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1. Introduction 

In general, accurately predicting the thermal or mechanical loads acting on structural 

components is very difficult. There is no question that their material properties are random 

variables and thus are usually stated in terms of average values with attached uncertainties. 

Taking these factors into consideration, the factor of safety was introduced into structural 

design. However, current design methods based on the factor of safety cannot quantitatively 

estimate the safety of structures. In order to circumvent such an issue, the probability theory 

and mathematical statistics have been applied to many engineering problems. This allows 

us to determine the safety both quantitatively and objectively on the basis of the concept of 

reliability. 

Currently, the application of probabilistic methods to engineering problems, which stems 

from the random vibration theory, has been broadened to the field of heat transfer. As 

structures subjected to extreme thermal load currently hold a prominent position in 

industries, the stochastic analysis of heat conduction and related thermal stresses in solids 

has drawn attention. In addition, the stochastic analyses of heat conduction in not only 

homogeneous but also nonhomogeneous bodies are being carried out more frequently 

because of the fabrication of advanced heat-resistant materials characterized by 

nonhomogeneity in recent years owing to advances in material manufacturing 

technology. 

This article reviews research achievements for the stochastic analysis of heat conduction and 

related thermal stresses in solids. The objective of this review is to provide researchers and 

engineers, mainly in the field of heat transfer and thermoelasticity, with basic information 

useful for assessing the reliability of high-temperature apparatus. It is beyond the scope of 

this article to provide basic knowledge about the theory of probability and random 
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processes, which is necessary to describe randomness mathematically. Readers not familiar 

with this discipline are recommended to refer to textbooks related to stochastic modeling. 

2. Overview 

Table 1 summarizes existing studies that used probabilistic methods for heat conduction 

and thermal stress analysis. The existing studies are organized according to the type of 

parameters considered as stochastic quantities; the classification also distinguishes (i) 

homogeneity/nonhomogeneity of object materials to be analyzed and (ii) presence/absence 

of the analysis of thermal stress fields (including displacement fields due to thermal 

deformation). Note that the analysis of thermal stress fields includes the analysis of heat 

conduction as a prerequisite. Table 1 indicates that among the studies for homogeneous 

bodies, many treated heat conduction problems only, but studies that also investigated the 

effects of random parameters on thermal stresses (or thermal deformation) are limited. 

Moreover, studies that focused on nonhomogeneous bodies are far fewer than those that 

targeted homogeneous bodies, although the former have gradually increased since the early 

1990s, coupled with the emergence of functionally graded materials (FGMs) [1]. 

Samuels [2] was the first to conduct a seminal study on heat conduction analysis using 

probabilistic methods. He analyzed a plate and sphere with randomly fluctuating surface 

temperature and spatiotemporally random internal heat generation. Parkus [3] was the first 

to study random thermal stresses; he successfully analyzed the thermoelastic problem of a 

semi-infinite body using probabilistic methods. 

With regard to parameters considered as stochastic quantities, many papers have presented 

the analysis of problems where the surface temperature of an object or the temperatures of 

its surrounding media are regarded as stochastic quantities, i.e., random heating problems. 

This is probably because random heating problems are strongly related to the design of 

thermal insulating systems for equipment sensitive to temperature changes, for example. 

Moreover, quite a few studies considered the material properties of analysis objects as 

stochastic quantities. This is because the fact that any materials show variability in their 

properties to a greater or lesser extent has become public knowledge. An FGM, which is a 

typical nonhomogeneous material, includes more factors to produce large variability in the 

material properties, as compared to other materials. From early on, Poterasu et al. [4] 

focused on the large variability in the material properties of FGMs and attempted a 

stochastic analysis of thermal stresses in consideration of their randomness. However, their 

study unfortunately remained confined to a formulation based on the stochastic finite 

element method. It was ten years before full-scale studies on thermal stresses in 

nonhomogeneous bodies whose material properties were assumed to be stochastic 

quantities began to be conducted. 

In the rest of this article, existing papers related to this topic are classified into six groups 

according to the type of random or uncertain parameters considered in the analysis, and an 

extensive literature review is presented for each group. The review gives special emphasis 

to analytical methods used in the respective papers. 
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Random parameter Homogeneous bodies Nonhomogeneous bodies 

Heat 

conduction 
Thermal 

stresses 

Heat 

conduction 

Thermal 

stresses 

Surface temperature 

(or ambient 

temperature) 

[2, 5-23] [3, 24-37]  [38-41] 

Heat flux [23]    

Initial temperature [11, 15, 21, 22, 

42-47]
[48]  [49] 

Material properties [13, 21, 23, 47, 

50-68]
[37, 69-74, 127] [75-77] [4, 78-84] 

Heat transfer 

coefficients 

[11, 12, 14, 21, 

47, 56, 65, 85, 

86]

[33, 35, 36, 87-

89] 

[90] [91] 

Emissivity [23, 61, 65]    

Heat generation rate [2, 12, 15, 43, 46, 

57, 66, 92-94]
[95]   

Geometry [86, 96] [70, 73, 97, 98]  [78] 

* There are also some review articles [99-102]. 

