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1. Introduction

Evolutionary algorithms (EAs) mimic natural evolution to solve optimization problems.
Because EAs do not require detailed assumptions, they can be applied to many real-world
problems. In EAs, solution candidates are evolved using genetic operators such as crossover
and mutation which are analogs to natural evolution. In recent years, EAs have been
considered from the viewpoint of distribution estimation, with estimation of distribution
algorithms (EDAs) attracting much attention ([14]). Although genetic operators in EAs are
inspired by natural evolution, EAs can also be considered as algorithms that sample solution
candidates from distributions of promising solutions. Since these distributions are generally
unknown, approximation schemes are applied to perform the sampling. Genetic algorithms
(GAs) and genetic programmings (GPs) approximate the sampling by randomly changing the
promising solutions via genetic operators (mutation and crossover). In contrast, EDAs assume
that the distributions of promising solutions can be expressed by parametric models, and they
perform model learning and sampling from the learnt models repeatedly. Although GA-type
sampling (mutation or crossover) is easy to perform, it has the disadvantage that GA-type
sampling is valid only for the case where two structurally similar individuals have similar
fitness values (e.g. the one-max problem). GA and GP have shown poor search performance in
deceptive problems ([6]) where the condition above is not satisfied. However, EDAs have been
reported to show much better search performance for some problems that GA and GP do not
handle well. As in GAs, EDAs usually employ fixed length linear arrays to represent solution
candidates (these EDAs are referred to as GA-EDAs in the present chapter). This decade,
EDAs have been extended so as to handle programs and functions having tree structures (we
refer to these as GP-EDAs in the present chapter). Since tree structures have different node
number, the model learning is much more difficult than that of GA-EDAs. From the viewpoint
of modeling types, GP-EDAs can be broadly classified into two groups: probabilistic
proto-type tree (PPT) based methods and probabilistic context-free grammar (PCFG) based
methods. PPT-based methods employ techniques devised in GA-EDAs by transforming
variable length tree structures into fixed length linear arrays. PCFG-based methods employ
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PCFG to model tree structures. PCFG-based methods are more advantageous than PPT-based
methods in the sense that PCFG-based methods can estimate position-independent building
blocks.

The conventional PCFG adopts the context freedom assumption that the probabilities of
production rules do not depend on their contexts, namely parent or sibling nodes. Although
the context freedom assumption makes parameter estimation easier, it cannot in principle
consider interaction among nodes. In general, programs and functions have dependencies
among nodes, and as a consequence, the conventional PCFG is not suitable as a baseline
model of GP-EDAs. In the field of natural language processing (NLP), many approaches have
been proposed in order to weaken the content freedom assumption of PCFG. For instance,
the vertical Markovization annotates symbols with their ancestor symbols and has been
adopted as a baseline grammar of vectorial stochastic grammar based GP (vectorial SG-GP)
or grammar transformation in an EDA (GT-EDA) ([4]) (see Section 2). Matsuzaki et al. ([17])
proposed the PCFG with latent annotations (PCFG-LA), which assumes that all annotations
are latent and the annotations are estimated from learning data. Because the latent annotation
models are much richer than fixed annotation models, it is expected that GP-EDAs using
PCFG-LA may more precisely grasp the interactions among nodes than other fixed annotation
based GP-EDAs. In GA-EDAs, EDAs with Bayesian networks or Markov networks exhibited
better search performance than simpler models such as a univariate model. In a similar way,
it is generally expected that GP-EDAs using PCFG-LA are more powerful than GP-EDAs
with PCFG with heuristics-based annotations because the model flexibility of PCFG-LA is
much richer. We have proposed a GP-EDA named programming with annotated grammar
estimation (PAGE) which adopts PCFG-LA as a baseline grammar ([9, 12]). In Section 4 of the
present chapter, we explain the details of PAGE, including the parameter update formula.

As explained above, EDAs model promising solutions with parametric distributions. For the
case in multimodal problems, it is not sufficient to express promising solutions with only
one model, because dependencies for each optimal solution are different in general. When
considering tree structures, this problem arises even in unimodal optimization problems due
to diversity of tree expression. These problems can be tackled by considering global contexts
in each individual, which represents which optima (e.g. multiple solutions in multimodal
problems) it derives from. Consequently, we have proposed the PCFG-LA mixture model
(PCFG-LAMM) which extends PCFG-LA into a mixture model, and have also proposed a new
GP-EDA named unsupervised PAGE (UPAGE) which employs PCFG-LAMM as a baseline
grammar ([11]). By using PCFG-LAMM, not only local dependencies but also global contexts
behind individuals can be taken into account.

The main objectives of proposed algorithms may be summarized as follows:

1. PAGE employs PCFG-LA to consider local dependencies among nodes.

2. UPAGE employs PCFG-LAMM to take into account global contexts behind individuals in
addition to the local dependencies.

This chapter is structured as follows: Following a section on related work, we briefly
introduce the basics of PCFG. We explain PAGE in Section. 4, where details of PCFG-LA,
forward–backward probabilities and a parameter update formula are provided. In Section 5,
we propose UPAGE, which is a mixture model extension of PAGE. We describe PCFG-LAMM
and also derive a parameter update formula for UPAGE. We compare the performance of
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UPAGE and PAGE using three benchmark tests selected for experiments. We discuss the
results obtained in these experiments in Section 6. Finally, we conclude the present chapter in
Section 7.

2. Related work

Many GP-EDAs have been proposed, and these methods can be broadly classified into two
groups: (i) PPT based methods and (ii) grammar model based methods.

Methods of type (i) employ techniques developed in GA-EDAs. This type of algorithm
converts tree structures into the fixed-length chromosomes used in GA and applies
probabilistic models of GA-EDAs. Probabilistic incremental program evolution (PIPE) ([25])
is a univariate model, which can be considered to be a combination of population-based
incremental learning (PBIL) ([3]) and GP. Because tree structures have explicit edges between
parent and children nodes, estimation of distribution programming (EDP) ([37, 38]) considers
the parent–children relationships in the tree structures. Extended compact GP (ECGP) ([26])
is an extension of the extended compact GA (ECGA) ([7]) to GP and ECGP can take into
account the interactions among nodes. ECGP infers the group of marginal distribution
using the minimum description length (MDL) principle. BOA programming (BOAP) ([15])
uses Bayesian networks for grasping dependencies among nodes and is a GP extension
of the Bayesian optimization algorithm (BOA) ([20]). Program optimization with linkage
estimation (POLE) ([8, 10]) estimates the interactions among nodes by estimating the Bayesian
network. POLE uses a special chromosome called an expanded parse tree ([36]) to convert
GP programs into linear arrays, and several extended algorithms of POLE have been
proposed ([27, 39]). Meta-optimizing semantic evolutionary search (MOSES) ([16]) extends
the hierarchical Bayesian optimization algorithm (hBOA) ([19]) to program evolution.

