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1. Introduction

Genetic Programming (GP) is a technique aiming at the automatic generation of programs.
It was successfully used to solve a wide variety of problems, and it can be now viewed as
a mature method as even patents for old and new discovery have been filled, see e.g. [1, 2].
GP is used in fields as different as bio-informatics [3], quantum computing [4] or robotics [5],
among others.

The most widely used scheme in GP was proposed by Koza, where programs are represented
as Lisp-like trees and evolved by a genetic algorithm. Many other paradigms were devised
these last years to automatically evolve programs. For instance, linear genetic programming
(LGP) [6] is based on an interesting feature: instead of creating program trees, LGP directly
evolves programs represented as linear sequences of imperative computer instructions. LGP
is successful enough to have given birth to a derived commercial product named discipulus.
The representation (or genotype) of programs in LGP is a bounded-length list of integers.
These integers are mapped into imperative instructions of a simple imperative language (a
subset of C for instance).

While the previous schemes are mainly based on discrete optimization, a few other
evolutionary schemes for automatic programming have been proposed that rely on some
sort of continuous representation. These include notably Ant Colony Optimization in
AntTAG [7, 8], or the use of probabilistic models like Probabilistic Incremental Program
Evolution [9] or Bayesian Automatic Programming [10].

In 1997, Storn and Price proposed a new evolutionary algorithm for continuous optimization,
called Differential Evolution (DE) [11]. Another popular continuous evolution scheme is the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) that was proposed by Hansen
and Ostermeier [12] in 1996. Differential Evolution differs from Evolution Strategies in the
way it uses information from the current population to determine the perturbation brought to
solutions (this can be seen as determining the direction of the search).

In this chapter, we propose to evolve programs with continuous representation, using these
two continuous evolution engines, Differential Evolution and CMA Evolution Strategy. A

©2012 Fonlupt et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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program is represented by a float vector that is translated to a linear sequence of imperative
instructions, a la LGP.

The chapter is organized in the following way. The first section introduces the Differential

Evolution and CMA Evolution Strategy schemes, focusing on the similarities and main

differences. We then present our continuous schemes, LDEP and CMA-LEP, respectively

based on DE and CMA-ES. We show that these schemes are easily implementable as plug-ins

for DE and CMA-ES. In Section 4, we compare the performance of these two schemes, and

also traditional GP, over a range of benchmarks.

2. Continuous evolutionary schemes

In this section we present DE and CMA-ES, that form the main components of the

evolutionary algorithms used in our experiments.

2.1. Previous works on evolving programs with DE

To our knowledge O’Neill and Brabazon were the firsts to use DE to evolve programs within

the well known framework of Grammatical Evolution (GE) [13]. In GE, a population of

variable length binary strings is decoded using a Backus Naur Form (BNF) formal grammar

definition into a syntactically correct program. The genotype-to-phenotype mapping process

allows to use almost any BNF grammars and so to evolve programs in many different

languages. GE has been applied to various problems ranging from symbolic regression

problems or robot control [14] to physical-based animal animations [15] including neural

network evolution, or financial applications [16]... In [13], Grammatical Differential Evolution

is defined by retaining the GE grammar decoding process for generating phenotypes, with

genotypes being evolved with DE. A diverse selection of benchmarks from the GP literature

were tackled with four different flavors of GE. Even if the experimental results indicated that

the grammatical differential evolution approach was outperformed by standard GP on three

of the four problems, the results were somewhat encouraging.

More recently, Veenhuis also introduced a successful application of DE for automatic

programming in [17], mapping a continuous genotype to trees, so called Tree based

Differential Evolution (TreeDE). TreeDE improved somewhat on the performance of

grammatical differential evolution, but it requires an additional low-level parameter, the tree

depth of solutions, that has to be set beforehand. Moreover evolved programs do not include

random constants.

Another recent proposal for program evolution based on DE is called Geometric Differential

Evolution, and was issued in [18]. These authors introduced a formal generalization of DE to

keep the same geometric interpretation of the search dynamic across diverse representations,

either for continuous or combinatorial spaces. This scheme is interesting, although it has some

limitations: it is not possible to model the search space of Koza style subtree crossover for

example. Anyway, experiments on four standard benchmarks against Langdon’s homologous

crossover GP were promising.

Our proposal differs from these previous works by being based on Banzhaf’s Linear GP

representation of solutions. This allows us to implement real-valued constant management

28 Genetic Programming – New Approaches and Successful Applications
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inspired from the LGP literature, that are lacking in TreeDE. The tree-depth parameter from

TreeDE is also replaced by the maximum length of the programs to be evolved: this is a lesser

constraint on the architecture of solutions and it still has the benefit of limiting the well known

bloat problem (uncontrolled increase in solution size) that plagues standard GP.