Table 1. Summary of stochastic heat conduction/thermal stress studies* 

3. Case of random surface temperature or ambient temperature 

Recently, as reliability and safety gain increasing importance in the design phase of high-

temperature apparatuses or heat-resistant structures, conventional deterministic thermal 

stress analysis alone is not sufficient; analysis that considers uncertainties included in the 

analysis objects themselves and/or thermal environments (e.g., temperature of the 

surrounding media) is required. In general, accurately predicting the thermal or mechanical 

loads acting on structural components is very difficult [103]. Representative examples of 

such situations are random high-cycle temperature fluctuations observed at the upper core 

structure of fast-breeder reactors [34] and random variations in heat transfer coefficients 

(HTCs) around the stator vanes of gas turbines [87]. When uncertain factors are involved in 

thermal environments, the temperature and thermal stresses in objects should be evaluated 

stochastically. 

We focused on existing studies that examined cases of random thermal boundary 

conditions. Samuels [2] analyzed the temperature field of a plate and sphere whose surface 

temperature fluctuated randomly; this was a pioneering work on heat conduction analysis 

using probabilistic methods. He applied the theory of random processes to determine the 

mean square temperature of bodies under the random heat conditions. Hung [6] analyzed 

the heat conduction of straight and circular fins whose root temperatures fluctuate 

randomly, and Yoshimura et al. [10] analyzed the temperature field for a rectangular fin 

whose ambient temperature fluctuates; the former acknowledged the approach adopted by 

Samuels [6]. 
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Heller [7] derived the frequency response function for the temperature of an infinite plate 

subjected to random heating, from which the standard deviation of the temperature was 

estimated. Using a similar method, Heller also addressed the stochastic analysis for two-

dimensional non-axisymmetric heat conduction of an infinite multilayered cylinder 

subjected to random heating at the outer surface [9]. Novichkov et al. [8], with the aid of the 

Monte Carlo method, evaluated the correlation function and spectral density function of the 

temperature for a double-layered infinite plate subjected to temporally random-varying 

heating. Gaikovich [16, 17] analytically obtained the covariance functions of temperature and 

brightness temperature in a homogeneous semi-infinite body for which the boundary 

temperature is given by a stationary random process. Subsequently, he studied the same 

problem in terms of spectral densities and presented significantly simpler results for the 

statistics [18, 19]. Nicola et al. [20] developed a variance propagation algorithm to investigate 

the effect of ambient temperature modeled as a random process on the variability of the 

steady-state temperature in a complex-shaped body cooled by convection. Chantasiriwan [22] 

solved the stochastic heat conduction problem under random boundary and initial conditions 

using a meshless method—the multiquadric collocation method. He demonstrated that the 

value of “the shape parameter” strongly influences the solution accuracy. 

In contrast, studies on thermal stresses for randomly heated bodies originated from Parkus’ 

work [3] on semi-infinite bodies. Heller [27] analyzed thermal stresses for a steel pipe with a 

concrete cylinder as a core material for which the surface temperature is expressed as a 

narrow-band random process. Lenyuk et al. [28] investigated the non-Fourier heat 

conduction and related thermal stresses in a semi-infinite body in contact with a medium 

whose temperature is a random process. The same analytical method was applied to the 

stochastic thermal stress problem of infinite cylinders [29]. Miller [31] derived the power 

spectrum of stress intensity factors from the temperature spectrum through the response 

function of temperature while supposing that the temperature variation in the analysis 

object can be modeled as a stationary Gaussian random process; he calculated the mean 

growth rate of a crack due to thermal fatigue using a statistical method. Singh et al. [30] 

evaluated the characteristics of random thermal stresses in a long hollow cylinder whose 

temperature at the outer surface is a random process, on the basis of the concept of a 

complex frequency response function. 

Amada [32] stochastically analyzed the temperature and thermal stresses in an infinite plate, 

a solid sphere, and a solid cylinder where the surface temperature was assumed to be a 

stationary process. Consider an infinite plate of thickness h, where the temperature of one 

side of the surfaces T∞  fluctuates randomly. The initial temperature of the plate is assumed 

to be zero. The heat conduction equation is expressed in a dimensionless form by Eq. (1). 

 
2

2

θ θ

τ ξ

∂ ∂
=

∂ ∂
 (1) 

where 0/T Tθ = , 2/t hτ κ= , /x hξ = , T0 denotes a reference temperature, κ is the thermal 

diffusivity, t is the time, and x is the through-thickness coordinate. The initial and boundary 

conditions are given by Eq. (2a) and Eqs. (2b), (2c), respectively. 
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0 at  0 (a)

( ) at  0 (b)

0 at  1 (c)
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θ θ τ ζ
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∞

= =

= =

= =

  (2) 

where 0/T Tθ∞ ∞= . An analytical solution to Eqs. (1) and (2) is obtained in the form of Eq. 

(3). 

 2

1 0

( , ) 2 sin( ) ( )exp[ ( ) ]d
n

n n n
τ

θ ξ τ π πξ θ τ η π η η
∞

∞
=

= − −   (3) 

If θ∞  is a stationary process, the autocorrelation function of the temperature, Rθ , is given 

by Eq. (4). 