Methods of type (ii) are based on Whigham’s grammar-guided genetic programming (GGGP)
([33]). GGGP expresses individuals using derivation trees (see Section 3), which is in contrast
with the conventional GP. Whigham indicated the connection between PCFG and GP ([35]),
and actually, the probability table learning in GGGP can be viewed as an EDA with local
search. Stochastic grammar based GP (SG-GP) ([23]) applied the concept of PBIL to GGGP.
The authors of SG-GP also proposed vectorial SG-GP, which considers depth in its grammar
(simple SG-GP is then called scalar SG-GP). Program evolution with explicit learning (PEEL)
([28]) takes into account the positions (arguments) and depths of symbols. Unlike SG-GP
and PEEL, which employ predefined grammars, grammar model based program evolution
(GMPE) ([29]) learns not only parameters but also the grammar itself from promising
solutions. GMPE starts from specialized production rules which exclusively generate learning
data and merges non-terminals to yield more general production rules using the MDL
principle. Grammar transformation in an EDA (GT-EDA) ([4]) extracts good subroutines
using the MDL principle. GT-EDA starts from general rules and expands non-terminals
to yield more specialized production rules. Although the concept of GT-EDA is similar to
that of GMPE, the learning procedure is opposite to GMPE [specialized to general (GMPE)
versus general to specialized (GT-EDA)]. Tanev proposed GP based on a probabilistic context
sensitive grammar ([31, 32]). He used sibling nodes and a parent node as context information,
and production rule probabilities are expressed by conditional probabilities of these context
information. Bayesian automatic programming (BAP) ([24]) uses a Bayesian network to
consider relations among production rules in PCFG.
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There are other GP-EDAs not belonging to either of the groups presented above. N-gram GP
([21]) is based on the linear GP ([18]), which is the assembly language of a register-based
CPU, and learns the sub-sequences using an N-gram model. The N-gram model is very
popular in NLP which considers N consecutive sub-sequences for calculating the probabilities
of symbols. AntTAG ([1]) also shares similar concepts with GP-EDAs, although AntTAG does
not employ a statistical inference method for probability learning; instead, AntTAG employs
the ant colony optimization method (ACO), where the pheromone matrix in ACO can be
interpreted as a probability distribution.

3. Basics of PCFG

In this section, we explain basic concepts of PCFG.

The context-free grammar (CFG) G is defined by four variables G = {N , T ,R,B}, where the
meanings of these variables are listed below.

• N : Finite set of non-terminal symbols

• T : Finite set of terminal symbols

• R: Finite set of production rules

• B: Start symbol

It is important to note that the terms “non-terminal” and “terminal” in CFG are different
from those in GP (for example in symbolic regression problems, not only variables x, y but
also sin,+ are treated as terminals in CFG). In CFG, sentences are generated by applying
production rules to non-terminal symbols, which are generally given by

A → α (A ∈ N , α ∈ (N ∪ T )∗). (1)

In Equation 1, (N ∪ T )∗ represents a set of possible elements composed of (N ∪ T ). By
applying production rules to the start symbol B, grammar G generates sentences. A language
generated by grammar G is represented by L(G). If W ∈ L(G), then W ∈ T ∗.

By applying production rules, non-terminal A is replaced by another symbol. For instance,
application of the production rule represented by Equation 1 to α1 Aα2(α1, α2 ∈ (N ∪T )∗, A ∈
N ) yields α1αα2. In this case, it is said that “α1 Aα2 derived α1αα2”, and this process is
represented as follows:

α1 Aα2 ⇒
G

α1αα2.

Furthermore, if we have the following consecutive applications

α1 ⇒
G

α2 · · · ⇒
G

αn(αi ∈ (N ∪ T )∗),

αn is derived from α1 and is described by α1
∗
⇒
G

αn . This derivation process can be represented

by a tree structure, which is known as a derivation tree. Derivation trees of grammar G are
defined as follows.

1. Node is an element of (N ∪ T )

2. Root is B

52 Genetic Programming – New Approaches and Successful Applications
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3. Branch node is an element of N

4. If children of A ∈ N are α1α2 · · · αk (αi ∈ (N ∪ T )) from left, production rule A →
α1α2 · · · αk is an element of R

We next explain CFG with an example. We now consider a univariate function f (x) composed
of sin, cos, exp, log and arithmetic operators (+, −, × and ÷). A grammar Greg can be

B = {〈expr〉},

N = {〈expr〉 , 〈op2〉 , 〈op1〉 , 〈var〉 , 〈const〉},

T = {+,−,×,÷, sin, cos, exp, log, x, C}.

We define the following production rules.

# Production rule

0 〈expr〉 → 〈op2〉 〈expr〉 〈expr〉
1 〈expr〉 → 〈op1〉 〈expr〉
2 〈expr〉 → 〈var〉
3 〈expr〉 → 〈const〉
4 〈op2〉 → +
5 〈op2〉 → −
6 〈op2〉 → ×
7 〈op2〉 → ÷
8 〈op1〉 → sin

9 〈op1〉 → cos
10 〈op1〉 → exp

11 〈op1〉 → log

12 〈var〉 → x
13 〈const〉 → C (constant)

Greg derives univariate functions by applying the production rules. Suppose we have the
following derivation:

〈expr〉 → 〈op2〉 〈expr〉 〈expr〉

→ + 〈expr〉 〈expr〉

→ + 〈op2〉 〈expr〉 〈expr〉 〈expr〉

→ ++ 〈expr〉 〈expr〉 〈expr〉

→ ++ 〈op1〉 〈expr〉 〈expr〉 〈expr〉

→ ++ log 〈expr〉 〈expr〉 〈expr〉

→ ++ log 〈var〉 〈expr〉 〈expr〉

→ ++ log x 〈expr〉 〈expr〉

→ ++ log x 〈var〉 〈expr〉

→ ++ log x x 〈expr〉

→ ++ log x x 〈const〉

→ ++ log x x C.

53Programming with Annotated Grammar Estimation
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Figure 1. (a) Derivation tree for log x + x + C and (b) its corresponding S-expression in GP.

