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1. Introduction 

Helically segmented finned tubes are used in compact heat recoveries in order to save 

energy in industrial applications. These equipments are small because the gas phase 

turbulence and the heat transfer surface are increased by the presence of fins; both are 

relevant in heat transfer. However, the gas phase pressure drop is elevated and 

consequently, operational problems such as backpressure can emerge. Therefore, a study 

focusing on finned tubes is important in order to understand the fluid dynamics and heat 

transfer phenomena. There are two main methods for the analysis; the first uses integral 

analysis (gross effects) and the second uses Computational Fluid Dynamics (CFD) 

techniques. Integral analyses allow a quick evaluation of thermo-physical phenomena with 

minimum computational infrastructure but only gross effects can be examined. These 

analyses are primarily used in the design of equipment because only inlet and outlet fluid 

properties are important. The CFD technique requires good computational support and long 

calculation times, but it provides complete and detailed information on the intricate thermo-

physical phenomena. This modern analysis requires a correct implementation of boundary 

conditions in order to adequately represent the flow hydrodynamics and heat transfer 

phenomena. 

The implementation of boundary conditions is relevant in differential analyses because 

predictions depend from it. The differential analyses can be developed by means of 

analytical solutions or by means of numerical methods. In the case of helically segmented 

finned tube bank analyses, the analytical solutions are not possible because the geometry is 

complex. Then, a numerical simulation of helically segmented finned tube bank is the best 

option. The numerical simulations can be carried out by means of three different CFD 
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alternatives such as Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and 

Reynolds Average Navier-Stokes Equations (RANS). The DNS technique is limited to low 

Reynolds flows with simple configurations. The LES technique is less demanding than the 

DNS, but it takes considerable computing resources and computing time because the 

required calculations are always three-dimensional and unsteady. Finally, the RANS 

technique, which is widely used in industrial applications, considers average spatial and 

temporal scales of turbulent fluctuations and solves the transport equations as a function of 

these average variables. However, these equations are not closed and additional models 

(turbulence models) are indispensable to close the system. So, the numerical analysis on 

helically segmented finned tube bank (complex geometry) is proposed with the RANS 

technique. 

In the open literature there are several papers have been focused on numerical analysis of 

small finned tube banks, the majority of them are restricted to numerical simulations on bare 

tube layout (symmetric tube layout). For example, Beale and Spalding [1], Comini and Croce 

[2] and Beale [3, 4] have performed simulations on laminar flow regimes exclusively. Other 

authors like Benhamadouche and Laurennce [5] and Salinas-Vazquez et al. [6] have conducted 

studies on turbulent flow regimes. These simulations have analyzed symmetric tube layout 

with periodic boundary conditions. On the other hand, there are few numerical simulations 

focused on helically segmented finned tubes (asymmetric finned tubes). The papers are 

focused on laminar flows with Dirichlet boundary conditions. For example, Hofmann [7] and 

Mcilwain [8, 9] conducted two-dimensional simulations on a single helically segmented finned 

tube. Afterwards, Lemouedda et al. [10] developed a three-dimensional numerical simulation 

in a small finned tube bank. There are no reports of numerical simulations of asymmetric 

finned tube layout (helically segmented finned tube bank) under periodic boundary conditions 

and the effect of inside fluid temperature has not been considered. Therefore, a methodology 

to calculate flow properties in different zones of finned tube bank is required in order to 

implement boundary conditions on a single isolated finned tube module. This methodology 

considers calculations in entire and partial finned tube layout and it is applied to calculate 

boundary conditions in a numerical simulation. Then, a compact heat recovery in staggered 

layout is represented as some single isolated finned tube modules in order to save 

computational resources. The single isolated finned tube module is simulated and predictions 

are compared with results from correlations available in the open literature. 

2. Methodology 

The differential analysis of compact heat recoveries with CFD techniques requires high 

calculation times because a full finned tube bank needs to be simulated. The dimensions of 

computational domain are high due to size of finned tubes and number of finned tubes used 

in the equipment. So, the necessity to reduce calculation times is relevant in numerical 

simulations because these times can be excessively-high. The only way to reduce calculation 

times is by reduction of computational domain but it requires a correct implementation of 

boundary conditions for representing adequately physical phenomena. A complete finned 
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tube bank can be represented by a single isolated finned tube module in the fully developed 

flow region as shown in figure 1. The single isolated finned tube module consists of an 

arrangement of entire and partial finned tubes. This finned tube layout can allow a 

computational domain reduction of 99% but requires values of boundary conditions in 

intermediate regions of finned tube bank. The values of boundary conditions for velocity, 

pressure, and temperature should be calculated for entire and partial finned tubes in 

intermediate regions of finned tube bank. Then, a method to calculate those boundary 

conditions must be developed in order to represent the finned tube bank as a single isolated 

finned tube module (figure 1). This methodology is based on integral models which have 

been validated experimentally [22] with precision higher than 90% for pressure and 95% for 

temperature. So, a numerical simulation of single isolated finned tube module in the fully 

developed flow with periodic boundary conditions is done. Numerical predictions are 

compared with results obtained from best correlations available in the open literature, 

which are presented in section 2.2. So, the mean pressure drop, mean temperature 

difference, mean Nusselt number and mean friction factor are compared. 

