooling liquid; h  is the convective heat transfer coefficient. 

Here, the three planes, i.e. 0x = ， 0y = ， 0z =  are defined as adiabatic boundaries, and the 

other three planes, i.e. x=l, y=s1, z=s2, are subjected to forced convective cooling conditions. 

Without losing any generality, the initial temperature is defined as 

 0( , , ,0) ( , , )T x y z T x y z=      (109) 

Using transformation 
fT Tθ = − , Equations (106), (108) and (109) can be rewritten as 
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 2 1rq

k t

θ
θ

α

∂
∇ + =

∂
   (110) 

 1

2

0 0; ;

0 0; ;

0 0; ;

at x k h at x l
x x

at y k h at y s
y y

at z k h at z s
z z

θ θ
θ

θ θ
θ

θ θ
θ

∂ ∂
= = − = =

∂ ∂
∂ ∂

= = − = =
∂ ∂

∂ ∂
= = − = =

∂ ∂

  (111) 

 0( , , ,0) ( , , ) ( , , ) fx y z F x y z T x y z Tθ = = −   (112) 

To solve for the Green’s function of the above equations, the following auxiliary problem 

needs to be considered for the same region: 

 2 1
( ) ( ) ( ) ( )

G
G x y z t

t
δ ξ δ η δ λ δ τ

α

∂
∇ = − − − − +

∂
   (113) 

 1

2

0 0; ;

0 0; ;

0 0; ;

G G
at x k hG at x l

x x
G G

at y k hG at y s
y y

G G
at z k hG at z s

z z

∂ ∂
= = − = =

∂ ∂
∂ ∂

= = − = =
∂ ∂

∂ ∂
= = − = =

∂ ∂

  (114) 

 ( , , ,0) 0G x y z =    (115) 

The final expression for the Green’s function of Equations (110) and (111) can be obtained as: 

 

0 0 0

2 2 2

cos( )cos( )cos( )cos( )cos( )cos( )
( , , , ; , , , )

( ) ( ) ( )

( )exp[ ( )( )]

0,1,2; 0,1,2; 0,1,2,

j n k j n k

k n j j n k

j n k

x y z
G x y z t

N N N

H t t

j n k

β γ µ β ξ γ η µ λ
ξ η λ τ

β γ µ

τ α β γ µ τ

∞ ∞ ∞

= = =

= − ×

− − + + −

= = =


(116) 

where,

2 2

2 2

[ ( / ) ] /
( )

2[ ( / ) ]

j

j

j

l h k h k
N

h k

β
β

β

+ +
=

+
, jβ  are positive roots of the equation tan( ) /j jl h kβ β = ; 

2 2
1

2 2

[ ( / ) ] /
( )

2[ ( / ) ]

n
n

n

s h k h k
N

h k

γ
γ

γ

+ +
=

+
, nγ  are positive roots of equation 1tan( ) /n ns h kγ γ = ; and 

2 2
2

2 2

[ ( / ) ] /
( )

2[ ( / ) ]

k
k

k

s h k h k
N

h k

µ
µ

µ

+ +
=

+
, kµ  are positive roots of 2tan( ) /k ks h kµ µ = . 
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Finally, according to the above results and expression for the heat source term in Equation 

(107), the analytical solution to the temperature field under totally convective cooling 

conditions can then be obtained as: 

 

 

1 2

1 2

0 0 0 0

0 0 0

( , , , ) ( , , , ) ( , , , ; , , , )

1
( , , , ; , , ,0) ( , , )

t l s s r
f

l s s

q
x y z t T x y z t T d G x y z t d d d

k

G x y z t F d d d

θ τ ξ η λ τ ξ η λ

ξ η λ ξ η λ ξ η λ
α

= − = − −

⋅

   

  
  (117) 

From the first term containing time in the above analytical solution, it can be seen that the 

thermal diffusivity α  appears in the exponential term, i.e. 2 2 2exp[ ( )( )j n k tα β γ µ τ− + + − , 

which indicates that the time for the temperature to reach the thermal equilibrium state 

depends exponentially on the thermal diffusivity. 