 
2 2 2

1 1 0 0

( , ) ( , ) ( , )

4 sin( )sin( ) ( )exp[ ( ) ( ) ]d d
m n

R

mn m n R m n

θ

θ

ξ λ θ ξ τ θ ξ τ λ

π πξ πξ λ µ η π µ π η η µ
∞

∞ ∞∞ ∞

= =

= ⋅ + =

+ − − −  
 (4) 

where < > denotes the expectation operator and Rθ∞
 and λ represent the autocorrelation 

function of θ∞  and an arbitrary nondimensionalized time interval, respectively. The spectral 

density of the temperature, Sθ , is expressed as Eq. (5). 

2 2 2

1 1 0 0

( , ) 4 sin( )sin( ) ( )exp{ [( ) ] [( ) ] }d d
m n

S mn m n S m i n iθ θξ ω π πξ πξ ω π ω µ π ω η η µ
∞

∞ ∞∞ ∞

= =

= − − − +   (5) 

where Sθ∞
 denotes the spectral density of θ∞ ; ω, an angular frequency; and i, the imaginary 

number. For a solid sphere of radius a whose surface temperature is a stationary process, T∞

, the autocorrelation function of the temperature is derived as Eq. (6). 

 2
2 2

2
1 1 0 0

( , )

4
( 1) sin( )sin( ) ( )exp[ ( ) ( ) ]d dm n

m n

R

mn m n R m n

θ

θ

ρ λ

π
πρ πρ λ µ η π µ π η η µ

ρ ∞

∞ ∞∞ ∞
+

= =

=

− + − − −  
  (6) 

where /r aρ =  and r denotes the radial coordinate. For a solid cylinder of radius a whose 

surface temperature is a stationary process, T∞ , Rθ  is obtained in the form of Eq. (7). 

 2 20 0

1 1 1 1 0 0

( ) ( )
( , ) 4 ( )exp[ ]d d

( ) ( )
m n

m n m n
m n m n

J J
R R

J Jθ θ

γ ρ γ ρ
ρ λ γ γ λ µ η γ µ γ η η µ

γ γ ∞

∞ ∞∞ ∞

= =

= + − − −    (7) 

where J0( ) and J1( ) are Bessel functions of the first kind of order 0 and 1, respectively. γn is 

the n-th positive root of the transcendental Eq. (8). 

 0( ) 0,  1,  2,  3, ,    nJ nγ = = … ∞
 (8) 
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The mean square temperature is obtained by substituting λ = 0 into Eqs. (4), (6), and (7). 

Tanaka et al. [34] proposed an analytical method for obtaining not only the probability 

distribution of the residual life of an infinite plate with cracks but also the statistical 

properties of the crack length from the power spectral density of random surface 

temperature variations. The temperature variation is modeled as a narrow band stationary 

Gaussian process. 

With regard to nonhomogeneous bodies, Sugano et al. analyzed the stochastic thermal stress 

problems of a nonhomogeneous plate [38] and disk [39] with randomly fluctuating surface 

temperature. They derived analytical solutions to the statistics of temperature and thermal 

stresses, assuming that the material properties of the objects vary in a certain way along one 

direction. Consider a nonhomogeneous annular disk of inner radius r0 and outer radius r1 

with zero initial temperature, as shown in Figure 1. At the inner radius, the disk is subjected 

to non-axisymmetric heating due to the boundary temperature ( )T f φ∞ ⋅ , which varies 

randomly with respect to time and is symmetric about the x-axis. At the outer radius, heat 

dissipates to the surrounding medium of zero temperature via an HTC h1. Given that the 

specific heat c and density d of the disk are assumed to be constant, the heat conduction 

equation, initial condition, and boundary conditions for this nonhomogeneous disk are 

expressed by Eq. (9a), Eq. (9b), and Eqs. (9c), (9d), respectively. 

 

2

2 2

0

1 1

1 ( )
( ) (a)

0 at  0 (b)

( ) at (c)
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r r r tr

T t

T T f r r
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K r h T r r

r

φ

φ∞

 ∂ ∂ ∂ ∂
+ = ∂ ∂ ∂∂ 

= =

= ⋅ =

∂
+ = =

∂

 (9) 

where the thermal conductivity K is given by a power function of r as Eq. (10). 

 0
0

( )
r

K r K
r

β
 

=   
 

 (10) 

If T∞  is a stationary process, the autocorrelation function of the temperature, TR , is given 

by Eq. (11). 

2
* *

2 20 0

, 0 , 1 0 00

( , , )

( ) ( )
cos cos ( ) exp ( ) d d

4

T

mk nl

m n m n T mk nl

m n k l mk nl

R r

L r L rr
m n R p q w q w p p q

r H H

β

φ λ

κ κ
ε ε φ φ λ

π ∞

−
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where *
0 0 0( / )K dc r βκ −= , 0 1ε = , 1 2 2ε ε= = = , 

0
( )cos dn f n

π
φ φ φΘ =  , and Lnl(r) and Hnl 

are an explicit function of r and a constant (without going into detail) determined for each 
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set of n and l, respectively. Furthermore, wnl denotes the l-th positive root satisfying a 

transcendental equation determined for each value of n. For more details, see [39]. The mean 

square temperature is obtained by substituting λ = 0 into Eq. (11). 