 

Figure 1. Finned tube bank in staggered layout. 
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2.1. Finned tube bank analysis 

The complete finned tube bank may be represented as a single isolated fined tube module in 

the fully developed flow as shown in figure 1. This finned tube layout requires values for 

velocity, pressure, and temperature in intermediate regions of finned tube layout for both 

outside and inside flows. These values are obtained by means of an integral analysis, which 

considers the Logarithmic Mean Temperature Difference method (LMTD). However, this 

method only can be applied for entire finned tubes in arrangement of two or more finned 

tube rows and two or more finned tubes per row. Then, the complete finned tube bank and 

the single isolated finned tube module should be analyzed in order to apply LMTD method, 

which is described in section 2.2. The finned tube bank can be divided in single isolated 

finned tube modules as shown in figure 2a. In this figure, a full finned tube bank (6 finned 

tube rows with 4 finned tubes per row) is composed by 12 single isolated finned tube 

modules (black and red boxes). Every finned tube module contains 2 finned tubes because 

there are one entire finned tube and 4 quarters of finned tube. Then, two single isolated 

finned tube modules like (red boxes) can be represented as an equivalent small finned tube 

bank (blue box) as shown in figure 2b. Therefore, the finned tube bank showed in figure 1 is 

represented as a single isolated finned tube modules arrangement as presented in figure 2a.  

Figure 2b shows a small finned tube bank (blue box) composed of 2 finned tubes per row 

and 2 rows of finned tubes, which is arranged in order to obtain 2 single isolated finned tube 

modules (red box). Then, the analysis of single isolated finned tube modules must consider 

minimum arrangements of 2 finned tubes per row and 2 rows of finned tubes. This 

consideration does not affect predictions of friction factor and Nusselt number because these 

dimensionless parameters are not function of number of finned tubes involved in the 

arrangement if mass flow is corrected to the new finned tube layout, which is demonstrated 

in the sensitive analysis (section 4.1). So, models for evaluating heat transfer and pressure 

drop can be applied to the equivalent small finned tube bank (figure 2b). The pressure drop 

depends mainly of flow hydrodynamics, which shows similar velocity fields for every single 

isolated finned tube module as is discussed in results analysis (section 4.2). Therefore, the 

models for evaluating pressure drop can be applied directly in the equivalence small finned 

tube bank (figure 2b). However, the pressure drop cannot be considered as a boundary 

condition because only represents the pressure difference at the inlet and exit of single 

isolated finned tube modules. The pressure in the boundaries of single isolated finned tube 

module is obtained with the analysis of finned tube bank from figure 1. In this figure, the 

single isolated finned tube in the fully developed region (red box) is located near to the exit 

of module. This finned tube module has to the right a part of finned tube module (blue box) 

while at left has one and a part finned tube module (green box). In the case of an 

atmospheric discharge of flow gases (zero relative pressure), which is correct because flue 

gases of compact heat recoveries cannot be used in additional industrial process, the relative 

pressure drop in the last part of single isolated finned tube module (blue box, figure 1) is 

calculated as an proportional arithmetic mean pressure drop to the part of this finned tube 

module. The proportional part of this module corresponds to a value of 0.75. Therefore, the 

relative pressure at the exit of the single isolated finned tube module in the fully developed 
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flow (red box, figure 1) corresponds to the value calculated previously. Finally, the relative 

pressure at the inlet of the single isolated finned module (red box, figure 1) is calculated 

from the sum of the pressure drop in this finned tube module and the proportional part 

(0.25) of the left finned tube module (green box, figure 1). 

 

Figure 2. Single isolated finned tube modules in the finned tube bank. 

The direct application of LMDT method for heat transfer in the equivalent small finned tube 

bank (blue box, figure 2b) is not recommended because the outside flow, in the single 

isolated finned tube module (red box, figure 2b), is cooled by tree different cooling sources 

(inside fluid temperature). While the equivalent small finned tube bank (blue box, figure 2) 

only has the influence of two cooling sources. One way to solve this problem is by means of 

temperature evaluation of outside flow for small finned tube layouts. The finned tube 

layouts considered have an initial arrangement of two finned tube rows, which are 

evaluated. Later, calculations over initial finned tube bank with additional finned tube rows 

are proposed (see section 2.3). This procedure is iterative because only initial conditions at 

the inlet of gas-phase flow and inside fluid in the complete finned tube bank (figure 1) are 
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known. Once temperature evaluation for each finned tube layout is done, the inside fluid 

temperatures for each finned tube row are defined. The sensitivity analysis (section 4.1) of a 

finned tube bank shows that consideration applied for evaluating boundary conditions are 

satisfactory. These boundary conditions are employed in a numerical analysis of the finned 

tube bank showed in figure 1, which is described in section 2.3. Numerical predictions are 

compared with results from models for heat transfer and pressure drop in helically 

segmented finned tubes presented in section 2.2. The comparative analysis show close 

values between models and numerical results as discussed in results (section 4). 