Case (b): Fixed temperature cooling at all boundaries 

Clinically, direct cooling the tissues through contacting it to copper plate pre-cooled by 

liquid nitrogen has been proved to be more effective than cooling by convection [28]. 

Therefore, it is very essential to get the temperature field of the tissue under totally fixed 

temperature cooling boundary conditions. For this problem, the form of the control 

equations still remain the same, so did the solution procedures of the Green’s function 

method, since only the boundary conditions were slightly changed. Assuming that pT  is the 

temperature of the cooling plate, using transformation pT Tθ = − , and solving the auxiliary 

problem via the similar way as that used in the convective cooling case, one can obtain the 

Green’s function solution for the present case as: 

0 0 0 1 2
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 (118) 

Then the transient temperature field can be constructed as: 
 

 

1 2

1 2
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0 0 0

( , , , ) ( , , , ) ( , , , ; , , , )
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   (119) 

where, 0( , , ) ( , , ,0) ( , , ) pF x y z x y z T x y z Tθ= = − . 

In practice, demanded by certain specific cooling rate and mechanical factors, sometimes one 

has to apply different cooling strategies on each side of the tissue surfaces. Thus, it is essential 
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to take into account the complex hybrid boundary conditions. For brief, we assume that the 

temperature of the cooling plate pT  is equal to that of the cooling fluid fT . Then the Green’s 

function solutions for the following two boundaries can be obtained accordingly. 

Case (c): Fixed temperature cooling at upside and underside surface and convective 

cooling at side faces 
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Case (d): Convective cooling at upside and underside and fixed temperature cooling at 

side faces 
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Considering that expressions for the transient temperature field for the above two cases still 

remain similar to that of Equation (117), they have not been rewritten here for brief. 

It should be pointed that there still exist many difficulties to calculate the exact temperature 

field from the above analytical solutions. However, the solution forms can still be flexibly 

applied to analyze certain special problems. As indicated in [28], in the freezing or warming 

process there must exist a maximum cooling or warming rate at some places of the tissue, 

which is varying with the time. Theoretically, this transient position can be predicted by 

using Equations (117) and (119) or other equations for corresponding processes. For 

example, one can obtain 
( ), , ,

i

T x y z t

x t

 ∂∂
 

∂ ∂  
 (where xi may represent x, y, z direction) easily 

by utilizing any of the above Green’s function solutions. After making it equal to zero, one 

can solve for xi which is just the position where the maximum cooling or rewarming rate 

occurs. Knowing such position is of importance for the operation of a successful 

cryopreservation procedure, since the maximum cooling or warming rate is the crucial 

factor to cause injury to biological materials. Here, computation of ( ), , , /T x y z t t∂ ∂  can 

eliminate the time integral term in Equations (117) and (119), which would simplify the 

solution form. Overall, the present analytical method in virtue of its straightforward form is 

of great significance to evaluate the phase change problem in cryobiology. 
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4.2. Analytical solutions to 3-D phase change problems during cryosurgery 

Cryosurgery is very different from cryopreservation, since living tissue has to be considered. 

Consequently, it must take into account the effects of blood perfusion and metabolic heat 

generation into bioheat equation. Here, the Pennes equation is applied to characterize the 

heat transfer process in the living tissue. To avoid the complex boundary conditions, the 

calculation tissue domain is chosen as a whole cuboid as shown in Fig. 6, where a cryoprobe 

with length l1 was settled in the center. Then the location of the cryoprobe is at 0 / 2x l= ,

0 1 / 2y s= , and the range for z coordinate is 2 1 2 10.5( ) z 0.5( )s l s l− ≤ ≤ + . 