 

Figure 1. Schematic of a nonhomogeneous annular disk subjected to temporally random heating [39] 

As a numerical example, Sugano et al. considered the case where the autocorrelation 

function of T∞  and function f are given by Eqs. (12a) and (12b), respectively. 

 

( )
2 2

2 2

( ) exp | | (a)
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( ) 0 for (b)
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TR V

f

λ λ

φ α φ α

φ α φ π α

φ π α π α φ π

∞
= −

 − ≤ ≤


= ≤ ≤ −


− − − ≤ ≤

 (12) 

Figure 2 shows the spatial distribution of the mean square temperature for V = 1, α = π/6, 

r1/r0 = 2, and h1r0/K0 = 0.1. 

 

Figure 2. Effects of location-dependent thermal conductivity on mean square temperature [39] 
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Chiba et al. [41] addressed the stochastic thermal stress problem of functionally graded 

plates convectively heated from the surrounding medium whose temperature fluctuates 

randomly. The material properties of the plates are allowed to vary arbitrarily along the 

thickness direction. Under the condition that the surrounding medium temperature is 

expressed as a stationary process, they derived analytical solutions of statistics for this 

problem. 

4. Case of random initial temperature 

The initial temperature of structures is often uncertain (or random) in a real environment. 

For example, when space planes or space shuttles reenter the atmosphere, the initial 

temperature distribution of the fuselages is always uncertain [104]. Moreover, the 

temperature distribution in high-temperature apparatus, such as gas turbines, at the time of 

the resumption of operation is an uncertain factor in the design phase because of the time 

elapsed from shutdown and heat transfer from/to the surrounding media, such as a working 

fluid [103]. In order to investigate the effects of such randomness included in the initial 

temperature on the temperature and thermal stresses, stochastic analysis is absolutely 

imperative. 

Thus far, stochastic studies on the heat conduction and thermal stress problems of solids 

with a random initial temperature have been limited. Ahmadi [42] studied the temperature 

field of an infinite plate and a semi-infinite body for which the initial temperature is a 

random field and showed that the randomness in the temperature diminishes over time. 

Subsequently, Grigorkiv et al. [44] conducted a similar study from the viewpoint of non-

Fourier heat conduction. Tasaka [45] studied the convergence of statistical finite element 

solutions to one-dimensional heat conduction under a random initial condition. He also 

presented three different approaches for obtaining the statistics of temperature for the one-

dimensional heat conduction problem in which the initial temperature is a random field and 

the internal heat generation is spatiotemporally random (i.e., a random wave) [46]: an 

analytical solution, a semi-analytical solution, and a numerical solution based on the finite 

difference method (FDM). He compared the numerical results of these different approaches. 

Nicolai et al. [47] investigated the transient behavior of temperature variance in bodies with 

random initial temperature using the stochastic finite element method (FEM). Scheerlinck et 

al. [21] analyzed the coupled heat and mass transfer problem in which the material 

properties, initial condition, and boundary conditions are random fields. In [21], a first-order 

perturbation algorithm based on the Galerkin finite-element discretization of Luikov's heat 

and mass transfer equations for capillary porous bodies was developed. 

However, very few existing studies have dealt with the thermal stress problems for a 

random initial temperature. Chiba et al. [48] extended the work of Ahmadi [42] to thermal 

stress fields; they analytically obtained the autocorrelation functions of temperature and 

thermal stresses in seven simple-shaped bodies with the initial temtperature modeled as a 

homogeneous random field. These include an infinite plate, an infinite strip, a hollow 

sphere, an infinite body with a spherical hole, an infinite hollow cylinder, an annular disk, 
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and an infinite body with a circular cylindrical hole. As a numerical example, the mean 

square temperature and the mean square thermal stresses were also calculated for when the 

initial temperature is given by white noise. The transient behavior of these statistics was 

graphically represented, as shown in Figure 3. Note that τ denotes the Fourier number; ζ, 

the dimensionless radial coordinate (= r/r0); and b , the ratio of the inner and outer radii (= 

r1/r0). The temperatures at the inner and outer radii are both considered to be deterministic; 

therefore, the mean square temperatures at the surfaces are zero. 

 

Figure 3. Transient behavior of (a) mean square temperature and (b) mean square tangential stress in a 

hollow sphere with random initial temperature modeled as white noise [48] 

Sugano et al. [49] used probability theory to analyze the heat conduction and thermal stress 

problems of functionally graded plates with the initial temperature assumed to be a 

homogeneous random field. The material properties of the plates were allowed to vary 

arbitrarily along the thickness direction. The autocorrelation functions of temperature and 

thermal stresses were derived in an explicit form. Numerical calculations were performed 

for when the initial temperature is white noise or a Markov random field. The relationships 

between the through-thickness variation in the material composition and the statistics of the 

temperature and the thermal stresses were discussed. 

5. Case of random material properties 

As can be found in Table 1, there are a relatively large number of stochastic studies on the 

heat conduction and thermal stress problems of objects with random material properties. 