2.2. Differential evolution

This section only introduces the main Differential Evolution (DE) concepts. The interested

reader might refer to [11] for a full presentation. DE is a population-based search algorithm

that draws inspiration from the field of evolutionary computation, even if it is not usually

viewed as a typical evolutionary algorithm.

DE is a real-valued, vector based, heuristic for minimizing possibly non-differentiable and

non linear continuous space functions. As most evolutionary schemes, DE can be viewed

as a stochastic directed search method. But instead of randomly mating two individuals

(like crossover in Genetic Algorithms), or generating random offspring from an evolved

probability distribution (like PBIL [19] or CMA-ES [20]), DE takes the difference vector of

two randomly chosen population vectors to perturb an existing vector. This perturbation is

made for every individual (vector) inside the population. A newly perturbated vector is kept

in the population only if it has a better fitness than its previous version.

2.2.1. Principles

DE is a search method working on a set or population X = (X1, X2, . . . , XN) of N solutions

that are d−dimensional float vectors, trying to optimize a fitness (or objective) function

f (Xi)i∈[1,N] : R
d → R.

DE can be roughly decomposed into an initialization phase and three very simple steps that

are iterated on:

1- initialization

2- mutation

3- crossover

4- selection

5- end if termination criterion is fulfilled else

go to step 2

At the beginning of the algorithm, the initial population is randomly initialized and evaluated

using the fitness function f . Then new potential individuals are created: a new trial solution

is created for every vector Xj, in two steps called mutation and crossover. A selection process

is triggered to determine whether or not the trial solution replaces the vector Xj in the

population.

2.2.2. Mutation

Let t indicate the number of the current iteration (or generation), for each vector Xj(t) of the

population, a variant vector Vj(t + 1) = (vj1, vj2, . . . , vjd) is generated according to Eq. 1:

29Continuous Schemes for Program Evolution
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Vj(t + 1) = Xr1 (t) + F × (Xr2(t)− Xr3(t)) (1)

where:

• r1, r2 and r3 are three mutually different randomly selected indices in the population that

are also different from the current index j.

• the scaling factor F is a real constant which controls the amplification of differential

evolution and avoids the stagnation in the search process — typical values for F are in

the range [0, 2].

• The expression (Xr2 (t)− Xr3 (t)) is referred to as the difference vector.

Many variants were proposed for equation 1, including the use of more than 3 individuals.

According to [17, 21], the mutation method that is the more robust over a set of experiments

is the method DE/best/2/bin, defined by Eq. 2:

Vj(t + 1) = Xbest(t) + F × (Xr1 (t) + Xr2 (t)− Xr3 (t)− Xr4 (t)) (2)

where Xbest(t) is the best individual in the population at the current generation. This method

DE/best/2/bin is used throughout the chapter.

2.2.3. Crossover

As explained in [11], the crossover step ensures to increase or at least to maintain the diversity.

Each trial vector is partly crossed with the variant vector. The crossover scheme ensures that

at least one vector component will be crossovered.

The trial vector Uj(t + 1) = (uj1, uj2, . . . , ujd) is generated using Eq. 3:

uji(t + 1) =

{

vji(t + 1) if (rand ≤ CR) or j = rnbr(i)

xji(t) if (rand > CR) and j �= rnbr(i)
(3)

where:

• xji(t) is the jth component of vector Xi(t);

• vji(t+ 1) is the jth component of the current variant vector Vj(t+ 1) (see above Eq. 1 and 2);

• rand is a random float drawn uniformly in the range [0, 1[;

• CR is the crossover rate in the range [0, 1] which has to be determined by the user;

• rnbr(i) is a randomly chosen index drawn in the range [1, d] independently for each vector

Xi(t) which ensures that Uj(t + 1) gets at least one component from the variant vector

Vj(t + 1).

2.2.4. Selection

The selection step decides whether the trial solution Ui(t + 1) replaces the vector Xi(t) or not.

The trial solution is compared to the target vector Xi(t) using a greedy criterion. Here we

assume a minimization framework: if f (Ui(t + 1)) < f (Xi(t)), then Xi(t + 1) = Ui(t + 1)
otherwise the old value is kept: Xi(t + 1) = Xi(t) .
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2.2.5. Iteration and stop criterion

These three steps (mutation, crossover, selection) are looped over until a stop criterion is

triggered: typically a maximum number of evaluations/iterations is allowed, or a given

value of fitness is reached. Overall DE is quite simple, only needing three parameters: the

population size N, the crossover rate CR, and the scaling factor F.