In this case, the derived function is

f (x) = log x + x + C,

and its derivation process is represented by the derivation tree in Figure 1(a).

Although functions and programs are represented with standard tree representations
(S-expression) in the conventional GP (Figure 1(b)), derivation trees can express the same
functions and programs. Consequently, derivation trees can be used in program evolution,
and GGGP ([33, 34]) adopted derivation trees for its chromosome.

We next proceed to PCFG, which extends CFG by adding probabilities to each production
rule. For example, the likelihood (probability) of the derivation tree in Fig. 1(a) is

P(W, T) = π(〈expr〉)β(〈expr〉 → 〈op2〉 〈expr〉 〈expr〉)2β(〈op2〉 → +)2

× β(〈expr〉 → 〈op1〉 〈expr〉)β(〈op1〉 → log)

× β(〈expr〉 → 〈const〉)β(〈expr〉 → 〈var〉)2β(〈const〉 → C)β(〈var〉 → x)2,

where W ∈ T ∗ is a sentence (i.e. W corresponds to log x + x + C in Greg), T is a derivation
tree, π(〈expr〉) is the probability of 〈expr〉 and β(A → α) is the probability of a production
rule A → α. Furthermore, the probability P(W) of sentence W is given by calculating the
marginal probability in terms of T ∈ Φ(W):

P(W) = ∑
T∈Φ(W)

P(W, T), (2)

where Φ(W) is the set of all possible derivation trees which derive W. In NLP, inference
of the production rule parameters β(A → α) is carried out with learning data W =
{W1, W2, · · · }, which is a set of sentences. The learning data does not have information
about derivation processes. Because there are many possible derivations Φ(W) for large
sentences, directly calculating P(W) with marginalization in terms of Φ(W) (Equation 2) is
computationally intractable. Consequently, a computationally efficient method called the
inside–outside algorithm is used to estimate the parameters. The inside–outside algorithm
takes advantage of dynamic programming to reduce the computational cost. However, in
contrast to the case of NLP, the derivation trees are observed in GP-EDAs, and the parameter
estimation of production rules in GP-EDAs with PCFG is very easy. However, when using

54 Genetic Programming – New Approaches and Successful Applications
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expexp

z z

Figure 2. (a) Complete tree with annotations and (b) its observed tree.

more complicated grammars such as PCFG-LA, more advanced estimation methods (i.e. the
expectation maximization (EM) algorithm ([5])) have to be used even when derivation trees
are given.

4. PAGE

Our proposed algorithm PAGE is based on PCFG-LA. In PCFG-LA, latent annotations are
estimated from promising solutions using the EM algorithm, and PCFG-LA takes advantage
of forward–backward probabilities for computationally efficient estimation. In this section,
we describe the details of PCFG-LA, forward-backward probabilities and a parameter update
formula derived from the EM algorithm.

4.1. PCFG-LA

Although the PCFG-LA used in PAGE has been developed specifically for the present
application, it is essentially identical to the conventional PCFG-LA. In this section, we describe
the specialized version of PCFG-LA. For further details on PCFG-LA, the reader may refer to
Ref. ([17]).

PCFG-LA assumes that every non-terminal is labeled with annotations. In the complete
form, non-terminals are represented by A[x], where A is the non-terminal symbol, x(∈ H)
is an annotation (which is latent), and H is a set of annotations (in this paper, we take
H = {0, 1, 2, 3, · · · , h − 1}, where h is the annotation size). Fig. 2 shows an example of a tree
with annotations (a), and the corresponding observed tree (b). The likelihood of an annotated
tree (complete data) is given by

P(Ti, Xi;β,π) = ∏
x∈H

π(S [x])δ(x;Ti,Xi) ∏
r∈R[H]

β(r)c(r;Ti,Xi), (3)

where Ti denotes the ith derivation tree; Xi is the set of latent annotations of Ti represented by

Xi = {x1
i , x2

i , · · · } (x
j
i is the jth annotation of Ti); π(S [x]) is the probability of S [x] at the root

position; β(r) is the probability of the annotated production rule r ∈ R[H]; δ(x; Ti, Xi) is 1 if
the annotation at the root node is x in the complete tree Ti, Xi and is 0 otherwise; c(S [x] →
α; Ti, Xi) is the number of occurrences of rule S [x] → α in the complete tree Ti, Xi; h is the
annotation size that is specified in advance as a parameter; β = {β(S [x] → α)|S [x] → α ∈
R[H]}; and π = {π(S [x])|x ∈ H}. The set of annotated rules R[H] is given in Equation 8.
We summarized variables in Appendix B.

55Programming with Annotated Grammar Estimation
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(a) Forward prob. (b) Backward prob.

Figure 3. (a) Forward and (b) backward probabilities. The superscripts denote the indices of
non-terminals (i in S i[y], for example).

The likelihood of an observed tree can be calculated by summing over annotations:

P(Ti;β,π) = ∑
Xi

P(Ti, Xi;β,π). (4)

PCFG-LA estimates β and π using the EM algorithm. Before explaining the estimation
procedure, we should note the form of production rules. In PAGE, production rules are
not Chomsky normal form (CNF), as is assumed in the original PCFG-LA, because of the
understandability of GP programs. Any function which can be handled with traditional GP
can be represented by

S → gS ...S , (5)

which is a subset of Greibach normal form (GNF). Here S ∈ N and g ∈ T (N and T are the
sets of non-terminal and terminal symbols in CFG; see Section 3). A terminal symbol g in CFG
is a function node (+,−, sin, cos ∈ F) or a terminal (v, w ∈ T) in GP (F and T denote set of GP
functions and terminals, respectively). Annotated production rules are

S [x] → gS [z1] ...S [zamax ], (6)

where x, zm ∈ H and amax is the arity of g in GP. If g has amax arity, the number of parameters
for the production rule S → g S ...S with annotations is hamax+1, which increases exponentially
as the arity number increases. In order to reduce the number of parameters, we assume that
all the right-hand side non-terminal symbols have the same annotation, that is

S [x] → g S [y]S [y]...S [y]. (7)

With this assumption, the number of parameters can be reduced to h2, which is tractable. Let
R[H] be the set of annotated rules expressed by Equation 8. R[H] is defined by

R[H] = {S [x] → gS [y]S [y]...S [y]|x, y,∈ H, g ∈ T }. (8)