2
s

1
s

 

Figure 6. Schematic of the living tissue domain subject to cryosurgery 

The energy equations for the tissue before and after it was frozen are respectively as: 

For the liquid phase 

 2
c( ) , in region , 0l

l b b b a l m l

T
c k T c T T Q Q R t

t
ρ ω ρ

∂
= ∇ + − + + >

∂
  (122) 

For the solid phase 

 2
c

( , , , )
( , , , ) , in region , 0s

s s

T x y z t
c k T x y z t Q R t

t
ρ

∂
= ∇ + >

∂
 (123) 

where, bρ , bc are density, specific heat of blood; bω is blood perfusion; aT is supplying 

arterial temperature; mQ  is volumetric metabolic heat; cQ is heat sink, and the other 

parameters represent the same meanings as before. 

The control equations in the solid-liquid interface are the same as before. The above phase 

change problem can then be equivalently transformed to a heat conduction problem, i.e. 

 2
r

T
c k T Q

t
ρ

∂
= ∇ +

∂
  (124) 

where, rQ  is the moving heat source term, which consists of three parts in a cryosurgical 

process: the metabolic heat source term mQ , the heat sink term cQ and the phase change 

heat source term rq , i.e. 
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'

0 0

( , , )
( ) ( )r r m c m c

s x y t
Q q Q Q L z z q H z z Q

t
ρ δ

∂
= + + = − + − +

∂
 (125) 

where, ' ( )m b b b a mq w c T T qρ= − + , reflecting contributions of the blood heat transfer and the 

metabolic heat generation in unfrozen region. Other parameters and functions have the 

same definitions with those of cryopreservation. 

To simplify the problem, the cryoprobe inserted into the deep tissue is treated as a linear 

heat sink [29] and assumed to supply a constant cold amount cQ , i.e. cQ B= , which can 

also include many different discrete terms representing cooling effects from multiple 

cryoprobes and expressed as ( )c , ,i i i iQ Q x x y y z zδ= − − −  (which reflects the amount of 

cold at the location of ( ), ,i i ix y z , where i is the sequence number of the cryoprobe; iQ  is the 

amount of cold released by the ith probe; δ  is the Delta function). The solution expressed 

below indicated that the Green’s function method can deal with the multi-probe freezing 

problem. This is however not easy to be dealt with even by numerical computation. In this 

side, the analytical solution embodies its particular theoretical significance. 

Equation (124) can be rewritten as: 

 
2

0( ) ( , )b b bcT
T H z z T g z t

t c

ω ρ
α

ρ

∂
= ∇ − − +

∂
  (126) 

where, 0( , ) [( ) ( ) ] /b b b a m r cg z t c T q H z z q Q cω ρ ρ= + − + + . In a cryosurgical procedure, the 

cryoprobe is inserted into the target tissue, which will subject to a specific temperature drop 

due to cooling of heat sink effect of the probe. Since the skin surface is exposed to the 

ambient environment, the boundary conditions can thus be treated as:  

 1

2

0 0; 0

0 0; 0

0 0; ( )f

T T
k at x k at x l

x x
T T

k at y k at y s
y y

T T
k at z k h T T at z s

z z

∂ ∂
− = = − = =

∂ ∂
∂ ∂

− = = − = =
∂ ∂

∂ ∂
− = = − = − =

∂ ∂

  (127) 

As shown in Fig. 6, the origin (x=0, y=0, z=0) is defined differently from the cryopreservation. 

The adiabatic boundaries are applied on the side surfaces along the x, y axis. This is because 

the side surfaces are far from the heat sink and are not influenced by the heat sink in the 

deep tissue and the external convective conditions. Finally, the initial condition is defined as 

0( , , ,0) ( , , )T x y z T x y z= , and every boundary is defined as adiabatic at this initial state. 