2.3. Covariance matrix adaptation evolution strategy

Among continuous optimization methods, DE was often compared (in e.g. [22, 23]) to the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES), initially proposed in [12]. The

CMA Evolution Strategy is an evolutionary algorithm for difficult non-linear non-convex

optimization problems in continuous domains. It is typically applied to optimization

problems of search space dimensions between three and one hundred. CMA-ES was

designed to exhibit several invariances: (a) invariance against order preserving (i.e. strictly

monotonic) transformations of the objective function value; (b) invariance against angle

preserving transformations of the search space (e.g rotation, reflection); (c) scale invariance.

Invariances are highly desirable as they usually imply a good behavior of the search strategy

on ill-conditioned and on non-separable problems.

In this section we only introduce the main CMA-ES concepts, and refer the interested reader to

the original paper for a full presentation of this heuristic. An abundant literature has brought

several refinements to this algorithm (e.g. [24] and [25]), and has shown its strong interest as

a continuous optimization method.

2.3.1. Principles

The basic CMA-ES idea is sampling search points using a normal distribution that is centered

on an updated model of the ideal solution. This ideal solution can be seen as a weighted mean

of a best subset of current search points. The distribution is also shaped by the covariance

matrix of the best solutions sampled in the current iteration. This fundamental scheme was

refined mainly on two points:

• extracting more information from the history of the optimization run; this is done through

the so-called accumulation path whose idea is akin to the momentum of artificial neural

networks;

• allocating an increasing computational effort via an increasing population size in a classic

algorithm restart scheme.

The main steps can be summed-up as:

1. sample points are drawn according to the current distribution

2. the sample points are evaluated

3. the probability distribution is updated according to a best subset of the evaluated points

4. iterate to step 1, until the stop criterion is reached

31Continuous Schemes for Program Evolution
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2.3.2. Sampling step

More formally, the basic equation for sampling the search points (step 1) is:

x
(g+1)
k ← m(g) + σ(g)N(0, C(g)) (4)

where:

• g is the generation number

• k ∈ 1, ..., N is an index over the population size

• x
(g+1)
k is the k-th offspring drawn at generation g + 1

• m(g) is the mean value of the search distribution at generation g

• σ(g) is the “overall” standard deviation (or step-size) at generation g

• N(0, C(g)) is a multivariate normal distribution with zero mean and covariance matrix C(g)

at generation g

2.3.3. Evaluation and selection step

Once the sample solutions are evaluated, we can select the current best µ solutions, where

µ is the traditional parameter of Evolution Strategies. Then the new mean m(g+1), the new

covariance matrix C(g+1) and the new step size control σ(g+1) can be computed in order to

prepare the next iteration, as explained in the following section.

2.3.4. Update step

The probability distribution for sampling the next generation follows a normal distribution.

The new mean m(g+1) of the search distribution is a weighted average of the µ selected best

points from the sample x
(g+1)
1 , . . . , x

(g+1)
N , as shown in Eq. 5:

m(g+1) =
µ

∑
i=1

wix
(g+1)
i:N (5)

where:

• µ ≤ N, µ best points are selected in the parent population of size N.

• x
(g+1)
i:N , i-th best individual out of x

(g+1)
1 , . . . , x

(g+1)
N from Eq. 4.

• w1 ≥ . . . ≥ wµ are the weight coefficients with ∑
µ
i=1 wi = 1

Thus the calculation of the mean can also be interpreted as a recombination step (typically by

setting the weights wi = 1/µ). Notice that the best µ points are taken from the new current

generation, so there is no elitism.

Adapting the covariance matrix of the distribution is a complex step, that consists of three

sub-procedures: the rank-µ-update, the rank-one-update and accumulation. They are similar

32 Genetic Programming – New Approaches and Successful Applications



Continuous Schemes for Program Evolution 7

to a Principal Component Analysis of steps, sequentially in time and space. The goal of the

adaptation mechanism is to increase the probability of successful consecutive steps.

In addition to the covariance matrix adaptation rule, a step-size control is introduced, that

adapts the overall scale of the distribution based on information obtained by the evolution

path. If the evolution path is long and single steps are pointing more or less to the same

direction, the step-size should be increased. On the other hand, if the evolution path is short

and single steps cancel each other out, then we probably oscillate around an optimum, thus

the step-size should be decreased.

For the sake of simplicity, the details of the update of the covariance matrix C and step-size

control are beyond the scope of this chapter.

2.4. Main differences between DE and CMA-ES

The Differential Evolution method and the CMA Evolution Strategy are often compared, since

they are both population-based continuous optimization heuristics. Unlike DE, CMA-ES is

based on strong theoretical aspects that allow it to exhibit several invariances that make it a

robust local search strategy, see [12]. Indeed it was shown to achieve superior performance

versus state-of-the art global search strategies (e.g. see [26]). On the other hand and in

comparison with most search algorithms, DE is very simple and straightforward both to

implement and to understand. This simplicity is a key factor in its popularity especially for

practitioners from other fields.