4.2. Forward–backward probability

We explain forward and backward probabilities for PCFG-LA in this section. PCFG-LA ([17])
adopted forward and backward probabilities to apply the EM algorithm ([5]). The backward
probability bi

T(x;β,π) represents the probability that the tree beneath the ith non-terminal

S [x] is generated (β and π are parameters, Fig. 3 (b)), and the forward probability f i
T(y;β,π)

56 Genetic Programming – New Approaches and Successful Applications
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Figure 4. Example of a derivation tree and values of the specific functions. The superscripts denote the
indices of non-terminals.

represents the probability that the tree above the ith non-terminal S [y] is generated (Fig. 3
(a)). Forward and backward probabilities can be recursively calculated as follows:

bi
T(x;β,π) = ∑

y∈H

β(S [x] → gi
T S [y]...S [y]) ∏

j∈ch(i,T)

b
j
T(y;β,π), (9)

f i
T(y;β,π) = ∑

x∈H

f
pa(i,T)
T (x;β,π)β(S [x] → g

pa(i,T)
T S [y]...S [y])

× ∏
j∈ch(pa(i,T),T),j 	=i

b
j
T(y;β,π) (i 	= 1), (10)

f i
T(y;β,π) = π(S [y]) (i = 1), (11)

where ch(i, T) is a function that returns the set of non-terminal children indices of the ith
non-terminal in T, pa(i, T) returns the parent index of the ith non-terminal in T, and gi

T is a
terminal symbol in CFG and is connected to the ith non-terminal symbol in T. For example,
for the tree shown in Fig. 4, ch(3, T) = {5, 6}, pa(5, T) = 3, and g2

T = sin.

Using the forward–backward probabilities, P(T;β,π) can be expressed by the following two
equations:

P(T;β,π) = ∑
x∈H

π(S [x])b1
T(x;β,π), (12)

P(T;β,π) = ∑
x,y∈H

{

β(S [x] → gS [y]...S [y]) f i
T(x;β,π)

× ∏
j∈ch(i,T)

b
j
T(y;β,π)

}

. (i ∈ cover(g, T)) (13)

Here, cover(g, Ti) represents a function that returns a set of non-terminal indices at which the
production rule generating g without annotations is rooted in Ti. For example, if g = + and
T is the tree represented in Fig. 4, then cover(+, T) = {1, 3}.

4.3. Parameter update formula

We describe the parameter estimation in PCFG-LA. Because PCFG-LA contains latent
variables X, the parameter estimation is carried out with the EM algorithm. Let β and π

57Programming with Annotated Grammar Estimation
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be current parameters β and π be nextstep parameters. The Q function to optimize in the EM
algorithm can be expressed as follows:

Q(β,π|β,π) =
N

∑
i=1

∑
Xi

P(Xi|Ti;β,π) log P(Ti, Xi;β,π), (14)

where N is the number of learning data (promising solutions in EDA). A set of learning
data is represented by D ≡ {T1, T2, · · · , TN}. Using the forward–backward probabilities and
maximizing Q(β,π|β,π) under constraints ∑

α
β(S [x] → α) = 1 and ∑

x
π(S [x]) = 1, we

obtain the following update formula:

π(S [x]) ∝ π(S [x])
N

∑
i=1

b1
Ti
(x;β,π)

P(Ti;β,π)
, (15)

β(S [x] → gS [y]...S [y]) ∝ β(S [x] → g S [y]...S [y])

×
N

∑
i=1

[

1

P(Ti;β,π) ∑
j∈cover(g,Ti)

{

f
j
Ti
(x;β,π) ∏

k∈ch(j,Ti)

bk
Ti
(y;β,π)

}

]

. (16)

The EM algorithm maximizes the log-likelihood given by

L(β,π;D) =
N

∑
i=1

log P(Ti;β,π). (17)

By iteratively performing Equations 15–16, the log-likelihood monotonically increases and we
obtain locally maximum likelihood estimation parameters. For the case of the EM algorithm,
the annotation size h has to be given in advance. Because the EM algorithm is a point
estimation method, this algorithm cannot estimate the optimum annotation size. For the
case of models that do not include latent variables, a model selection method such as Akaike
information criteria (AIC) or Bayesian information criteria (BIC) is often used. However, these
methods take advantage of the asymptotic normality of estimators, which is not satisfied in
models that include latent variables. In Ref. ([12]), we derived variational Bayesian (VB) ([2])
based inference for PCFG-LA, which can estimate the optimal annotation size. Because the
derivation of the VB-based algorithm is much more complicated than that of the EM algorithm
and because such explanation is outside the scope of this chapter, we do not explain the details
of the VB-based algorithm. For details of VB-based PAGE, please read Ref. ([12]).

The procedures of PAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we use the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 15–16), converged parameters (β∗,π∗) are
estimated with learning data Dg.

58 Genetic Programming – New Approaches and Successful Applications
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Figure 5. Illustrative description of PCFG-LAMM used in UPAGE.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X|Dg) = P(T, X;β∗,π∗).

Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling which is computationally efficient. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select terminal nodes unconditionally).

(a) A root node is selected following probability distribution π∗ = {π∗(S [x])|x ∈ H}.

(b) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production
rule according to the probability distribution

β∗(S [x]) = {β∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (b) until there are no non-terminal symbols left in the derivation tree.

5. Unsupervised PAGE

In this section, we introduce UPAGE ([11]) which is a mixture model extension of PAGE.
UPAGE uses PCFG-LAMM as a baseline grammar, and we explain details of PCFG-LAMM
and a parameter update formula in this section.

5.1. PCFG-LAMM

Although PCFG-LA is suitable for estimating local dependencies among nodes, it cannot
consider global contexts behind individuals. Suppose there are two optimal solutions
represented by F1(x) and F2(x). In this case, a population includes solution candidates for
F1(x) and F2(x) at the same time. Since building blocks for two optimal solutions are different,
model and parameter learning with one model results in slow convergence due to the mixed
learning data. Furthermore in GP, there are multiple optimal structures even if the problems to
be solved are not multimodal. For instance, if an optimum includes a substructure represented
by sin(2x), sin(2x) as well as 2 sin(x) cos(x) which are mathematically equivalent can be
building blocks, where their tree representations are different. When modeling such a mixed
population, it is very difficult for PCFG-LA to estimate these multiple structures separately
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as in the multimodal case. We have proposed a PCFG-LAMM which is a mixture model
extension of PCFG-LA and have also proposed UPAGE based on PCFG-LAMM.