Some examples of studies that employed analytical (mathematical) methods are as follows: 

Chen et al. [50] analyzed the temperature field of a semi-infinite body with random thermal 

diffusivity by a perturbation method; Keller [54], Ahmadi [51, 52], Fox et al. [53], and Tzou 

[58] analyzed the heat conduction of approximately homogeneous bodies with random 

thermal conductivity; and Barrett [78] and Tzou [75] analyzed nonhomogeneous bodies with 

random thermal conductivity. Srivastava et al. [63] analyzed the one-dimensional steady 

heat conduction for thermal conductivity given by a random field and obtained analytical 

solutions to the mean and variance of the temperature in Earth’s crust. Subsequently, 

Srivastava [67] presented analytical solutions to the mean and variance of heat flux for the 
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same problem; numerical results demonstrated that a decrease in the correlation length scale 

of the thermal conductivity increases the variability in the heat flux. Kotulski [69] 

investigated the thermoelastic wave propagation in a solid with a random coefficient of 

thermal expansion. 

Examples that employed numerical methods are given below. Nakamura et al. [13] analyzed 

the heat conduction when the thermal properties of analysis objects and ambient 

temperature are random, and Emery [65] treated the case where the thermal conductivity, 

HTC, and emissivity are random. The stochastic FEM [105] was used in both works. Manolis 

et al. [77] investigated the stochastic steady-state heat conduction in a nonhomogeneous 

solid whose thermal conductivity varies linearly along one direction at the macroscopic 

level but is spatially random at the microscopic level (see Figure 4). They mathematically 

described the random thermal conductivity with Eq. (13). 

 0 1 2( , ) [ ( )]k x k k k xγ ε γ= + +  (13) 

where k0 and k1 are constants, ε is a small parameter (ε << 1), k2 is a zero-mean random field, 

and γ is a random variable. Note that the slope of the thermal conductivity consists of a 

constant plus a zero-mean random part. In their study, stochastic analysis of the heat 

conduction was carried out using a boundary integral equation approach. 

 

Figure 4. Linearly varying thermal conductivity [77] 

Hien et al. [62] analyzed, using the stochastic FEM, the nonlinear heat conduction in solids 

whose thermal conductivity or specific heat is temperature-dependent and is considered to 

be a random field. Emery et al. [61] also analyzed the nonlinear heat conduction, which is 

attributed to not only random material properties but also random boundary conditions. 

Kaminski et al. [64] studied the heat conduction in composite materials whose thermal 

conductivity and specific heat are given as a random field by using the stochastic FEM. In 

[64], numerical results offered an interesting insight that whereas the randomness of the 

thermal conductivity monotonically increases the variability of temperature with time, the 

randomness of the specific heat increases the variability of temperature in the beginning but 

decreases it after a certain period of time. Liu [66] presented an analytical solution to the 
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relative variability of temperature in bodies for when the thermal properties and internal 

heat generation are random. Although this is not an exact statistic, it is useful to roughly 

understand the extent to which the temperature distribution is influenced by random input 

parameters. Nakamura et al. [23] performed stochastic heat conduction analysis of 

atmospheric reentry vehicles. They considered the aerodynamic heat flux, heat shield 

emissivity, and insulator thermal conductivity to be random variables. They analyzed the 

transient behavior of the statistics of temperature at several locations by using the FEM and 

Monte Carlo simulation. 

Aida et al. [72] estimated the probability of crack initiation due to thermal stresses by using 

an FEM-based Monte Carlo simulation method where the elastic modulus and the tensile 

and compressive strengths have uncertainties. Nakamura et al. [37] conducted a similar 

study for the case of uncertain Young’s modulus, tensile and compressive strengths, and 

ambient temperature by using the first-order approximation theory. In addition, an 

interesting study on the stochastic finite element analysis of a thermal deformation problem 

was reported for a carbon fiber reinforced plastic (CFRP)-laminated plate whose fiber 

orientation angle is random [71]. Using the stochastic FEM, Sluzalec [73] analyzed the 

thermoelastic deflection of a rectangular plate subjected to a thermal and mechanical load 

concentrated at the center, where the plate has material properties and a thickness given by 

a two-dimensional random field. 

With regard to the stochastic analysis of FGMs, which considers the uncertainties of material 

properties, Poterasu et al. [4] formulated the stochastic FEM for the thermoelastic problem of 

FGMs whose thermomechanical properties are homogeneous random fields. Ferrante et al. 

[80] considered the volume fraction and porosity to be random fields with spatial correlation 

in an FGM plate having linearly varying material composition distribution and analyzed the 

steady-state thermal stresses using Monte Carlo simulation. The analysis of the results 

showed that deviations in the ceramic/metal volume fraction produce significant 

randomness in the thermal stress and safety factor distribution of the plate. Chiba et al. [79, 

82] stochastically analyzed the transient heat conduction and thermal stress problems of 

infinite FGM plates with an uncertain thermal conductivity and coefficient of thermal 

expansion. The FGM plates were assumed to have arbitrary thermal and mechanical 

nonhomogeneities along the thickness direction. Two methods were used for the analysis: 

the direct Monte Carlo simulation method [79] and a perturbation method [82]. Sugano et al. 

[81] analyzed the thermoelastic problem of nonhomogeneous plates with a random thermal 

conductivity and coefficient of thermal expansion. 