Despite or maybe thanks to its simplicity, DE also exhibits very good performance when

compared to state-of-the art search methods. Furthermore the number of control parameters

in DE remains surprisingly small for an evolutionary scheme (Cr, F and N) and a large amount

of work has been proposed to select the best equation for the construction of the variant vector.

As explained in [27], the space complexity of DE is low when compared to the most

competitive optimizers like CMA-ES. Although CMA-ES remains very competitive over

problems up to 100 variables, it is difficult to extend it to higher dimensional problems due

mainly to the cost of computing and updating the covariance matrix.

Evolving programs which are typically a mix of discrete and continuous features (e.g.

regression problems) is an interesting challenge for these heuristics, since they were not

designed for this kind of task.

3. Linear programs with continuous representation

We propose to use Differential Evolution and CMA Evolution Strategy to evolve float vectors,

which will be mapped to sequences of imperative instructions in order to form linear

programs, similar to the LGP scheme from [6]. For the sake of simplicity, these schemes are

respectively denoted:

• LDEP, for Linear Differential Evolutionary Programming, when DE is used as the

evolutionary engine;

33Continuous Schemes for Program Evolution
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• CMA-LEP, for Covariance Matrix Adaption Linear Evolutionary Programming, when the

evolutionary engine is CMA-ES.

First we recall the basis of linear programs encoding, and execution, and then we explain

the mapping process from continuous representation to imperative instructions. We conclude

with some remarks on the integration of this representation and mapping with the DE and

CMA-ES engines.

3.1. Linear sequence of instructions

In LGP a program is composed of a linear sequence of imperative instructions (see [6] for more

details). Each instruction is typically 3-register instruction. That means that every instruction

includes an operation on two operand registers, one of them could be holding a constant

value, and then assigns the result to a third register:

ri =

{

rj op (rk|ck)

(rj|cj) op rk

where op is the operation symbol, ri is the destination register, rj, rk are calculation registers

(or operands) and cj, ck are constant registers (only one constant register is allowed per

instruction).

On the implementation level of standard LGP, each imperative instruction is represented by

a list of four integer values where the first value gives the operator and the three next values

represent the three register indices. For instance, an instruction like ri = rj × rk is stored

as a quadruple < ×, i, j, k >, which in turn is coded as four indices indicating respectively

the operation number in the set of possible operations, and 3 indices in the set of possible

registers (and/or constant registers). Of course, even if the programming language is basically

a 3-register instruction language, it is possible to ignore the last index in order to include

2-register instructions like ri = sin(rk).

Instructions are executed by a virtual machine using floating-point value registers to perform

the computations required by the program. The problem inputs are stored in a set of registers.

Typically the program output is read in a dedicated register (usually named r0) at the end

of the program execution. These input and output registers are read-write and can serve for

intermediate calculations. Usually, additional read-only registers store user defined constants,

and extra read-write registers can be added to allow for complex calculations. The use of

several calculation registers makes possible a number of different program paths, as explained

in [6] and in [28].

3.2. Mapping a float vector to a linear program

Here we explain how a float vector (i.e. an individual of the population), evolved by either

DE or CMA-ES, is translated to a linear program in the LGP form.

As explained in the previous section, we need 4 indices to code for the operation number and

3 registers involved. Thus we split the float vector individual into consecutive sequences of

4 floats < v1, v2, v3, v4 >, where v1 encodes the operator number, and v2, v3, v4 encode the

34 Genetic Programming – New Approaches and Successful Applications
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destination and operand registers. In order to convert a float vi into an integer index, we

apply one of the following computations:

• Conversion of the operator index:

#operator = ⌊(vi − ⌊vi	)× noperators	 (6)

where noperators denotes the number of possible operators.

• Conversion of the destination register index:

#register = ⌊(vi − ⌊vi	)× nregisters	 (7)

where nregisters denotes the number of possible read-write registers.

• The conversion of an operand register depends whether it is a constant or a read-write

register. This is controlled by a user defined probability of selecting constant registers,

denoted PC in the following equation:

{

# read-write register = ⌊( vi−⌊vi	−Pc

1−Pc
)× nregisters	 if (vi − ⌊vi	) > PC

# constant register = ⌊vi	mod nconstants otherwise
(8)

where nregisters denotes the number of possible read-write registers, and nconstants denotes

the number of possible constant registers.