2.2. Logarithmic Mean Temperature Difference (LMTD) method 

The methodology for calculating boundary conditions in the single isolated finned tube 

module is based on the Logarithmic Mean Temperature Difference method. This method 

allows the evaluation of heat transfer coefficients and friction factors for different 

geometries, according to models available in the open literature. These parameters permit 

the global evaluation of heat transfer and flow hydrodynamics of finned tube bank. The 

LMTD method considers the evaluation of overall heat transfer coefficient (U), which is 

based on the outside finned tube and is defined with the following equation: 

 
( )

( )( )

1

1
o

o o fo o r w o o
fi

w i i io r f f t

U
A A R h h e A A

R
k A h Ah h A Aη

=
+ +  

+ + +  + +  

 (1) 

where ho, hi, and hr are mean outside convective coefficient, mean inside convective 

coefficient, and radiation heat transfer coefficient, respectively. In the case of flue gas 

temperatures lower than 300ºC, the value of hr could be negligible [11], and so this value is 

considered zero. Rfo and Rfi, are the outside and inside fouling factors, respectively. ηf, Af, At, 

Ao, and Ai are fin efficiency, fin surface area, bare tube surface area, total surface area, and 

inside surface area, respectively. Finally, ew and kw are tube wall thickness and tube material 

thermal conductivity, respectively. 

The mean convective coefficients are calculated for the inside and outside of finned tubes. 

The mean inside convective coefficient (hi) considered in the evaluation of U is the 

Gnielinski’s correlation [12]. This model has been validated with satisfactory results by 

Rane, et al. [13] and according to Bejan [14] is the best available in the open literature. The 

Gnielinski’s correlation [12] is valid for 0.5 ≤ Pr ≤ 2000 and 3000 ≤ Re ≤ 5x106, which is shown 

in the following equation: 

 
1/2 2/3

( / 8)(Re 1000)Pr

1 12.7( / 8) (Pr 1)

i i ih d f
Nu

k f

−
= =

+ −
 (2) 

where di and k are inside diameter of tube and thermal conductivity of fluid. Re and Pr are 

the Reynolds Number and Prandtl Number. Finally, fi is the friction factor, which is defined 

in the following equation: 
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There are many mean outside convective heat transfer coefficients (ho) in the open literature 

such as models proposed by Weierman [15], ESCOA [16], Nir [17], and Kawaguchi et al. 

[18]. The models attributable to Weierman [15] and Kawaguchi et al. [18] are recommended 

by Martinez et al. [19], but Kawaguchi´s et al. [18] model is adopted. The model of 

Kawaguchi, et al. [18] is valid for 7000 ≤ Rev ≤ 50000 and 0.112 ≤ sf/dv ≤ 0.198, which is shown 

in the next equation: 

 ( )
0.062

0.784 1/3
2 Re Pr / o v

v f v
g

h d
Nu A s d

k

−
= =  (4) 

where Rev is the Reynolds number based on the volume-equivalent diameter. The terms A2, 

sf, and dv are the experimental coefficients for tube rows, fin gap, and volume-equivalent 

diameter, respectively. The coefficient A2 is obtained from Kawaguchi´s, et al. [18] model. 

Finally, kg is the thermal conductivity of gases.  

The volume-equivalent diameter, dv, is defined by the following equation: 

 ( )
1/2

2
2 22v f f o f o od t n d l d d

  
= + − +    

 (5) 

where nf , tf, lf, and do are fin number per unit length, fin thickness, fin height, and outside 

diameter of bare tube, respectively. 

Gas phase pressure drop can be calculated with models proposed by Weierman [15], 

ESCOA [16], Nir [17], and Kawaguchi et al. [18]. The model of Weierman [15] has been 

validated with satisfactory results by Martinez, et al. [19] and as a consequence, is adopted. 

In the analysis of compact heat recoveries a maximum pressure drop of 248.9 Pa [20] (1 inch 

(in) of water column (wc)) is considered in order to avoid technical problems such as 

backpressure. The pressure drop is calculated with the following empirical equation:  
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x

ρ

ρ

 + +  
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where B, Go, Nr, fo, and ρgp are the contraction factor, the gas mass flux, the number of tube 

rows, the friction factor, and the gas-phase density at the average outside temperature, 

respectively. 

The gas phase friction factor (fo) is calculated with Weierman´s model [15], which is valid for 

tube diameters between 38.1-60.96 mm and mass velocity of the gas between 0.67-40.36 

kg/m2s. The Weierman´s model [15] is shown in the following equation: 
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 (7) 

where Reo is the Reynolds number based on the outside bare and cp is the specific heat 

capacity at constant pressure. Also, df and do are the outside diameter of the finned tube and 

the outside diameter of the bare tube, respectively. The terms Sl and St indicate the 

longitudinal pitch and the transverse pitch, respectively.  

For more details about thermal evaluation of helically segmented finned tube banks see 

reference [21]. 

2.3. Sensitive analysis of finned tube bank 

The methodology is based on the equivalence of a finned tube bank with single isolated 

finned tubes modules layouts. This methodology, which is based on the LMTD method, 

requires that predictions of friction factor and Nusselt number be independent of finned 

tube layout and number of finned tubes involved in compact heat recoveries. Then, a 

sensitive analysis of the finned tube bank is required in order to validate considerations 

in the methodology. The sensitive analysis is done for a small heat recovery (figure 1), in 

which results of friction factor and Nusselt number are compared for different finned 

tube layouts and finned tube lengths. The geometric characteristics of helically 

segmented finned tube and finned tube layout are shown in figure 3. In this figure, a 

front and side views of the finned tube used in this study and its staggered configuration 

is presented. The finned tube bank analyzed corresponds to the layout shown in figure 1, 

which is composed by 4 finned tubes per row and 6 finned tube rows. The small heat 

recovery (figure 1) is analyzed with LMTD method for different finned tube 

configurations. 