Although the control equations and boundary conditions in cryosurgery are very different 

from that in cryopreservation, the solution procedures still remain similar if certain 

transformations are introduced. In the following, only those steps different from the above 
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will be addressed. To make solution of the problem feasible, we have adopted before the 

following specific transformation: 

 0 0( , , , ) ( , , ) ( , , , )exp[ ( ) ]b b bc
T x y z t T x y z W x y z t H z z t

c

ω ρ

ρ
= + − −   (128) 

Substituting it into Equation (126), one obtains 
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∂
 (129) 

where, 1( , )g z t = 0 0{[ ( ) ] ( ) } /b b b a m r cc T T q H z z q Q cω ρ ρ− + − + + . To simplify the equation, the 

volumetric moving heat source term in Equation (129) can be expressed as 
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The boundary conditions are rewritten as: 
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where, 0 0( ) ( )exp[ ( ) ] ( )b b b
f

c
f t T T H z z t H t

c

ω ρ

ρ
= − − , and the initial condition is defined as 

( , , , ) 0W x y z t = . Applying the same theoretical strategies as used in solving cryopreservation 

into the above problem, one can obtain the Green’s function expression for a 3-D 

cryosurgical process as:  
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where, 
,

,
1

1 0

2 1,2,3,

j
R
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= ⋅ ⋅ ⋅
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; j

j

l

π
β = ;  

1
n

n

s

π
γ = ;  kµ  is the positive 

root of 2tan( ) /k ks h kµ µ = . Taking into account of the moving source term *
rq  and the 

boundary conditions, i.e. Equation (131), one can obtain the transient temperature field of 

the tissue corresponding to Equation (129) as: 
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  (133) 

The above procedures illustrate the basic strategy to exactly solve the three dimensional 

phase change problem of biological tissues in vivo, which involves the blood perfusion and 

metabolic heat etc. However, the integral equation is so complex due to moving phase 

change front inherited in the integral term, that calculating the equation based on the above 

analytical expressions is still a challenge. This requests certain development of the applied 

mathematics. However, a simplified form for the present solution can be utilized to analyze 

some specific one dimensional heat transfer problems. 

4.3. Analytical solutions to 3-D temperature distribution in tissues embedded 

with large blood vessels during cryosurgery 

From the viewpoint of heat transfer, a large blood vessel (also termed a thermally significant 

vessel) denotes a vessel larger than 0.5 mm in diameter [30]. Anatomically, tumors are often 

situated close to or embedded with large blood vessels, since a tumor’s quick growth 

ultimately depends on nutrients supplied by its blood vessel network. During cryosurgery, 

the blood flow inside a large vessel represents a source which heats the nearby frozen 

tissues and, thereby, limits freezing lesions during cryosurgery. Under this condition, a part 

of the vital tumor cells may remain in the cryolesion and lead to recurrence of tumors after 

cryosurgical treatment. More specifically, tumor cell survival in the vicinity of large blood 

vessels is often correlated with tumor recurrence after treatment [30]. Consequently, it is 

difficult to implement an effective cryosurgery when a tumor is contiguous to a large blood 

vessel. To better understand the effect of blood flow to the temperature distribution of living 

tissues subject to freezing, a conceptual model for characterizing the heat transfer in 3-D 

cylindrical tissues embedded with a single blood vessel was illustrated in this section. And a 

closed form analytical solution to this model was provided to explore different factors’ 

thermal influences to the freezing mechanism of living tissues. 

The geometry used for the analysis is depicted as Fig. 7, which is consisted of three distinct 

concentric cylinders: the most interior region representing a large blood vessel, the 

intermediate for unfrozen liquid-phase tissue and the outer the frozen tissue. In Fig. 7, 

symmetrical condition in θ direction can be applied. Then the 3-D bioheat transfer will 

degenerate to a 2-D problem. The cylinder is long enough so that its end effects to the heat 

transfer can be neglected. For simplicity in analytical solution, only steady state temperature 

field was assumed in both the vessel and the surrounding tissue. And the same constant 

thermal properties for different tissue area were considered. Therefore heat conduction in 

the regions of both liquid and frozen tissue can be described by only a single equation.  
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Figure 7. Schematic of cylindrical tissues embedded with a single blood vessel [30] 