PCFG-LAMM assumes that the probability distributions are a mixture of more than two
PCFG-LA models. In PCFG-LAMM, each solution is considered to be sampled from either
of the PCFG-LA models (Figure 5). We introduce a latent variable zk

i , where zk
i is 1 when the

ith derivation tree is generated from the kth model and 0 otherwise (Zi = {z1
i , z2

i , · · · , z
μ
i }).

We summarized variables in Appendix B. As a consequence, PCFG-LAMM handles Xi and Zi

as latent variables. The likelihood of complete data is given by

P(Ti, Xi, Zi;β,π,ζ) =
μ

∏
k=1

{

ζkP(Ti, Xi;β
k,πk)

}zk
i

=
μ

∏
k=1

{

ζk ∏
x∈H

πk(S [x])δ(x;Ti,Xi) ∏
r∈R[H]

βk(r)c(r;Ti,Xi)
}zk

i

, (18)

where ζk is the mixture ratio of the kth model (ζ = {ζ1, ζ2, · · · , ζμ} where ∑k ζk = 1).
βk(r) and πk(S [x]) denote the probabilities of production rule r and root S [x] of the kth
model, respectively. By calculating the marginal of Equation 18 with respect to Xi and Zi,
the likelihood of observed tree Ti is calculated as

P(Ti;β,π,ζ) =
μ

∑
k=1

{

ζkP(Ti;β
k,πk)

}

=
μ

∑
k=1

{

ζk ∑
x∈H

πk(S [x])b1
Ti
(x;βk,πk)

}

. (19)

5.2. Parameter update formula

As in PCFG-LA, the parameter inference of PCFG-LAMM is carried out via the EM algorithm
because PCFG-LAMM contains latent variables Xi and Zi. Let β, π and ζ be current
parameters β, π and ζ be nextstep parameters. The Q function of the EM algorithm is given
by

Q(β,π, ζ|β,π, ζ) =
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π, ζ) log P(Ti, Xi, Zi;β,π, ζ). (20)

By maximizing Q(β,π, ζ|β,π,ζ) under constraints (∑
k

ζk = 1, ∑
α

βk(S [x] → α) = 1 and

∑
x

πk(S [x]) = 1), a parameter update formula can be obtained as follows (see Appendix B):

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

{

βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ)
ζk

× ∑
ℓ∈cover(g,Ti)

f ℓTi
(x;βk,πk) ∏

j∈ch(ℓ,Ti)

b
j
Ti
(y;βk,πk)

}

, (21)

πk ∝
N

∑
i=1

{

πk(S [x])

P(Ti;β,π, ζ)
ζkb1

Ti
(x;βk,πk)

}

, (22)
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ζ
k

∝
N

∑
i=1

{

ζkP(Ti;β
k,πk)

P(Ti;β,π, ζ)

}

. (23)

The parameter inference starts from some initial values and converges to a local optimum
using Equations 21–23. A log-likelihood is given by

L(β,π, ζ;D) =
N

∑
i=1

log P(Ti;β,π, ζ). (24)

The procedures of UPAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals. In our
implementation, the ratio between production rules of function nodes (e.g. S [x] →
+ S [y] S [y]) and those of terminal nodes (e.g. S [x] → + S [y]S [y]) are set to 4 : 1.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we used the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 21–23), converged parameters (β∗,π∗, ζ∗)
are estimated with learning data Dg.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X, Z|Dg) = P(T, X, Z;β∗,π∗, ζ∗).

Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling, which is computationally cheap. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select a terminal node unconditionally).

(a) Select a model following probability distribution ζ∗ = {ζ1
∗, ζ2

∗, · · · , ζ
μ
∗}.

(b) Let the selected model index be ℓ. A root node is selected following probability
distribution πℓ

∗ = {πℓ
∗(S [x])|x ∈ H}.

(c) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production
rule following the probability distribution

βℓ∗(S [x]) = {βℓ∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (c) until there are no non-terminal symbols left in the derivation tree.

5.3. Computer experiments

In order to show the effectiveness of UPAGE, we analyze UPAGE from the viewpoint of
the number of fitness evaluations. We applied UPAGE to three benchmark problems: the
royal tree problem (Section 5.3.1), the bipolar royal tree problem (Section 5.3.2) and the
deceptive MAX (DMAX) problem (Section 5.3.3). Because we want to study the effectiveness
of the mixture model versus PCFG-LA, we specifically compared UPAGE with PAGE. In each
benchmark test, we employed the parameter settings shown in Table 1, where UPAGE and
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PAGE and UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

M Population size 1000 3000 3000

Ps Selection rate 0.1 0.1 0.1

Pe Elite rate 0.01 0.01 0.01

UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

h Annotation size 11 22 22

μ The number of mixtures 2 2 2

PAGE

Meaning Royal Bipolar DMAX
Tree Royal Tree

h Annotation size 16 32 32

Table 1. Main parameter settings of UPAGE and PAGE.

PAGE used the same population size, elite rate and selection rate. For the method-specific
parameters of PAGE and UPAGE, we determined h and μ so that the number of parameters
to be estimated is almost the same in UPAGE and PAGE. In the three benchmark problems,
we carried out UPAGE and PAGE 30 times to compare the number of fitness evaluations and
also performed the Welch t-test (two-tailed) to determine the statistical significance.

5.3.1. Royal tree problem

We apply UPAGE to the royal tree problem ([22]), which has only one optimal solution. The
royal tree problem is a popular benchmark problem in GP. The royal tree problem is suitable
for analyzing GP because the optimal structure of the royal tree is composed of smaller
substructures (building blocks), and hence it well reflects the behavior of GP.

The royal tree problem defines the state perfect tree at each level. The perfect tree at a given
level is composed of the perfect tree that is one level smaller than the given level. Thus, the
perfect tree of level c is composed of the perfect tree of level b. In perfect trees, alphabets of
functions descend by one from a root to leaves in a tree. A function a has a terminal x. The
fitness function of the royal tree problem is given by

Score(Xi) = wbi ∑
j

(waij × Score(Xij)), (25)

where Xi is the ith node in tree structures, and Xij denotes the jth child of Xi. The fitness value
of the royal tree problem is calculated recursively from a root node. In Equation 25, wbi and
waij are weights which are defined as follows:

• waij

• Full Bonus = 2
If a subtree rooted at Xij has a correct root and is a perfect tree.
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Average number of fitness evaluations Standard deviation

UPAGE 6171 28

PAGE 6237 18

P-value of t-test (Welch, two-tailed)

0.74

Table 2. The number of fitness evaluations, standard deviation and P-value of t-test in the royal tree
problem.