The finned tube configurations used in the sensitive analysis considers an initial finned 

tube layout of 2 finned tubes per row and 2 finned tubes rows (red polygon in figure 4). 

Subsequently, one finned tube row is added to reach 6 finned tube rows (red dash boxes 

in figure 4). Then, another finned tube is added to the row (blue polygon, figure 4) in 

order to obtain 3 finned tubes per row and 2 finned tube rows. Previous procedures in 

initial finned tube layout are done until 6 finned tube rows (blue dash boxes, figure 4) are 

reached. Finally, one last finned tube row is added (green polygon in figure 4) in order to 

get 4 finned tubes per row and 2 finned tube rows. The same procedure for previous 

finned tube layouts are done until full finned tube bank (gray dashed box) is reached. 

Once finned tube bank layout analysis is done, a similar study is proposed for different 

finned tube length. The procedure is the same as previous analysis but at different finned 

tube length. The finned tube lengths proposed are 1m, 0.5 m, and 0.05194 m. The last 
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finned tube length corresponds to the value used in the numerical simulation. The results 

(section 4.1) show variations lower than 1% for Nusselt number and 3.6% lower for 

friction factor. These results confirm that considerations employed in this methodology 

(boundary condition calculation) are appropriate. The analysis is obtained with the 

thermodynamic conditions presented in table 1 for different finned tubes per row and 

finned tubes length which, shows deviations on Reynolds number based in the outside 

diameter tube (Reo) lower than 0.4%. The variations in Reo are due to adjustment of mass 

flow at different finned tube configurations. 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 3. Geometric characteristics of finned tubes and finned tube layout. 
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Figure 4. Finned tube layout configurations in sensitive analysis. 

Finned tube length: 1 m

 Finned tubes per row 

Parameter 2 3 4 

mass flow (kg/s) 0.3624 0.05436 0.7248 

Reo 8562 8562 8562 

Ma < 0.03 < 0.03 < 0.03 

Temperature (ºC) 60 60 60 

Finned tube length: 0.5 m

 Finned tubes per row 

Parameter 2 3 4 

mass flow (kg/s) 0.1812 0.2718 0.3624 

Reo 8567 8567 8567 

Ma < 0.03 < 0.03 < 0.03 

Temperature (ºC) 60 60 60 

Finned tube length: 0.05194 m

 Finned tubes per row 

Parameter 2 3 4 

mass flow (kg/s) 9.411x10-3 14.116x10-3 18.822x10-3 

Reo 8599 8599 8599 

Ma < 0.03 < 0.03 < 0.03 

Temperature (ºC) 60 60 60 

Table 1. Thermodynamic conditions. 
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3. Numerical simulation 

In this section, the methodology for calculating boundary conditions in a single isolated finned 

tube module is employed in a numerical simulation of helically segmented finned tube bank in 

staggered layout. The objective is to apply the methodology in a numerical model that 

represents the interaction between the hydrodynamics and the heat transfer of a turbulent gas 

flow in complex systems. The simulation allows detailed analysis on compact heat recoveries 

that can be used for improving thermal behaviour. So, a correct implementation of boundary 

conditions in order to represent adequately physical phenomena is essential. The numerical 

model is focused to the outside finned tube, because the gas phase dominates the heat transfer 

[22] and also the pressure drop is critical [22]. However, the effect of the internal fluid is 

considered by means of an average inside temperature in each finned tube. Thus, the 

boundary conditions for outside flow and inside fluid are calculated with methodology 

described in section 2. In this numerical simulation, periodic boundary conditions are 

proposed for the single isolated finned tube module in the fully developed flow (Figure 1). 

Numerical predictions of Nusselt number and friction factor are compared with results 

obtained from correlations of Kawaguchi et al. [18] and Weierman [15], respectively in order to 

verify numerical results that depend on boundary conditions values. 

3.1. Governing equations 

The analysis of turbulent flows is complex, because fluid properties are irregular in space 

and time. Instantaneous variables (φ) are represented as a function of two terms: the mean 

( )ϕ  and its fluctuation ( )ϕ′′ . These terms are used in the transport equations that govern the 

flow movement and the heat exchange. The transport equations are averaged by means of 

Favre [23] method, which are solved for mean values of the fluid properties. Thereby, the set 

of mass, momentum, and energy transport equations in Cartesian system is defined as 

follows: 

 ( ) 0V
t

ρ
ρ

∂
+ ∇ ⋅ =

∂


 (8) 

 ( ) ( ) ( )2V V V P V V V g
t

ρ ρ µ ρ ρ
∂

′′ ′′+ ∇ ⋅ ⊗ = −∇ ⋅ + ∇ − ∇ ⋅ +
∂

         
 (9) 

 ( ) ( ) ( )
hh Vh J V h

t
ρ ρ ρ

∂
′′ ′′+ ∇ ⋅ = −∇ ⋅ − ∇ ⋅

∂

      (10) 

where ρ , V


, V ′′


, and h  are the mean density, instantaneous velocity, fluctuating velocity, 

and mean enthalpy, respectively. µ and g


 are the viscosity and the gravitational 

acceleration, respectively. The terms V Vρ ′′ ′′
 

 and V hρ ′′ ′′


 are the apparent Reynolds stress 

tensor and the turbulent heat flux, respectively. P is the pressure tensor. Finally, hJ∇ ⋅


 is the 

diffusive heat flux, which is modeled with Fourier´s law. 
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Equations (2) and (3) demand additional mathematical expressions to model V ϕ′′ ′′  term. 