To carry out the theoretical analysis, additional assumptions for tissues were made as 

follows: there is no heat flow across the boundaries at z=0 and z=L. In reality, if the vessel 

length is long enough, these adiabatic boundary conditions can be closely satisfied. And the 

cylindrical tissue surface (r=b) was assumed to be immersed into a cooling medium or 

subjected to a circular cryoprobe with constant freezing temperature T0. This situation also 

reflects the cooling of an interior tissue inside the biological body, which is frozen on the 

surface. After introducing the dimensionless parameter *
0 0( ) / ( )t t aT T T T T= − − , where Ta 

stands for the body core temperature usually fixed at 37°C, the temperature distribution for 

the cylindrical tissue area can be described by the following equations [30] 
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where, f(z) is temperature along the vessel wall, which is unknown here and needs to be 

calculated later using temperature continuity condition on the vessel wall.  

Blood flow velocity profile in the vessel can be obtained as 
2

0 2
(1 )

r
u u

a
= −  by solving the 

Navier-Stokes equation for an incompressible steady-state fluid, where a stands for the 

radius of blood vessel, and 0u  the average blood flow velocity over the vessel cross-section. 

Both temperature and heat flux on the vessel wall ( r a= ) satisfy continuity conditions. 

Defining the following dimensionless parameters: * 0

0

b
b

a

T T
T

T T

−
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−
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T T
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−
, the governing 

equations for the vessel read as  
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where, *
cT is the vessel bulk temperature within cylindrical symmetry, and defined as  
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In the above equations, subscript t, b designate tissue and blood respectively, * means the 

dimensionless parameters. The variable separation method was applied to solve the 

Equation (134), whose solution can be rewritten as product of an axial term Z(z) and a radial 

one R0(r), i.e. *
0( , ) ( ) ( )tT r z R r Z z= , with Z(z) satisfying 
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and R0(r) satisfying 
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The solution to Equation (137) is thus obtained as 1 2( ) cos( ) sin( )m mZ z C z C zβ β= + . mβ  is the 

positive roots of sin( ) 0Lβ = . Then 
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Therefore 
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with normal as 
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The solution to Equation (138) can be obtained as  
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Then the solution to Equation (134) can be expressed as 
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where, mA , 0A are coefficients. Substituting Equation (134) into Equation (143) leads to 
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where, mA , 0A  are obtained as 
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Substituting Equations (145-146) into Equation (143) leads to 
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As to the exact temperature profile within blood vessel, if defining 
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from Equation (135) 
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Applying Equation (135) to this equation, 5( ) 0C z =  was obtained. Substituting Equation 

(148) into Equation (136) leads to 

 

 

*2
* 0

6

7
[ ( )]

24 4
b b c

c
b

u C dTa
T C z

K dz

ρ
= +   (149)  

Further, it can be derived as 
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where, *
0cT  is defined as 
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= − , *

0bT is the vessel inlet temperature at z=0. 

From Equation (135), one obtains *
0bT =1. Therefore  
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Substituting Equation (151) into Equation (150) leads to 
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At r=a, one has 
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Using the continuity condition for heat flux on the blood vessel wall, one approximately has 
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The two terms in this equation can further be obtained from Equation (147) and Equation 

(152), respectively, which are 
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and 
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Exact calculation on 6( )C z  from Equation (154) appears extremely difficult. However, if 

treating 6C  as a constant, and substituting Equation (155) and Equation (156) into Equation 

(154), then integrating it from z = 0 to L, one has 

 2
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 (157) 

This constant 6C  does not exactly satisfy Equation (154) indeed. However it is a simple and 

intuitive approximation. According to former calculation [30], it can be found that heat 

fluxes calculated using temperature from both sides of the blood vessel wall were almost 

identical. Therefore, an approximate estimation on 6C  can also be made as follows. In 

Equation (154), if the axial position z is fixed, 6C  can be obtained through numerical 

iteration. And the relative error 6 6 6[ ( ) ] /C z C C− was very small along the axial direction. For 

the case of aorta, the largest error is less than 1%, while for the case of terminal branches, it 

is 6%. Overall, the smaller vessel diameter, the larger error in the estimated value 6C . 