• Partial Bonus = 1
If a subtree rooted at Xij has a correct root but is not a perfect tree.

• Penalty = 1/3
If Xij is not a correct root.

• wbi

• Complete Bonus = 2
If a subtree rooted at Xi is a perfect tree.

• Otherwise = 1

In the present chapter, we employ the following GP functions and terminals:

F = {a, b, c, d},

T = {x}.

Here, F and T denote function and terminal sets, respectively, of GP. For details of the royal
tree problem, please see Ref. ([22]).

Table 2 shows the average number of fitness evaluations (along with their standard deviation)
and the P-value of a t-test (Welch, two-tailed). As can been seen with Table 2, there is no
noticeable difference between UPAGE and PAGE in the average number of fitness evaluations,
which is confirmed by the P-value of t-test. The royal tree problem is not multimodal, and
hence the optimal solution has only one tree expression. Consequently, we do not have to
consider global contexts behind optimal solutions, which is an advantage of UPAGE over
PAGE.

5.3.2. Bipolar royal tree problem

We next apply UPAGE to the bipolar royal tree problem. In the field of GA-EDAs, a mixture
model based method UEBNA was proposed, and it was reported that UEBNA is especially
effective in multimodal problems such as two-max problem. Consequently, we apply UPAGE
to a bipolar problem having two optimal solutions, which is a multimodal extension of the
royal tree problem. In order to make the royal tree problem multimodal, we set T = {x, y}
and Score(x) = Score(y) = 1. With this setting, the royal tree problem has two optimal
solutions of x (Fig. 7(a)) and y (Fig. 7(b)). PAGE and UPAGE stop when either of the two
optimal solutions is obtained.

Table 3 shows the average number of fitness evaluations along with their standard deviation.
We see that UPAGE can obtain an optimal solution with a smaller number of fitness
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Figure 6. Example of fitness calculation in the bipolar royal tree problem. (a) Derivation tree and (b)
S-expression.

Figure 7. (a) Optimum structure of x and (b) that of y in the bipolar royal tree problem. These two
structures have the same fitness value.

evaluations than PAGE. Table 3 gives the P-value of a t-test (Welch, two-tailed), which allows
us to say that the difference between UPAGE and PAGE is statistically significant.

Because the bipolar royal tree problem has two optimal solutions (x and y), PAGE learns the
production rule probabilities with learning data containing solution candidates of both x and
y optima. Let us consider the annotation size required to express optimal solutions of the
bipolar royal tree problem of depth 5. For the case of PAGE, the minimum annotation size to
be able to learn the two optimal solutions separately is 10. In contrast, UPAGE can express
the two optimal solutions with mixture size 2 and annotation size 5, which results in a smaller
number of parameters. This consideration shows that a mixture model is more suitable for
this class of problems.

Figure 8 shows the increase in the log-likelihood for the bipolar royal tree problem, in
particular, the transitions at generation 0 and generation 5. As can been seen from the figure,
the log-likelihood converges after about 10 iterations. The log-likelihood improvement at
generation 5 is larger than that at generation 0 because the tree structures have converged
toward the end of the search.

5.3.3. DMAX Problem

We apply UPAGE to the DMAX problem ([8, 10]), which has deceptiveness when it is solved
with GP. The main objective of the DMAX problem is identical to that of the original MAX
problem: to find the functions that return the largest real value under the limitation of a
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Average number of fitness evaluations Standard deviation

UPAGE 25839 4737

PAGE 31878 4333

P-value of t-test (Welch, two-tailed)

4.49 × 10−6

Table 3. The number of fitness evaluations, standard deviation and P-value of t-test in the bipolar royal
tree problem.

Figure 8. Transitions of loglikelihood of UPAGE in the bipolar royal tree problem.

maximum tree depth. However, the symbols used in the DMAX problem are different from
those used in the MAX problem. The DMAX problem has three parameters, and the difficulty
of the problem can be tuned using these three parameters. For the problem of interest in the
present chapter, we selected m = 3 and r = 2, whose deceptiveness is of medium degree. In
this setting, the GP terminals and functions are

F = {+3,×3},

T = {0.95,−1},

where +3 and ×3 are 3 arity addition and multiplication operators, respectively. The optimal
solution in the present setting is given by

(−1 × 3)26(0.95 × 3) � 7.24 × 1012. (26)

Table 4 shows the average number of fitness evaluations along with their standard deviation
for the DMAX problem. We can see that UPAGE obtained the optimal solution with a smaller
number of fitness evaluations compared to PAGE. Table 4 gives the P-value of a t-test (Welch
and two-tailed) and allows us to say that the difference in the averages of UPAGE and PAGE
is statistically significant.

In the bipolar royal tree problem, expressions of the two optimal solutions (x or y) are
different, and thus building blocks of the optima are also different. In contrast, the DMAX
problem has mathematically only one optimal solution, which are represented by Equation 26.
Although the DMAX problem is a unimodal problem, the DMAX problem has different
expressions for the optimal solution due to commutative operators such as +3 and ×3. From
this experiment, we see that UPAGE is superior to PAGE for this class of benchmark problems.
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Average number of fitness evaluations Standard deviation

UPAGE 36729 3794

PAGE 38709 2233

P-value of t-test (Welch, two-tailed)

1.94 × 10−2

Table 4. The number of fitness evaluations, standard deviation and P-value of t-test in the DMAX
problem.

Figure 9. The average number of fitness evaluations (smaller is better) in royal tree problem, bipolar
royal tree problem and DMAX problem relative to those of PAGE (i.e. the PAGE results are normalized
to 1).

Common parameters in PAGE and UPAGE
Meaning Bipolar Royal Tree

M Population size 6000

Ps Selection rate 0.3
Pe Elite rate 0.1

UPAGE

Meaning Bipolar Royal Tree

h Annotation size 16
μ The number of mixtures 4

PAGE

Meaning Bipolar Royal Tree

h Annotation size 32

Table 5. Parameter settings for a multimodal problem.

5.4. Multimodal problem

In the preceding section, we evaluated the performance of UPAGE from the viewpoint of the
average number of fitness evaluations. In this section, we show the effectiveness of UPAGE
in terms of its capability for obtaining multiple solutions of a multimodal problem. Because
there are two optimal solutions in the bipolar royal tree problem (see Fig. 7(a) and (b)), we
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Successful runs / Total runs

UPAGE 10/15

PAGE 0/15

Table 6. The number of runs which could obtain both optimal solutions. We carried out 15 runs in total.

show that UPAGE can obtain both optimal solutions in a single run. Parameter settings are
shown in Table 5.