The closure of these equations requires modeling of Reynolds stress tensor and of the 

turbulent heat flux. Then, the Reynolds stress tensor is closed with turbulence models. In 

this work, the k-ε RNG (Renormalization Group) turbulence model developed by Yakhot 

and Orzag [24] is considered. The turbulent heat flux vector is obtained by means of an 

analogy between momentum transfer and thermal energy transfer. Under this concept, it is 

possible to establish a suitable articulation between the turbulent heat flux vector and the 

turbulent flow viscosity. 

3.2. Boundary conditions 

The implementation of periodic boundary conditions alleviates the computational resources, 

because the computational domain is reduced considerably. So, only a single isolated finned 

tube module in the fully developed flow region needs to be simulated (figure 1). Also, the tube 

length required (spatial direction y in figure 1) is minimum because only is necessary the 

length for the flow does not vary in this spatial direction because periodic conditions assume 

no influence of walls or position in any direction. Then, the computational domain is reduced 

99%, as shown in table 2, because only is necessary the single isolated finned tube module 

(figure 1) with a tube length of 0.05194 m. However, the numerical simulation requires a 

correct inclusion of boundary conditions in order to adequately represent the physical 

phenomenon. So, the boundary conditions are applied to a turbulent air flow in a stationary 

and fully-developed flow regime. The methodology developed by Patankar et al. [25] and 

Kelkar and Patankar [26] is implemented in this work. This methodology was generated for 

laminar flows and as a consequence, only velocity, pressure and temperature are considered as 

a periodic behaviour. However, additional considerations for turbulent flows need to be 

implemented. These considerations should depend on the turbulence model selected. 

The periodic velocity is based on the non slip condition on the boundary walls of the 

computational domain and negligible value of the velocity variation in every spatial 

direction. So, the analysis is presented for the flow direction (z), which can be generalized 

for the remaining spatial directions. Thereby, the periodic condition for the component 

velocity in the flow direction ( w ) is defined as follows: 

 0 0 0
w

u v
z

∂
= = =

∂

    (11) 

where , ,u v w    are the mean velocity components in the respective spatial directions x, y, z. 

In the case of fully developed flows, the velocity is the same at a characteristic length (L), 

and this is shown in the next equation: 

 ( , , ) ( , , )w x y z w x y z L= +   (12) 

The periodic boundary velocities need an initial value wb (bulk velocity), which is calculated 

with the following equation: 
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0 0

1 x y

b med
yz

w w dxdy
A

=    (13) 

where wmed is an initial velocity profile. 

The pressure field is obtained from a periodic behavior taking into consideration a pressure 

drop in the flow direction. This implies that the pressure is defined by the sum of a periodic 

pressure term in the flow direction and an average pressure drop. This is represented in the 

following equation: 

 ( , , ) ( , , )P x y z P x y z zβ= −  (14) 

where P   and β are periodic pressure and average pressure-gradient in the flow direction.  

 

 Dimensions:  

Layout x (m) y (m) z (m) cells 

Finned tube bank 0.4572 1.0 0.59878 34200000 

Single isolated finned tube module 0.1143 0.05194 0.20312 178512 

  

 Computational domain reduction:  

Finned tube bank reference    

Single isolated finned tube module 99.6    

Table 2. Finned tube layout dimensions. 

These two terms are defined in the pair of equations (15) and (16): 

 ( , , ) ( , , )P x y z P x y z L= +   (15) 

 ( , , ) ( , , )P x y z P x y z L P

L L
β

− + Δ
= =
  

 (16) 

where PΔ   is the pressure drop over a finned tubes module, which can be calculated 

through the empirical equation (6). 

The temperature field is obtained with constant wall heat flux boundary condition, which 

considers a constant variation of temperature in the flow direction; that is, the heat transfer 

magnitude is the same from one finned tube module to another finned tube module. This 

boundary condition can be appropriate for the present study because it can be applied to 

turbulent flows. However, it is appropriate if a uniform heat transfer is found in the small 

finned tube bank simulation. The numerical results in small finned tube bank show a quasi-

constant mean temperature (plane xy) in the flow direction as shown in results section. 

The temperature field is obtained from a periodic behavior and an adjustment term of the 

temperature in the flow direction. Thus, the temperature is defined by a periodic 

temperature term in the flow direction and an average temperature adjustment term 

expressed in the next expression: 
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 ( , , ) ( , , )T x y z T x y z L zγ= + +  (17) 

where ( , , )T x y z  and γ are the mean temperature field and the temperature-gradient term, 

respectively. The temperature-gradient term can be calculated with the following equation: 

 ( , , ) ( , , )

g p

T x y z T x y z L Q

L m c L
γ

− +
= =
  


 (18) 

where Q , m , and cp are heat addition, mass flow, and specific heat at constant pressure, 

respectively. 