However, since the present discussion was mainly focused on the case of large blood vessel 

(for tissues with extremely small vessel, a collective model such as Pennes equation is often 

applicable), therefore treating 6( )C z  as a constant was an acceptable approximation. But for 

more complex situations where the above approximation cannot hold, exactly solving the 

Equation (157) for 6( )C z  is still very necessary in the future. 

When analyzing the thermal effect of large blood vessel in cryosurgery, an important issue 

is when the blood vessel begins to freeze and how to control cryoprobe’s temperature to 

completely freeze the target tumor. Substituting Equation (157) into Equation (152), one can 
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set up the relation for the blood vessel temperature ( , )bT a L  to reach the phase change point 

Tm, i.e. 
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Up to now, the above analysis was based on a steady state assumption. And only a single 

blood vessel was considered for the sake of analytical solution, although it does provide 

certain important information for understanding the phase change heat transfer in living 

tissues with blood vessel. Clinically, knowledge on the transient temperature response is 

still very necessary for the successful operation of a cryosurgery. However, such non-steady 

state problem cannot be dealt with by the present method. This needs further efforts in the 

near future using numerical approach. 

5. Conclusion 

This chapter has presented an overview on several typical closed form analytical solutions 

to 3-D bioheat transfer problems with or without phase change as developed before in the 

authors’ laboratory. In these solutions, relatively complex boundary conditions and 

heating/cooling on skin surface or inside biological bodies were addressed. In addition, the 

theoretical strategies towards analytically solving the complex 3-D bioheat transfer 

problems were outlined by the mathematical transformation, the Green’s function method, 

and the moving heat source model etc. 

The analytical solutions introduced in this chapter can be used to predicate the evolution of 

temperature distribution inside the target tissues during tumor hyperthermia, cryosurgery, 

cryopreservation, thermal diagnostics, thermal comfort analysis, brain hypothermia 

resuscitation, and burn injury evaluation. Through fitting the predicted with the 

experimentally measured temperatures at the skin surface, some thermal parameters of 

biological tissues such as blood perfusion, thermal conductivity, and heat capacity, can be 

estimated non-invasively. Moreover, based on the requirements for freezing/heating 

necrosis temperature of tissue, an approach to optimize the parameters of 

cryosurgical/hyperthermic treatment can be obtained using the presented analytical 

solutions. Therefore, the presented analytical solutions are very useful for a variety of 

thermal-oriented biomedical studies. However, it should be pointed out that although such 

analytical solutions have some versatility in dealing many bioheat transfer problems, 
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numerical approaches are still needed for more complex situations. In fact, the relation 

between analytical and numerical solutions should be complementary. On one hand, 

numerical approach can deal with more complex problem than analytical way. On the other 

hand, the analytical results can serve as benchmark solutions for numerical analyses on 

complex situations. In summary, it is believed that even the applications with some 

simplified conditions do not affect the applicability of the present analytical solutions. 

Nomenclature 

a Radius of blood vessel [ m ] 

b Radius of tissue [ m ] 

c  Specific heat of tissue [ CJ kg° ] 

bc   Specific heat of blood [ CJ kg° ] 

C1,…,C6 Coefficients 

1f   Surface heat flux 

2f   Temperature of the cooling medium 

0h  Heat convection coefficient [ 2 CW m ° ] 

fh  Heat convection coefficient [ 2 CW m ° ] 

k  Thermal conductivity of tissue [ CW m ⋅ ° ] 

L  Distance between skin surface and body core [ m ] 

1s  Width of the tissue domain in y  direction [ m ] 

2s  Width of the tissue domain in z  direction [ m ] 

1P  Point heating power [ 3W m ] 