Table 6 shows the number of successful runs in which both optimal solutions are obtained in a
single run. As can been seen in Table 6, UPAGE succeeded in obtaining both optimal solutions
in 10 out of 15 runs, whereas PAGE could not obtain them at all.

Table 7 shows production rule probabilities of UPAGE in a successful run. Although the
mixture size is μ = 4, we have only presented probabilities of Model = 0 and Model = 3, which
are related to optimal solutions of y (Fig. 7(b)) and x (Fig. 7(a)), respectively (i.e. Model = 1
and Model = 2 are not shown). Because we see in Model = 0 that the probabilities generating
y are very high, we consider that the optimal solution of y was generated by Model = 0. On
the other hand, it is estimated that the optimal solution of x was generated by Model = 3.
From this probability table, we can confirm that UPAGE successfully estimated the mixed
population separately, because Model = 3 and 0 can generate optimal solutions of x and y
with relatively high probability. It is very difficult for PAGE to estimate multiple solutions
because PCFG-LA is not a mixture model and it is almost impossible to learn the distributions
separately. As was shown in Section 5.3, UPAGE is superior to PAGE in terms of the number
of fitness evaluations. From Table 7, it is considered that this superiority is due to UPAGE’s
capability of learning distributions in a separate way.

6. Discussion

In the present chapter, we have introduced PAGE and UPAGE. PAGE is based on PCFG-LA,
which takes into account latent annotations to weaken the context freedom assumption. By
considering latent annotations, dependencies among nodes can be considered. We reported
in Ref. ([12]) that PAGE is more powerful for several benchmark tests than other GP-EDAs,
including GMPE and POLE.

Although PCFG-LA is suitable for estimating dependencies among local nodes, it cannot
consider global contexts (contexts of entire tree structures) behind individuals. In many
real-world problems, not only local dependencies but also global contexts have to be taken
into account. In order to consider the global contexts, we have proposed UPAGE by extending
PCFG-LA into a mixture model (PCFG-LAMM). In the bipolar royal tree problem, there are
two optimal structures of x and y and the global contexts represent which optima (x or y) each
tree structure comes from. From Table 7, the mixture model of UPAGE successfully worked
and UPAGE could estimate mixed population separately. We have also shown that a mixture
model is effective not only in multimodal problems but also in some unimodal problems,
namely in the DMAX problem. Although the optimal solution of the DMAX problem is
represented by mathematically one expression, the tree expressions are not unique, due to
commutative operators (×3 and +3). Consequently, the mixture model is also effective in
the DMAX problem (see Section 5.3.3), and this situation where there exists the expression
diversity often arises in real world problems. When obtaining multiple optimal solutions
in a single run, UPAGE succeeded in cases for which PAGE obtained only one of the
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Model = 0 Pr

ζ0 0.11
S [1] 1.00
S [0] → aS [10] 0.20
S [0] → aS [2] 0.18
S [0] → aS [5] 0.28
S [1] → d S [4] S [4]S [4] S [4] 1.00
S [10] → x 0.14
S [10] → y 0.86
S [11] → x 0.14
S [11] → y 0.86
S [12] → a S [10] 0.17
S [12] → a S [2] 0.18
S [12] → a S [5] 0.32
S [13] → x 0.21
S [13] → y 0.79
S [14] → b S [7]S [7] 0.10
S [14] → c S [10] S [10] S [10] 0.15
S [15] → x 0.12
S [15] → y 0.88
S [2] → x 0.25
S [2] → y 0.75
S [3] → aS [10] 0.21
S [3] → aS [15] 0.18
S [3] → aS [2] 0.17
S [3] → aS [5] 0.22
S [4] → c S [8]S [8] S [8] 1.00
S [5] → y 0.97
S [6] → y 1.00
S [7] → x 0.52
S [7] → y 0.48
S [8] → b S [0]S [0] 0.50
S [8] → b S [12]S [12] 0.17
S [8] → b S [3]S [3] 0.31
S [9] → x 0.14
S [9] → y 0.86

Model = 3 Pr

ζ3 0.52
S [11] 1.00
S [0] → aS [13] 0.16
S [0] → aS [2] 0.29
S [0] → aS [5] 0.32
S [1] → b S [0]S [0] 0.13
S [1] → b S [14]S [14] 0.19
S [1] → b S [3]S [3] 0.15
S [1] → b S [7]S [7] 0.17
S [1] → b S [8]S [8] 0.32
S [10] → c S [1] S [1]S [1] 1.00
S [11] → d S [10] S [10] S [10] S [10] 1.00
S [12] → a S [4] 0.13
S [12] → c S [13] S [13] S [13] 0.34
S [12] → x 0.13
S [13] → x 0.72
S [13] → y 0.28
S [14] → a S [15] 0.16
S [14] → a S [4] 0.10
S [14] → a S [5] 0.45
S [14] → a S [6] 0.13
S [15] → x 0.89
S [15] → y 0.11
S [2] → x 0.99
S [3] → aS [13] 0.11
S [3] → aS [15] 0.14
S [3] → aS [2] 0.20
S [3] → aS [5] 0.44
S [4] → x 0.68
S [4] → y 0.32
S [5] → x 0.92
S [6] → x 0.93
S [7] → aS [13] 0.23
S [7] → aS [2] 0.31
S [7] → aS [4] 0.10
S [7] → aS [5] 0.29
S [8] → aS [2] 0.17
S [8] → aS [4] 0.18
S [8] → aS [5] 0.41
S [8] → aS [6] 0.16
S [9] → aS [13] 0.19
S [9] → aS [4] 0.19
S [9] → aS [5] 0.38

Table 7. Estimated parameters by UPAGE in a successful run. Although the number of mixtures is
μ = 4, we only show Model = 0 and Model = 3 related to optimal solutions of y and x, respectively. Due
to limited space, we do not show parameters of production rules which are smaller than 0.1.
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Method Estimation of Position independent Consideration of
interaction among nodes model global contexts

Scalar SG-GP No Yes No
Vectorial SG-GP Partially No No

GT-EDA Yes No No

GMPE Yes Yes No
PAGE Yes Yes No

UPAGE Yes Yes Yes

Table 8. Classification of GP-EDAs and their capabilities.

optima. This result shows that UPAGE is more effective than PAGE not only quantitatively
but also qualitatively. We also note that UPAGE is more powerful than PAGE in terms of
computational time. In our computer experiments, we set the number of parameters in
UPAGE and PAGE to be approximately the same. Figure 10 shows the relative computational
time per generation of UPAGE and PAGE (the computational time of PAGE is normalized to 1)
and we see that UPAGE required only sixty percent of the time required by PAGE. Although
we have shown in Section 5.3.1 that UPAGE and PAGE required approximately the same
number of fitness evaluations to obtain the optimal solution in the royal tree problem, UPAGE
is more effective even for the royal tree problem if the actual computational time is considered.