Example of a mapping process

Let us suppose we work with 6 read-write registers (r0 to r5), 50 constant registers, and the 4

following operators:

0 : + 1 : − 2 : × 3 : ÷

We set up the constant register probability to PC = 0.1 and we consider the following vector

composed of 8 floats, to be translated into 2 imperative instructions (< v1, v2, v3, v4 > and

< v5, v6, v7, v8 >):

v1 v2 v3 v4 v5 v6 v7 v8

0.17 2.41 1.86 3.07 0.65 1.15 1.25 4.28

Value v1 denotes one operator among the four to choose from. Applying Eq. 6, we get

#operator = ⌊(0.17 − ⌊0.17	)× 4	 = 0, meaning that the first operator is +.

The second value v2 = 2.41 is turned into a destination register. According to Eq. 7, we obtain

#register = ⌊(2.41 − ⌊2.41	)× 6	 = ⌊2.46	 = 2, meaning that the destination register is r2.

The next value v3 = 1.86 gives an operand register. According to Eq. 8, it is a read-write

register since (1.86 − ⌊1.86	) = 0.86 > PC. Thus the first operand register is: #register =
⌊((1.86 − ⌊1.86	 − 0.1)/0.9)× 6	 = ⌊5.07	 = 5, meaning read-write register r5.

The last of the four first operands is decoded as a constant register since (3.07 − ⌊3.07	) =
0.07 ≤ PC. The index is ⌊3.07	 mod 50 = 3, meaning constant register c3.

35Continuous Schemes for Program Evolution
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So the 4 first values of the genotype are translated as:

r2 = r5 + c3

The mapping process continues with the four next values, until we are left with the following

program:

r2 = r5 + c3

r0 = r1 × r1

3.3. Algorithm

To finalize the LDEP and CMA-LEP algorithms, the basic idea is to simply plug the float

vector to program translation and the virtual machine program evaluation into the DE and

CMA-ES schemes. However some technical points need to be taken into account to allow this

integration and they are detailed below.

Initialization

We have to decide about the length of the individuals (float vectors) since we usually cannot

extract this feature from the problem. This length will determine the maximum number of

instructions allowed in the evolved programs.

Moreover we need to fix a range of possible initial values to randomly generate the

components of the initial population {Xi}1≤i≤N, as typical in DE.

Constant registers are initialized at the beginning of the run, and then are only accessed in

read-only mode. This means that our set of constants remains fixed and does not evolve

during the run. The number and value range of constant registers are user defined, and the

additional parameter PC must be set to determine the probability of using a constant register

in an expression, as explained above in Eq. 8.

Main algorithm iteration

For LDEP, we tried two variants of the iteration loop described in Section 2.2: either

generational replacement of individuals as in the original Storn and Price paper [11], or steady

state replacement, which seems to be used in [17]. In the generational case, newly created

individuals are stored in a temporary set, and once the generation is completed, they replace

their respective parent if their fitness is better. In the steady state scheme, each new individual

is immediately compared with its parent and replaces it if its fitness is better, and thus it can be

used in remaining crossovers for the current generation. Using the steady state variant seems

to accelerate convergence, see Section 4.

During the iteration loop of either LDEP or CMA-LEP, the vector solutions are decoded using

equations 6, 7 and 8. The resulting linear programs are then evaluated on a set of fitness cases

(training examples). The fitness value is then returned to the evolution engine that continues

the evolution process.
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Heuristic Problem Pop. Ind. size # eval. extra params
LDEP Regressions 20 128 5E4 F = 0.5, CR = 0.1

Ant 30 50 2E5 F = 0.5, CR = 0.1
CMA-LEP Regressions 20 128 5E4 σ ∈ {1, 10}, λ ∈ {10, 100},

Ant 30 50 2E5 σ ∈ {1, 10}, λ ∈ {10, 100}
GP Regressions 1000 N.A. 5E4 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy
Ant 4000 N.A. 2E5 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy

Table 1. Main experimental parameters

4. Experiments

We use the same benchmark problems as in [17] (4 symbolic regressions and the Santa Fe

artificial ant), and we also add two regression problems that include float constants.

Before listing our experimental parameters in Table 1, we explain some of our implementation

choices:

• We run all standard GP experiments using the well-known ECJ library1.

• For GP we use a maximum generation number of 50 and set the population size in

accordance with the maximum number of evaluations. We keep the best (elite) individual

from one generation to the next.

• We use the publicly available C language version of CMA-ES2, with overall default

parameters.

• For TreeDE we take the results as they are reported in [17]:

• For regression, 1500 iterations on a population of 20 vectors were allowed, and runs

were done for every tree depth in the range {1, . . . , 10}. It thus amounts to a total of

300, 000 evaluations. Among these runs, reference [17] reported only those associated

to the tree depth that obtained the best result (which may well imply a favorable bias,

in our opinion). As we could not apply this notion of best tree depth in our heuristic,

we decided as a trade-off to allow 50, 000 evaluations for regression with both LDEP,

CMA-LEP and GP.