The heat addition in the flow direction for the single isolated module is determined with the 

next equation: 

 
o T MLQ U A T= Δ  (19) 

where Uo is the overall heat transfer coefficient, AT  the overall finned surface and ΔTML the 

logarithmic mean temperature difference. 

The value of Uo is obtained from equation (1) and AT is obtained with geometry of finned 

tube. For more details about calculations of these parameters see reference [21]. 

The numerical simulation of turbulent flow on a single isolated module needs the 

implementation of periodic conditions for additional variables, according to the turbulence 

model. In the case of k-ε RNG turbulence model, the turbulent kinetic energy (k) and its 

dissipation rate (ε) show a periodic behavior, according to Martínez [27]. So, the periodic 

condition for the turbulent kinetic energy and its dissipation rate are defined as follows: 

 ( , , ) ( , , )k x y z k x y z L= +   (20) 

 ( , , ) ( , , )x y z x y z Lε ε= +   (21) 

The inclusion of periodic boundary conditions in the simulation of single isolated module 

requires light changes in the governing equations. The mass conservation equation does not 

change and is evaluated by means of equation (1). In the case of pressure field, the 

momentum conservation equation needs to include the adjust term of average pressure-

gradient in the flow direction. So, the equation (2) can be written as: 

 ( ) ( ) ( )2V V V P V V V g
t

ρ ρ β µ ρ ρ
∂

′′ ′′+ ∇⋅ ⊗ = −∇⋅ + ∇ −∇⋅ +
∂

           (22) 

The term β is included in the CFD code PHOENICS 3.5.1 [28] by means of an additional 

source term in the momentum equation. On the other hand, the evaluation of temperature 

field requires that energy conservation equation must be adjusted in order to include the 

cooling of gas phase in the flow direction. So, the equation (3) can be written as: 

 ( ) ( ) ( )
( ) hh Vh V J V h

t
ρ ρ γ ρ

∂
′′ ′′+ ∇ ⋅ + ∇ ⋅ = −∇ ⋅ − ∇ ⋅

∂

        (23) 
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The term ( )Vγ∇ ⋅


 is included in the CFD code PHOENICS 3.5.1 [28] by means of an 

additional source term in the energy equation. 

The turbulent kinetic energy and the dissipation turbulent rate are calculated directly from 

equations (20) and (21) because these equations do not change. 

3.3. Numerical details 

The numerical simulation is developed for a single isolated finned tube module in the fully 

developed flow, which is shown in Figure 5. In this figure, the single isolated finned tube 

module is presented with boundary conditions calculated with methodology proposed. The 

dimensions of computational domain and the mesh used for simulation are shown in table 

2. This table exhibits a reduction in computational domain with single isolated finned tube 

module of 99% that represents finite calculation times. The used mesh in numerical 

simulation considers that numerical predictions are independent from it. The 

thermodynamic employed conditions in the simulation work are presented in table 1 for 

finned tube length of 0.05194 m and figure 5. On the other hand, the complex geometry is 

represented by cut-cell method [29], which allows the use of Cartesian grids. The numerical 

simulations consider a staggered grid under a hybrid discretization scheme of the 

convective term. It was also considered that the system is in a stationary state and is only 

exposed to one gravitational field (in heat recoveries, the fluid generally flows in vertical 

direction), and that the gas discharge (finned tube bank outlet) occurs in a sea level 

atmosphere. Finally, the geometric characteristics of the finned tube used in this study are 

shown concurrently in Figure 3. 

The numerical results are used for evaluating average Nusselt Number (Nu) and average 

friction factor in small finned tube bank and single isolated module. The results are 

compared with values obtained from Correlations of Kawaguchi, et al [18] and Weierman 

[15] models, respectively. 

The average Nusselt number is calculated with the next equation: 

 v

g

hd
Nu

k
=  (24) 

where h  is the average convective coefficient, which is defined as: 

 
o LMnum

Q
h

A T
=

Δ


 (25) 

where ΔTLMnum is the numerical-logarithmic mean temperature difference, which is 

calculated as: 

 
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

i b i b
LMnum

i b

i b

T z L T z L T z T z
T

T z L T z L
Ln

T z T z

   + − + − −   Δ =
 + − + 

 − 

 (26) 
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Figure 5. Computational domain in numerical simulation. 

where Ti and Tb are the mean temperature inside finned tubes and mean boundary 

temperature, respectively. The conditions at z and z+L correspond to the inlet and exit of the 

single isolated finned tube module. 

The numerical-average friction factor is obtained directly from equation (6) in which 

numerical pressure drop is calculated from the next expression: 

 ( ) ( )b bP P z P z LΔ = − +  (27) 

where bP  is the numerical-mean pressure. 

4. Results 

The methodology proposed is applied for evaluating boundary conditions in a single 

isolated finned tube module (figure 1). The predicted values are utilized in a numerical 

simulation in order to verify a correct representation of physical phenomena with these 
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boundary conditions. These values require independence of results in heat transfer (Nusselt 

number) and pressure drop (friction factor) for different finned tube configurations, number 

of finned tubes, and finned tube lengths. So, a sensitive analysis is necessary in order to 

support previous considerations. The results of sensitive analysis shows that assumptions of 

methodology are correct, which are discussed in section 4.1. On the other hand, numerical 

predictions (focused in the outside flow) show a correct representation of interaction of heat 

transfer and flow hydrodynamics, which is presented in section 4.2. The comparative 

analysis of results between numerical predictions and results obtained from Kawaguchi et al 

[18] and Weierman [15] models for Nusselt number and friction factor, respectively, show 

close values as discussed in section 4.2. 