Figure 10. The computational time per generation of UPAGE and PAGE (smaller is better). The time of
PAGE is normalized to 1.

Table 8 summarizes functionalities of several GP-EDAs. SG-GP employs the conventional
PCFG and hence it cannot estimate dependencies among nodes. Although GT-EDA, GMPE
and PAGE adopt different types of grammar models, they belong to the same class in the sense
that these three methods can take into account dependencies among nodes, which is enabled
by a use of specialized production rules depending on contexts. However, these methods
cannot consider global contexts, and consequently, they are not suitable for estimating
problems having complex distributions. In contrast, in addition to local dependencies among
nodes, UPAGE can consider global contexts of tree structures. The model of UPAGE is the
most flexible among these GP-EDAs, and this flexibility is reflected by the search performance.

In the present implementation of UPAGE, we had to set the mixture size μ and the annotation
size h in advance because UPAGE employed the EM algorithm. However, it is desirable to
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estimate μ and h, as well as β, π and ζ during search. In the case of PAGE, we proposed
PAGE-VB in Ref. ([12]), which adopted VB to estimate the annotation size h. In a similar
fashion, it is possible to apply VB to UPAGE to enable the inference of μ and h.

We have shown the effectiveness of PAGE and UPAGE with benchmark problems not having
intron structures. However, in real-world applications, problems generally include intron
structures, which make the model and parameter inference much more difficult. For such
problems, we consider that intron removal algorithms ([13, 30]) are effective, and application
of such algorithms to GP-EDAs is left as a topic of future study.

7. Conclusion

We have introduced a probabilistic program evolution algorithm named PAGE and its
extension UPAGE. PAGE takes advantage of latent annotations that enables consideration of
dependencies among nodes, and UPAGE incorporates a mixture model for taking into account
global contexts. By applying UPAGE to computational experiments, we have confirmed that
a mixture model is highly effective for obtaining solutions in terms of the number of fitness
evaluations. At the same time, UPAGE is more advantageous than PAGE in the sense that
UPAGE can obtain multiple solutions for multimodal problems. We hope that it will be
possible to apply PAGE and UPAGE to a wide class of real-world problems, which is an
intended future area of study.
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Appendix A: Parameter list

We summarized parameters used in PAGE and UPAGE in the following table.

Target model Parameter Meaning

PAGE and UPAGE δ(x; T, X) Frequency of a root S [x] in a complete tree (0 or 1)
c(r; T, X) Frequency of a production rule r in a complete tree

h Annotation size
H Set of annotation H = {0, 1, · · · h − 1}
Ti Observed derivation tree

x
j
i jth latent annotation in Ti

R[H] Set of production rules
N Set of non-terminals in CFG
T Set of terminals in CFG
F Set of function nodes in GP
T Set of terminal nodes in GP

PAGE π(S [x]) Probability of a root S [t]
β(r) Probability of a production rule r

UPAGE ζk Mixture ratio of kth model.

πk(S [x]) Probability of a root S [t] in kth model.

βk(r) Probability of a production rule r in kth model

zk
i zk

k = 1, if ith individual belongs to kth model
μ Mixture size
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Appendix B: Derivation of a parameter update formula for UPAGE

We here explain details of the parameter update formula for UPAGE (see Section 4.1). By
separating Q(β,π, ζ|β,π,ζ) into terms containing β, π and ζ, a parameter update formula
for β, π and ζ can be calculated separately.

We here derive β. Maximization of Q(β,π, ζ|β,π, ζ) under a constraint ∑α β
k
(S [x] → α) = 1

can be performed by the method of Lagrange multipliers:

∂L

∂β
k
(S [x] → α)

= 0, (27)

with

L = Q(β,π, ζ|β,π, ζ) + ∑
k,x

ξk,x

(

1 − ∑
α

β
k
(S [x] → α)

)

, (28)

where ξk,x denote Lagrange multipliers. By calculating Equation 27, we obtain the following
update formula:

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

∑
Xi

∑
Zi

{

P(Xi, Zi|Ti;β,π,ζ)zk
i

×c(S [x] → gS [y] · · · S [y]; Ti, Xi)} . (29)

Because Equation 29 includes summation in terms of Xi, direct calculation is intractable
due to exponential increase of computational cost. Consequently, we use forward–backward

probabilities. Let ck(S [x] → gS [y] · · · S [y]; Ti) be

ck(S [x] → gS [y] · · · S [y]; Ti)

= ∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i c(S [x] → g S [y] · · · S [y]; Ti, Xi).

By differentiating the likelihood of complete data (Equation 18) with respect to βk(S [x] →
g S [y] · · · S [y]), we have

ck(S [x] → gS [y] · · · S [y]; Ti)

=
βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ) ∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π, ζ)

∂βk(S [x] → gS [y] · · · S [y])
.

The last term is calculated as

∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π,ζ)

∂βk(S [x] → gS [y] · · · S [y])
= ζk ∑

Xi

∂P(Ti, Xi;β
k,πk)

∂βk(S [x] → g S [y] · · · S [y])

= ζk ∑
ℓ∈cover(g,Ti)

f ℓTi
(x;βk,πk) ∏

j∈ch(ℓ,Ti)

b
j
Ti
(y;βk,πk).

By this procedure, the update formula for β is expressed with Equation 21, and the update
formula for π is calculated in a similar way (and much easier). The update formula for ζ is
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given by

ζ
k

∝
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i

=
N

∑
i=1

1

P(Ti;β,π, ζ) ∑
Xi

∑
Zi

{

zk
i P(Ti, Xi, Zi;β,π, ζ)

}

=
N

∑
i=1

1

P(Ti;β,π, ζ) ∑
Xi

{

ζkP(Ti, Xi;β
k,πk)

}

=
N

∑
i=1

ζkP(Ti;β
k,πk)

P(Ti;β,π,ζ)
.
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