• For the Santa Fe Trail artificial ant problem, the same calculation gives a total of 450, 000

evaluations for TreeDE. We decided for a trade-off of 200, 000 evaluations for LDEP,

CMA-LEP and GP.

4.1. Symbolic regression problems

The aim of these 1-dimensional symbolic regression problems is to find some symbolic

mathematical expression (or program) that best approximates a target function that is known

only by a set of examples, or fitness cases, (xk , f (xk)). In our case, 20 values xk are

chosen evenly distributed in the range [−1.0,+1.0]. The evaluation of programs (or fitness

1 http://cs.gmu.edu/~eclab/projects/ecj/
2 http://www.lri.fr/~hansen/cmaes_inmatlab.html
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computation) is done according to the classic Koza’s book [1], that is computing the sum of

deviations by looping over all fitness cases:

f itness = ∑
1≤k≤N

| f (xk)− P(xk)|

where P(xk) is the value computed by the evolved program P on input xk, f is the benchmark

function and N = 20 is the number of (input, output) fitness cases. A hit solution means that

the deviation is less than 10−4 on each fitness case.

The first 4 test functions are from [17]:

f1(x) = x3 + x2 + x

f2(x) = x4 + x3 + x2 + x

f3(x) = x5 + x4 + x3 + x2 + x

f4(x) = x5 − 2x3 + x

While TreeDE benchmarks were run without constants in [17], we strongly believe that it is

interesting to use benchmark problems that are expressed as functions both with and without

float constants, in order to assess the impact of constant management by the heuristics.

Moreover in the general case, especially on real world problems, one cannot know in advance

whether or not float constants may be useful. For this reason we add two benchmarks:

f5(x) = π (a constant function)

f6(x) =
x
π + x2

π2 + 2xπ

The set of operators is {+,−,×,÷} with ÷ being the protected division (i.e. a ÷ b = a/b if

b �= 0 else a ÷ b = 0 if b = 0).

For LDEP and CMA-LEP, 6 read-write registers are used for calculation (from r0 to r5), with

r0 being the output register. For each fitness case (xk , f (xk)) that is submitted to the evolved

program inside the evaluation loop, all 6 calculation registers are initialized with the same

input value xk . This standard LGP practice provides redundancy of the input value and thus

more robustness to the run.

Runs without constants

In the first set of experiments, programs are evolved without constants. This unrealistic

setting is proposed here only to allow a comparison of DE-based scheme, confronting LDEP

versus Veenhuis’s TreeDE, and excluding CMA-LEP. Results are reported in table 2, all

three heuristics exhibit close results on the f1, f2, f3, f4 problems, with GP providing the

overall most precise approximation, and LDEP needing the largest number of evaluations

(notwithstanding the possible bias in the TreeDE figures, as mentioned at the beginning of

Section 4). Note that the steady state variant of LDEP converges faster than the generational,

as shown by the average number of evaluations for perfect solutions. It seems safe to conclude

that this increased speed of convergence is the explanation for the better result of the steady
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generational LDEP steady state LDEP TreeDE

Problem Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.

f1 0.0 100% 4297 0.0 100% 2632 0.0 100% 1040

f2 0.0 100% 12033 0.0 100% 7672 0.0 100% 3000

f3 0.28 72.5% 21268 0.08 85% 21826 0.027 98% 8440

f4 0.20 62.5% 33233 0.13 75% 26998 0.165 68% 14600

standard GP

Problem Fit. % hits Eval.

f1 0.0 100% 1815

f2 0.0 100% 2865

f3 0.03 97% 6390

f4 0.01 80% 10845

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness (taken from [17] for TreeDE), then we have the percentage of run reaching a
hit solution, then the average number of evaluations to produce the first hit solution (if
ever produced).

Table 2. Results for symbolic regression problems without constants.

state variant versus generational, in a limited number of evaluations. This steady state faster

convergence may also benefit to TreeDE.

Runs with constants

In the second set of experiments, presented in Table 3, heuristics are allowed to evolve

programs with constants, thus ruling out TreeDE from the comparison. All problems from

f1 to f6 are tested, which means that heuristics manage float constants even on the first 4

problems when they are not needed. This simulates the frequent absence of background

knowledge on a new problem and this also tests the robustness of heuristics.

• For LDEP and CMA-LEP, we add 50 constant registers, with a probability of occurrence

PC = 0.05, and initial values in the range [−1.0,+1.0].

• For GP, we define 4 redundant input terminals reading the same input value xk for each

fitness case (xk, yk), against only one ephemeral random constant (ERC) terminal, that

draws new random value instances when needed, in the range [−1.0,+1.0]. Thus the

probability to generate a constant, e.g. during program initialization or in a subtree

mutation, is much lower than the usual 50% when having only one x terminal. This is

closer to the LDEP setting and it significantly improves the GP results.