4.1. Sensitive analysis 

The LMTD method is applied to different finned tube layouts and finned tube lengths, 

which are described in section 2.3. The main goal of the analysis is to verify that friction 

factor and Nusselt number are independent of finned tube rows, number of finned tube 

per row, and finned tube length for the finned tube bank showed in figure 1. The 

comparative analysis at different finned tube configurations and finned tube lengths with 

thermodynamic conditions presented in table 1 are shown in table 4. In this table, Nusselt 

number and friction factor are presented at different finned tube configurations from 2 

finned tubes per row and 2 finned tubes rows (red polygon in figure 4) until reach 4 

finned tubes per row and 6 finned tubes rows (gray dashed box, figure 4). Evaluations are 

done for tube lengths of 1 m, 0.5 m y 0.05194m as shown in table 3. Predictions show 

constant values of Nusselt number and friction factor for the same finned tube rows. So, 

the Nusselt number varies from 100.3 to 99.3 and the friction factor changes from 0.31 to 

0.321 for different finned tube rows (2 to 6) of the small heat recovery. These results 

exhibit independence of predictions in dimensionless parameters with finned tube length 

and finned tubes per row in a heat recovery. The only variation of results is for 

configurations at different finned tube rows as shown in table 3. The main reason of 

dimensionless parameters variation is temperature reached by the gas phase (outside 

flow). These temperature variations slightly affect results because the gas phase is cooled 

in 3 ºC temperature difference for configurations analyzed at different finned tube rows. 

The results exhibit variations lower than 1% for Nusselt number and 3.6% for friction 

factor. These deviations are calculated for different finned tube rows, which is not 

representative of the same physical phenomenon because different finned tube layouts 

represent different gas cooling. In spite of this situation, the results show close values in 

Nusselt number and friction factor. Therefore, assumptions considered in the 

methodology are correct because finned tube bank performance is independent of finned 

tube rows, number of finned tubes per row, and finned tube length in a finned tube bank. 

This methodology allows numerical studies in heat recoveries at industrial scale because 

the computational domain can be reduced in 99% as shown in table 2. So, the calculation 

times are finites due to the analysis is focused in a single isolated finned tube module in 

the fully developed flow. 
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Finned tube length: 1 m

 Finned tubes per row

 2 3 4 

Finned tube rows Nu f Nu f Nu f 

2 99.3 0.321 99.3 0.321 99.3 0.321 

3 99.6 0.319 99.6 0.319 99.6 0.319 

4 99.8 0.313 99.8 0.313 99.8 0.313 

5 100.01 0.311 100.01 0.311 100.01 0.311 

6 100.3 0.31 100.3 0.31 100.3 0.31 

Finned tube length: 0.5 m

 Finned tubes per row

 2 3 4 

Finned tube rows Nu f Nu f Nu f 

2 99.3 0.321 99.3 0.321 99.3 0.321 

3 99.6 0.319 99.6 0.319 99.6 0.319 

4 99.8 0.313 99.8 0.313 99.8 0.313 

5 100.01 0.311 100.01 0.311 100.01 0.311 

6 100.3 0.31 100.3 0.31 100.3 0.31 

Finned tube length: 0.05194 m

 Finned tubes per row

 2 3 4 

Finned tube rows Nu f Nu f Nu f 

2 99.3 0.321 99.3 0.321 99.3 0.321 

3 99.6 0.319 99.6 0.319 99.6 0.319 

4 99.8 0.313 99.8 0.313 99.8 0.313 

5 100.01 0.311 100.01 0.311 100.01 0.311 

6 100.3 0.31 100.3 0.31 100.3 0.31 

Table 3. Sensitivity analysis results. 

4.2. Numerical results 

The predictions for velocity field, pressure field, and temperature field are shown in Figure 6. 

In all figures, profiles of the variables are presented on the x-z plane, because this is the plane 

that exhibits most changes in properties. The velocity contours (figure 6a) reflect an apparently 

symmetric behaviour but the field is slight asymmetry due to the fin helical layout. The 

recirculation zones are observed at the rear portion of the tubes, with reference to air flow 

direction. These recirculation zones are narrow because the flow tends to stick to the contour 

of finned tubes by turbulence generated. The recirculation region has amplitude and length of 

approximately 49.85 mm and 52.61 mm, respectively. The flow tends to accelerate in the free 

zones where the cross-section area is smaller (central region of computational domain and at 

the side portions of the central finned tube) with a maximum velocity of 5.017 m/s. Finally, the 

backwater area where the flow is stopped abruptly at the central portion of the finned tube 

exhibit has a width and a length of about 9.75 mm and 6.57 mm, respectively. 
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The pressure contours (figure 6b) indicate an apparently symmetric pressure profile, similar 

to the velocity profile, which is not symmetric due to the helical fin. The results show a high-

pressure zone at the front portion of the tube, taking the flow direction as the point of 

reference. This high-pressure zone is created due to flow stopping abruptly at the central 

portion of the finned tube, producing a backwater zone. At the rear of the finned tube, there 

is a low-pressure area that is stratified at the outlet of single isolated module. The mean 

pressure at the inlet and outlet of the module is 23.184 Pa and 9.019 Pa, respectively, as 

shown in table 4. The pressure drop is 14.165 Pa, which represents a friction factor of 0.311 

(table 4). The deviation of numerical results is 3.13% and 0.32% for pressure drop and 

friction factor, respectively. So, numerical predictions with boundary conditions calculated 

from methodology correspond to results obtained with Weierman´s [15] model. 