R  Transformed temperature [ C° ] 

mQ  Metabolic rate of tissue [ 3W m ] 

rQ  Spatial heating [ 3W m ] 

t , τ  Time [ s ] 

T  Tissue temperature [ C° ] 

aT  Artery temperature [ C° ] 

cT  Body core temperature [ C° ] 

fT  Fluid temperature [ C° ] 

u0  Average blood flow velocity [ m s ] 

W  Transformed temperature [ C° ] 

, ,x y z  Coordinate [ m ] 

X  Location  

, ,ξ ϑ ς  Coordinate [ m ] 
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α  Thermal diffusivity of tissue [ 2m s ] 

η  Scattering coefficient [ 1 m ] 

bω  Blood perfusion [ / /ml s ml ] 

ρ  Density of tissue [ 3kg m ] 

bρ  Density of blood [ 3kg m ] 

Ω  Spatial domain 

Γ  Temporal averaging period [ s ] 

 

Secondary parameters 

A  b b bA c kω ρ=  

bW  b b bW ρ ω=  

 

Subscripts 

b  Blood  

l  Liquid phase 

m  Phase change point or metabolism 

n  Unit normal vector 

s  Solid phase 

t  Tissue 

 

Superscripts 

— Mean value 

' Fluctuation value 

*   Dimensionless parameters 

Author details 

Zhong-Shan Deng 

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China 

Jing Liu 

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China 

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China 

Acknowledgement 

Part of the researches as presented in this chapter has been supported by the National 

Natural Science Foundation of China under grants Grant Nos. 51076161 and 81071255, the 

Specialized Research Fund for the Doctoral Program of Higher Education, and Research 

Fund from Tsinghua University under Grant No. 523003001. 



 
Analytical Solutions to 3-D Bioheat Transfer Problems with or without Phase Change 241 

6. References 

[1] Liu J, Wang CC (1997) Bioheat Transfer (in Chinese). Beijing: Science Press. 435 p. 

[2] Liu J, Deng ZS (2008) Physics of Tumor Hyperthermia (in Chinese). Beijing: Science 

Press. 381 p. 

[3] Liu J, Chen X, Xu LX (1999) New Thermal Wave Aspects on Burn Evaluation of Skin 

Subjected to Instantaneous Heating. IEEE Transactions on Biomedical Engineering 46: 

420-428. 

[4] Lv YG, Liu J, Zhang J (2006) Theoretical Evaluation on Burn Injury of Human 

Respiratory Tract due to Inhalation of Hot Gas at the Early Stage of Fires. Burns 32: 436-

446. 

[5] Liu J (2007) Cooling Strategies and Transport Theories for Brain Hypothermia 

Resuscitation. Frontiers of Energy and Power Engineering in China l: 32-57. 

[6] Deng ZS, Liu J (2004) Computational Study on Temperature Mapping Over Skin 

Surface and Its Implementation in Disease Diagnostics. Computers in Biology and 

Medicine 34: 2004. 

[7] Fanger PO (1970) Thermal Comfort - Analysis and Applications in Environmental 

Engineering. New York: McGraw-Hill. 244 p. 

[8] Liu J (2007) Principles of Cryogenic Biomedical Engineering (in Chinese). Beijing: 

Science Press. 338 p. 

[9] Diller KR (1992) Modeling of Bioheat Transfer Processes at High and Low 

Temperatures. Advances in Heat Transfer 22: 157-357. 

[10] Hua TC, Ren HS (1994) Cryogenic Biomedical Technology (in Chinese). Beijing: Science 

Press. 412 p. 

[11] Roemer RB (1999) Engineering Aspects of Hyperthermia Therapy. Annual Review of 

Biomedical Engineering. 1: 347-376. 

[12] Gage AA, Baust J (1998) Mechanism of Tissue Injury in Cryosurgery. Cryobiology. 37: 

171-186. 

[13] Deng ZS, Liu J (2002) Analytical Study on Bioheat Transfer Problems with Spatial or 

Transient Heating on Skin Surface or Inside Biological Bodies. ASME Journal of 

Biomechanical Engineering. 124: 638-649. 