In Table 3, we again observe that the steady state variant of LDEP is better than the

generational. For its best version LDEP is comparable to GP, with a slightly higher hit ratio

and better average fitness (except on f6), with more evaluations on average. For CMA-LEP,

two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100} were tried with no significant
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differences. In contrast with the other methods, CMA-LEP results are an order of magnitude

worse. Tuning the CMA-ES engine to tackle the problem as separable did not improve the

results. We think this behavior may result from the high dimensionality of the problem

(N=128), that certainly disrupts the process of modeling an ideal mean solution from a

comparatively tiny set of search points. This is combined to the lack of elitism, inherent to

the CMA-ES method, thus when it comes to generate new test points, the heuristic is left

solely with a probably imperfect model.

generational LDEP steady state LDEP

Problem Fit. %hits Eval. Fit. %hits Eval.
f1 0.0 100% 7957 0.0 100% 7355
f2 0.02 95% 16282 0.0 100% 14815
f3 0.4 52.5% 24767 0.0 100% 10527
f4 0.36 42.5% 21941 0.278 45% 26501
f5 0.13 2.5% 34820 0.06 15% 29200
f6 0.59 0% NA 0.63 0% NA

standard GP CMA-LEP

Problem Fit. %hits Eval. Fit. %hits Eval.
f1 0.002 98% 3435 0.03 20% 6500
f2 0.0 100% 4005 2.76 0% NA
f3 0.02 93% 7695 5.33 0% NA
f4 0.33 23% 24465 2.06 6% 10900
f5 0.07 0% NA 13.35 0% NA
f6 0.21 0% NA 5.12 0% NA

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness, then we have the percentage of run reaching a hit solution, then the average
number of evaluations to produce the first hit solution (if ever produced or else NA if
no run produced a hit solution).

Table 3. Results for symbolic regression problems with constants.

Overall, these results confirm that DE is an interesting heuristic, even when the continuous

representation hides a combinatorial type problem, and thus the heuristic is used outside

its original field. The LDEP mix of linear programs and constant management appears

competitive with the standard GP approach.

4.2. Santa Fe ant trail

The Santa Fe ant trail is a famous problem in the GP field. The objective is to find a computer

program that is able to control an artificial ant so that it can find all 89 pieces of food located on

a discontinuous trail within a specified number of time steps. The trail is drawn on a discrete

32 × 32 toroidal grid illustrated in Figure 1. The problem is known to be rather hard, at least

for standard GP (see [29]), with many local and global optima, which may explain why the

size of the TreeDE population was increased to N = 30 in [17].

Only a few actions are allowed to the ant. It can turn left, right, move one square forward

and it may also look into the next square in the direction it is facing, in order to determine if
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Figure 1. Illustration of the Santa Fe Trail (the ant starts in the upper left corner, heading to the east,
large dots are food pellets, and small dots are empty cells on the ideal path).

it contains a piece of food or not. Turns and moves cost one time step, and a maximum time

steps threshold is set at start (typical values are either 400 or 600 time steps). If the program

finishes before the exhaustion of the time steps, it is restarted (which amounts to iterating the

whole program).

We do not need mathematical operators nor registers, only the following instructions are

available:

• MOVE: moves the ant forward one step (grid cell) in the direction the ant is facing, retrieving

an eventual food pellet in the cell of arrival;

• LEFT: turns on place 45 degrees anti-clockwise;

• RIGHT: turns on place 45 degrees clockwise;

• IF-FOOD-AHEAD: conditional statement that executes the next instruction or group of

instructions if a food pellet is located on the neighboring cell in front of the ant, else the

next instruction or group is skipped;

• PROGN2: groups the two instructions that follow in the program vector, notably allowing

IF-FOOD-AHEAD to perform several instructions if the condition is true (the PROGN2

operator does not affect per se the ant position and direction);

• PROGN3: same as the previous operator, but groups the three following instructions.

• Each MOVE, RIGHT and LEFT instruction requires one time step.
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generational LDEP steady state LDEP standard GP

# steps Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.

400 11.55 12.5% 101008 14.65 7.5% 46320 8.87 37% 126100
600 0.3 82.5% 88483 1.275 70% 44260 1.175 87% 63300

CMA-LEP TreeDE

# steps Fit. % hits Eval. Fit. % hits Eval.
400 37.45 0% NA 17.3 3% 24450
600 27.05 0% NA 1.14 66% 22530

The 1st column is the number of allowed time steps, then for each heuristic, over 40
independent runs, we give the average of the best fitness (taken from [17] for TreeDE),
then the percentage of run reaching a hit solution (solution that found all 89 food
pellets), then the average number of evaluations to produce the first hit solution (if
ever produced or else NA if no run produced a hit solution).