Hosseini et al. [74] analyzed thermoelastic waves in a thick hollow cylinder for which some 

material properties are independently random. The statistics of temperature, stresses, and 

displacement were obtained by combining a hybrid numerical method, which consists of the 

Galerkin FEM and the Newmark FDM, and Monte Carlo simulation. Their numerical results 

demonstrated that the peak positions of the variances of the temperature and displacement 

progress with time in response to the progression of the heat wave front. Unfortunately, the 

sample size for the Monte Carlo simulation was unspecified (150 samples according to 
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histograms shown therein); therefore, the degree of reliability of the presented numerical 

results is unclear. Using the same method, Hosseini et al. also conducted the thermoelastic 

wave analysis of an FGM thick hollow cylinder with random material properties [83]. Fairly 

recently, the same research group carried out this stochastic analysis using the meshless 

local Petrov-Galerkin method accompanied with Monte Carlo simulation [84]. This 

approach does not require the functionally graded cylinder to be assumed to be a 

multilayered cylinder with different material properties in each layer. 

6. Case of random heat transfer coefficient 

In real thermal environments, the HTCs of object surfaces are known to vary both 

temporally and spatially. For example, in the spinning process of light fiber wires, unsteady 

gas flow in furnaces has been reported to vary the spatial distribution of the HTCs of the 

fiber wire surface, which results in the variability of the wire diameter [106]. However, 

accurately predicting this spatial distribution of the HTCs is very difficult. In addition, the 

HTCs of turbine disk surfaces are influenced by many factors: the disk rotational speed, the 

presence or absence of shroud and neighboring disks, the distance from them, the velocity 

of cooling air, and its flow pattern. To make matters worse, these influences are nonlinear 

and change rapidly. Thus, accurate prediction of the HTCs is quite difficult. Moreover, there 

seems to be a measurement uncertainty of over 50% for the overall heat transfer coefficients 

of heat transfer surfaces of heat exchangers [107]. As long as the predicted values of HTCs 

include the uncertainties described above, a quantitative evaluation of the statistics of 

temperature and thermal stresses is needed to maintain an appropriate level of product 

quality or structure reliability. Hence, the temperature and thermal stresses in objects 

should be analyzed on the basis of the probability theory. 

Stochastic studies on the heat conduction and thermal stress problems that consider spatial 

or temporal randomness in HTCs are scarce. Using a stochastic boundary element method, 

Drewniak [56] analyzed the steady-state heat conduction in solids for which the thermal 

conductivity or HTC is modeled as a random field. Madera [14] and Emery [65] analyzed 

the stochastic heat conduction problems of a rectangular fin for which they expressed the 

HTCs of the heat transfer surfaces as Gaussian white noise and a random field, respectively. 

The former derived partial differential equations for the expected value and covariance of 

temperature to present analytical solutions to these statistics under steady conditions. The 

latter used a higher-order perturbation method to analyze the problem and concluded that 

the use of first-order estimation for the standard deviation of temperature and second-order 

estimation for the mean response is preferable. Furthermore, the scale of correlation has 

been shown to have a strong effect on the statistics of the response. Kuznetsov [85] analyzed 

the stochastic heat conduction problem of an infinite strip for which the HTC is not a 

random field but is spatially random. Chiba [90] analytically obtained the second-order 

statistics, i.e., the mean and standard deviation, of the temperature for axisymmetrically 

heated FGM annular disks for which the surface HTCs are random fields. However, the 

abovementioned studies did not consider thermal stresses induced by the temperature 

changes. 
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In contrast, Mori et al. [87] numerically analyzed the statistics of steady thermal stresses 

produced in the stator vane of a gas turbine heated from the surroundings via random 

HTCs by using the stochastic FEM. Klevtsov et al. [33] investigated random thermal stress 

fluctuations in steam generation pipes, which are induced by randomly fluctuating 

HTCs/ambient temperature. Subsequently, the same authors [35, 36] estimated the 

variability of temperature and thermal stresses in a pipe for which the HTC of the inner 

surface and the temperature of the medium flowing in the pipe are random processes. They 

proposed a high-accuracy technique for predicting the material fatigue life that reflects the 

estimated variability. Ishikawa [88] used the FDM to analyze the coupled thermoelastic 

problem of a beam having HTCs described by a random field. 

Chiba [89] analytically derived the second-order statistics of temperature and thermal 

stresses by a perturbation method in homogeneous annular disks for which the HTCs of the 

major surfaces are random fields. He assumed that the disks are subjected to a deterministic 

axisymmetric heat load. Numerical calculations were performed for the case where the 

surface HTCs are band-limited white noise random fields. The mean E[θ] and standard 

deviation S[θ] of the dimensionless temperature in the disks supposed as annular fins are 

shown in Figure 5. The ratio of the inner and outer radii of the disks is 0.2, and the 

coefficient of variation of the random HTCs is 0.1. In Figure 5, τ denotes a dimensionless 

time (Fourier number), and m is a nondimensionalized HTC (Biot number). The results are 

shown for the two cases in which the HTC mean is uniform throughout the disk surfaces 

and varies linearly along the radial direction. 