[14] Pennes HH (1948) Analysis of Tissue and Arterial Blood Temperatures in the Resting 

Human Forearm. Journal of Applied Physiology. 1: 93-122. 

[15] Liu J (2006) Bioheat Transfer Model. In: Akay M, editor. Wiley Encyclopedia of 

Biomedical Engineering. John Wiley & Sons. pp. 429-438. 

[16] Wulff W (1974) The Energy Conservation Equation for Living Tissues. IEEE 

Transactions on Biomedical Engineering. 21: 494-497. 

[17] Chen MM, Holmes KR (1980) Microvascular Contributions in Tissue Heat Transfer. 

Annals of the New York Academy of Sciences. 335: 137-150. 

[18] Weinbaum S, Jiji LM (1985) A New Simplified Bioheat Equation for the Effect of Blood 

Flow on Local Average Tissue Temperature. ASME Journal of Biomechanical 

Engineering. 107: 131-139. 



 

Heat Transfer Phenomena and Applications 242 

[19] Liu J, Deng ZS (2009) Numerical Methods for Solving Bioheat Transfer Equations in 

Complex Situations. In: Minkowycz WJ, Sparrow EM, Abraham JP, editors. Advances 

in Numerical Heat Transfer (vol.3). Taylor & Francis. pp. 75-120. 

[20] Deng ZS, Liu J (2002) Monte Carlo Method to Solve Multi-Dimensional Bioheat Transfer 

Problem. Numerical Heat Transfer, Part B: Fundamentals. 42: 543-567. 

[21] Vyas R, Rustgi ML (1992) Green's Function Solution to the Tissue Bioheat Equation. 

Medical Physics. 19: 1319-1324. 

[22] Gao B, Langer S, Corry PM (1995) Application of the Time-Dependent Green's Function 

and Fourier Transforms to the Solution of the Bioheat Equation. International Journal of 

Hyperthermia. 11: 267-285. 

[23] Durkee JW, Antich PP, Lee CE (1990) Exact-Solutions to the Multiregion Time-

Dependent Bioheat Equation - Solution Development. Physics in Medicine and Biology. 

35: 847-867. 

[24] Durkee JW, Antich PP (1991) Exact-Solution to the Multiregion Time-Dependent 

Bioheat Equation with Transient Heat-Sources and Boundary-Conditions. Physics in 

Medicine and Biology. 36: 345-368. 

[25] Kou HS, Shih TC, Lin WL (2003) Effect of the Directional Blood Flow on Thermal Dose 

Distribution during Thermal Therapy: An Application of a Green's Function Based on 

the Porous Model. Physics in Medicine and Biology. 48: 1577-1589. 

[26] Liu J, Zhu L, Xu LX (2000) Studies on the Three-Dimensional Temperature Transients in 

the Canine Prostate during Transurethral Microwave Thermal Therapy. ASME Journal 

of Biomechanical Engineering. 122: 372-379. 

[27] Deng ZS, Liu J (2001) Blood Perfusion Based Model for Characterizing the Temperature 

Fluctuation in Living Tissues. Physica A: Statistical Mechanics and Its Applications. 300: 

521-530. 

[28] Liu J, Zhou YX (2002) Analytical Study on the Freezing and Thawing Processes of 

Biological Skin with Finite Thickness. Heat and Mass Transfer. 38: 319-326. 

[29] Li FF, Liu J, Yue K (2009) Exact Analytical Solution to Three-Dimensional Phase Change 

Heat Transfer Problems in Biological Tissues Subject to Freezing. Applied Mathematics 

and Mechanics. 30: 63-72. 

[30] Zhang YT, Liu J, Zhou YX (2002) Pilot Study on Cryogenic Heat Transfer in Biological 

Tissues Embedded with Large Blood Vessels. Forschung im Ingenieurwesen - 

Engineering Research. 67: 188-197.  