Numerical predictions of temperature contours (figure 6c) show an apparently symmetric 

profile, which are not symmetric due to the helical fin. The results exhibit that the high-

temperature region is located at the central region of the computational domain, whereas the 

low-temperature areas are located at the rear of the finned tubes, viewed with respect to the 

flow direction. So, the most important heat transfer effects occur at the front of the extended 

surfaces and at the sides of the finned tube between the backwater zone and the recirculation 

zone. This pattern is attributed to the air flow coming into abrupt contact with the finned 

tubes, and to turbulence being created at the sides of the finned tubes. On the other hand, the 

temperature contours exhibit that flow temperature is dominated for inside fluid temperature 

in the recirculation zone. The mean temperature at inlet and outlet of module is 43.76°C and 

34.73°C (table 4). The temperature difference is 9.03°C, which represents a numerical-mean 

Nusselt number of 95.1, as shown in table 4. Numerical results show deviations of 4.25% and 

5.18% for temperature difference and Nusselt number, respectively. These results show that 

numerical predictions are close to results obtained with Kawaguchi´s et al. [18] model. So, the 

numerical simulation represents adequately heat transfer in a single isolated finned tube 

module with boundary conditions calculated from methodology. 

 

 Numerical Simulation model 

 Weierman 

Pinlet (Pa) 24.44 na

Poutlet (Pa) 10.27 na

ΔP (Pa) 14.17 13.74

deviation 3.13% reference 

f 0.311 0.31

deviation 0.32% reference 

 Kawaguchi 

Tinlet (ºC) 40.78 na

Toutlet (ºC) 31.78 na

ΔT (ºC) 9.0 9.4

deviation 4.25% reference 

Nu 95.1 100.3

deviation 5.18% reference 

Table 4. Comparative results. 
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Figure 6. Numerical predictions. 

5. Conclusion 

The methodology, based on the LMTD method, for calculating boundary conditions in a 

single isolated finned tube module is adequate because the Nusselt number and friction 

factor show a quasi-constant behaviour for different finned tube length and finned tubes 

per row. The maximum deviations for Nusselt number and friction factor are lower than 

1% and 3.6%, respectively. Therefore, the methodology can be used in numerical analysis 

of heat recoveries at industrial scale because the computational domain can be reduced 

in 99% which allows finite computational times. Numerical predictions in the single 

isolated finned tube module show that pressure contours are adequate because mean 

pressure drop and mean friction factor exhibit a deviation of 3.13% and 0.32% with 

respect to model developed by Weierman [15]. On the other hand, the pressure contours 

exhibit that the high pressure values are located in backwater zone and the main 

dissipative effect of flow energy is located at this region. Therefore, the pressure drop is 

dominated for backwater zone. The temperature field show a deviation of 4.25% and 

5.18% for temperature difference and Nusselt number with respect to Kawaguchi´s, et al 

[18] model. The temperature contours exhibit that bare tube temperature is dominated 

by inside fluid temperature. Therefore, the inside fluid temperature must be considered 

as a lower limit temperature for cooling of flue gases in order to avoid dew point of acid 

gases. 
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Nomenclature 

Symbols 

A surface area 

A2 tube row coefficient 

B contraction factor 

cp specific heat at constant pressure 

d diameter 

e thickness 

f friction factor 

G gas mass flux 

g


 gravitational acceleration 

h  average convective coefficient 

h  mean enthalpy 

h mean convective coefficient 

k thermal conductivity 

k  turbulent kinetic energy 

L characteristic length 

l height 

m  mass flow 

N Number of tubes 

n number 

Nu Nusselt Number 

Nu  average Nusselt number 

P  periodic pressure 

Pb mean pressure 

Pr Prandtl number 

Q  heat addition 

Re Reynolds number 

Rf fouling factor 

S pitch 

s gap 

T  periodic temperature 

T temperature 

t thickness 

U overall heat transfer coefficient 

, ,u v w    mean velocity components 

V


 instantaneous velocity 

V ′′


 fluctuating velocity 

w velocity 

PΔ   pressure drop 
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ΔTML logarithmic mean temperature difference. 

  

Subscripts 

b bulk, boundary 

f fin 

g gases 

gp gas-phase 

i inside 

l longitudinal 

med Initial profile 

num numeric 

o outside (tube diameter), overall 

r Radiation, rows 

t bare tube, transverse 

v volume-equivalent diameter 

w wall, tube material 

  

Greek letters 

β average-pressure gradient 

ρ  mean density 

ρ density 

ε  dissipation turbulent rate 

η efficiency 

µ viscosity 

γ temperature-gradient term 
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