Chiba [91] then analyzed the second-order statistics of the temperature and thermal stresses 

in FGM annular disks of variable thickness via Monte Carlo simulation; the HTCs of the 

disk surfaces were considered to be random fields and the disks were subjected to 

axisymmetric heat loads at the inner and outer radii. 

7. Case of random internal heat generation/sink 

Samuels [2] obtained analytical solutions of the mean and mean square value of the 

temperature field in a plate and sphere with randomly fluctuating surface temperature and 

spatiotemporally random internal heat generation. Becus [43] presented a solution to the 

heat conduction problem with a random heat source and random initial and boundary 

conditions. He also conducted a series of analytical studies on random heat conduction [108-

111], which contributed greatly to the subsequent growth of this field. Vasseur et al. [92] 

analytically obtained relationships between the autocorrelation functions of heat generation 

and heat flow in the three-dimensional steady heat conduction of a homogeneous body, 

where the internal heat generation is expressed as a two-dimensional homogeneous random 

field. Nielsen [57] extended this work to address the case where thermal conductivity and 

heat generation are given by a random field and a cross-correlation exists between them. 

Val'kovskaya et al. [15] analyzed the stochastic temperature field in a two-layer solid disk 

subjected to heat sources for which power is a random function of time and radial 

coordinates. They also considered the randomness included in the initial temperature and 

ambient temperature. Ishikawa [93] analyzed the one-dimensional non-Fourier heat 
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conduction in a solid with internal heat generation of white noise. Srivastava et al. [94] 

analyzed the one-dimensional steady-state heat conduction in solids with internal heat 

generation described by a random field. They derived exact solutions for the mean and 

variance of the temperature. 

 

Figure 5. Transient distribution of the mean and standard deviation of the dimensionless temperature 

for uniform HTCs (solid curves) and linearly varying HTCs (broken curves) where (a) m = 0.01, (b) m = 

0.1, and (c) m = 1 [89] 

8. Case of random geometry 

Shvets et al. [97] analytically evaluated the temperature field and thermal stresses in 

cylinders for which the radius fluctuates randomly along the circumferential direction. A 

perturbation method and Laplace transform were used for the analysis. Smith [70] discussed 

the structural reliability of hollow cylinders or hollow spheres; their inner and outer radii 

and material properties were random, and they were heated by the surroundings. Clarke 

[96] analytically solved the heat conduction problem of a layered plate for which the 

stacking sequence of layers and the layer thickness are random. This problem was later re-

examined by Willis et al. [112]. Mori et al. [98] discussed the effects of the shape irregularity 

and thickness variability at a welded joint all around the body on stresses produced under 
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internal pressure in a large-sized, thin-walled pressure vessel. The stochastic FEM was used 

to solve this random geometry problem. 

Emery et al. [86] estimated the standard deviations of the heat fluxes in an object for which 

the heated surface roughness or HTC at the heated surface was assumed to be a random 

field. They adopted the FEM and direct Monte Carlo simulations. In order to treat this class 

of stochastic heat conduction problems, the problem of a stochastic region was converted to 

one in which the conductivity is stochastic through a coordinate transformation. Figure 6 

shows the standard deviations for the x and y components of the heat flux in a slab where 

heat is mainly transferred along the width direction (x-direction) and the heated surface 

roughness is a random field with a certain spatial correlation length. 

 

Figure 6. Contours of the standard deviations of the heat fluxes for an edge roughness of 2% and a 

correlation length of 5% of the slab mean width: (a) σ(qx) and (b) σ(qy) [86] 

9. Numerical methods for stochastic heat conduction problems 

In this section, we present numerical methods proposed thus far for the stochastic analysis 

of heat conduction. Case et al. [113] used the stochastic FEM to obtain the statistics of 

displacement due to thermal deformation in a solid for which the temperature distribution 

is expressed by simple functions of random variables. The Young’s modulus and the 

coefficient of thermal expansion were assumed to depend on temperature. Nicolai et al. [11] 

proposed a numerical method for the computation of the statistics of the transient 

temperature field in heated foods with random initial and boundary condition parameters. 

This method is based on space discretization by the FEM and the stochastic systems theory. 

The same authors also developed a method for computing the statistics of the temperature 

field in objects with random thermophysical parameters; this method is based on 

incorporating perturbations of the thermal parameters in the FEM [60]. 

Madera [12, 114] obtained partial differential equations for the expectation and correlation 

of the stochastic temperature field for a solid subjected to random heating expressed by 

Gaussian white noise. These equations were solved by analytical methods (e.g., Green’s 

function method) or numerical methods (e.g., control volume method). Madera [76] also 
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developed a numerical method for determining three-dimensional transient temperature 

fields described by stochastic heat conduction equations with random coefficients and by 

stochastic initial and boundary conditions. This method is based on stochastic mathematical 

model discretization by the FEM or the FDM and on the solution of the Volterra stochastic 

integral equations. 

Nicolai et al. [115] extended the perturbation algorithm of Sluzalec [59] and Fadale et al. [116] 

for linear heat conduction problems with random field parameters to the algorithm used for 

the analysis of nonlinear heat conduction under random conditions. This extended 

algorithm can consider the effects of (i) random field initial conditions, (ii) correlated 

thermophysical parameters, and (iii) correlated boundary condition parameters. In addition, 

Nicolai et al. [117] presented a variance propagation algorithm for heat conduction problems 

with parameters involving random fluctuations in time. This algorithm is based on the FEM 

and involves the numerical solution of Sylvester and Lyapunov differential systems. This 

algorithm was also applied to calculate the mean and variance of the temperature at 

arbitrary positions in heated cylinders with random wave parameters [118]. Nicolai et al. 

[119] described how to use variance propagation algorithms for calculating the statistical 

characteristics of the stochastic temperature field of heated solids in detail. Moreover, they 

developed an extended variance propagation algorithm for stochastic coupled heat and 

mass transfer problems under random process boundary conditions [120]. The numerical 

results of their study demonstrated that the random fluctuations of the process conditions 

may cause considerable variability in the temperature and moisture content in solids 

undergoing a drying process. 

Liu et al. [121] extended the stochastic FEM to analyze the heat conduction problems that 

simultaneously consider randomness in the material properties and heat load conditions. Le 

Maitre et al. [122] developed a computationally efficient numerical technique for solving 

two-dimensional stochastic diffusion equations, in which a multigrid technique is applied to 

the system of equations arising from the polynomial chaos and the FDM. 

Xiu et al. [123] solved the two-dimensional transient heat conduction subject to random 

inputs by generalized polynomial chaos expansion. This study is a natural extension of their 

earlier work on stochastic steady-state diffusion problems [124]. Xiu et al. [125] also treated 

diffusion problems in domains with rough boundaries considered as random fields. They 

proposed a novel computational framework based on the use of stochastic mappings to 

transform the original problem in a random domain into a stochastic problem in a 

deterministic domain and solved the transformed stochastic problem using a stochastic 

Galerkin method and Monte Carlo simulations. 

Saleh et al. [68] analyzed stochastic one-dimensional heat conduction with random heat 

capacity or random thermal conductivity, which they modeled as a random field. They 

employed the stochastic FEM based on the Karhunen-Loeve decomposition and the 

projection of the solution on chaos polynomials. Recently, Nicolai et al. [126] extended the 

interval and fuzzy FEMs to nonlinear heat conduction problems with uncertain parameters 

and verified the efficiency of the proposed methodology with two case studies from food 
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processing engineering. In [102], some of the above-mentioned algorithms developed by 

Nicolai et al. for stochastic heat conduction analysis were outlined and illustrated by some 

simple examples from thermal food process engineering. 

10. Concluding remarks 

This article reviewed the historical progress in the stochastic analysis of heat conduction and 

related thermal stresses. Existing papers related to this topic were classified into six groups 

according to the type of random or uncertain parameters considered in the analysis, and an 

extensive literature review was presented for each group. The overview indicates that 

among the studies for homogeneous bodies, many treated heat conduction problems only, 

but only a limited number also investigated the effects of random parameters on thermal 

stresses (or thermal deformation). Studies on nonhomogeneous bodies are far fewer than 

those targeting homogeneous bodies, although the former are increasing in number. With 

regard to parameters considered as stochastic quantities, a number of studies have analyzed 

problems in which the surface temperatures of an object or ambient temperatures are 

regarded as stochastic quantities, i.e., random heating problems. Furthermore, quite a few 

studies assumed the material properties of analysis objects to be stochastic quantities. 

Some future research directions related to this topic are suggested as follows: 

i. In studies on the heat conduction and thermal stress analysis of bodies subjected to 

random heating, only stationary random processes have been targeted so far. Thus, 

when time functions included in thermal boundary conditions are nonstationary 

random processes, such as earthquake vibration, we need to divide the whole time 

interval into several intervals, conduct the analysis for a stationary process in each 

interval, and finally join the analysis results for the respective intervals. In an actual 

operation environment, structures may often be subjected to heat loads that are difficult 

to regard as stationary random processes. Therefore, the above analyses treated in the 

framework of the theory of a stationary random process need to be extended to 

nonstationary random processes. 

ii. Uncertainties included in the material properties of “materials with microstructure,” 

including particle-dispersed composite materials, are attributed to the variability in the 

microstructure (or microstructural morphology) as well as the variability in the material 

properties of the constituents. Hence, stochastic studies based on micromechanics, 

which consider various parameters at the microscale (e.g., the material properties of 

constituents and the shape and size of dispersed particles) as stochastic quantities, 

would be another potential research topic. 

iii. All the existing stochastic studies on thermal stresses in solids have focused on the 

elastic range. Structures in which advanced heat-resistant materials are used are 

supposed to undergo extremely large temperature gradients; therefore, they may 

undergo partial plastic deformation. Thus, in order to extend the discussion from the 

elastic range to the plastic range, the same type of stochastic studies on the thermo-

elastic-plastic behavior is another topic remaining to be addressed. 
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The stochastic analyses of this field lead directly to the reliability evaluation of high-

temperature structures that require higher safety, such as space planes, hot gas turbines, and 

atomic reactors. Because these analyses are required in a variety of fields— e.g., food 

engineering and geophysical science—, they have wide applicability. 
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