Table 4. Santa Fe Trail artificial ant problem.

Programs are again vectors of floating point values. Each instruction is represented as a single

value which is decoded in the same way as operators are in the regression problems, that is

using Eq. 6. Instruction are decoded sequentially, and the virtual machine is refined to handle

jumps over an instruction or group of instructions, so that it can deal with IF-FOOD-AHEAD

instructions. Incomplete programs may be encountered, for example if a PROGN2 is decoded

for the last value of a program vector. In this case the incomplete instruction is simply

dropped and we consider that the program has reached normal termination (and the program

is iterated if there are remaining time steps).

The Santa Fe trail being composed of 89 pieces of food, the fitness function is the remaining

food (89 minus the number of food pellets taken by the ant before it runs out of time). So, the

lower the fitness, the better the program, a hit solution being a program with fitness 0, i.e. a

program able to pick up all the food on the grid.

Results are summed-up in Table 4. Contrary to the regression experiment, the generational

variant of LDEP is now better than the steady state. We think this behavior is explained by

the hardness of the problem: more exploration is needed, and it pays no more to accelerate

convergence.

GP gives the best results for 400 time steps, but it is LDEP that provides the best average

fitness for 600 steps, at the cost of a greater number of evaluations, meaning LDEP is better

at exploiting the available amount of computing time. LDEP is also better than TreeDE on

both steps limits. For CMA-LEP, two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100}
were again tried, the best setting being σ = 10 and λ = 100 (whose results are reported here).

CMA-LEP performed really poorly, and its first results were so bad that it motivated us to

try this rather high initial variance level (σ = 10), which brought a sensible but insufficient

improvement. We think that the lack of elitism is, here again, a probable cause of CMA-ES

bad behavior, on a very chaotic fitness landscape with many neutral zones (many programs

exhibit the same fitness).
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If food{ Move } else {

Progn3{

Progn3{

Progn3{ Right ;

If food{ Right } else { Left } ;

Progn2{ Left ;

If food{ Progn2{ Move ; Move } }

else { Right } } } ; // end Progn3

Move ;

Right } ; // end Progn3

If food{ Move } else { Left } ; //end Progn3

Move } }

Table 5. Example of a perfect solution for the Ant Problem found by LDEP in 400 time steps

Here again LDEP appears as a possible competitor to GP. Table 5 shows an example of a

perfect solution found by LDEP for 400 time steps.

4.3. Evolving a stack

As the LDEP continuous approach for evolving programs achieved interesting results on the

previous GP benchmarks, we decided to move forward and to test whether or not we were

able to evolve a more complex data structure: a stack. Langdon successfully showed in [30]

that GP was able to evolve not only a stack with its minimal set of operations (push, pop,

makenull), but also two other optional operations (top, empty), which are considered to be

inessential. We followed this setting, and the five operations to evolve are described in Table 6.

Operation Comment

makenull initialize stack

empty is stack empty?
top return top of stack

pop return top of stack and remove it

push(x) store x on top of stack

Table 6. The five operations to evolve

This is in our opinion a more complex problem than the previous ones, since the correctness

of each trial solution is established using only the values returned by the stack operations and

only pop, top and empty return values.

Choice of primitives

As explained in [30], the set of primitives that was chosen to solve this problem is a set that a

human programmer might use. The set basically consists in functions that are able to read and

write in an indexed memory, functions that can modify the stack pointer and functions that

can perform simple arithmetic operations. The terminal set consists in zero-arity functions

(stack pointer increment and decrement) and some constants.

43Continuous Schemes for Program Evolution



18 Will-be-set-by-IN-TECH

The following set was available for LDEP:

• arg1, the value to be pushed on to the stack (read-only argument)

• aux, the current value of the stack pointer

• arithmetic operators + and −

• constants 0, 1 and MAX (maximum depth of the stack, set to 10)

• indexed memory functions read and write. The write function is a two argument function

arg1 and arg2. It evaluates the two arguments and sets the indexed memory pointed by

arg1 to arg2 (i.e. stack[arg1] = arg2). It returns the original value of aux.

• functions to modify the stack pointer: inc_aux to increment the stack pointer, dec_aux to

decrement it, write_aux to set the stack pointer to its argument and returns the original

value of aux.

Algorithm and fitness function

We used a slightly modified version of our continuous scheme as the stack problem requires

the simultaneous evolution of the five operations (push, pop, makenull, top, empty). An

individual is composed of 5 vectors, one for each operation. Mutation and crossover are

only performed with vectors of the same type (i.e. vectors evolving the push operation for

example).

Programs are coded in prefix notation, that means that an operation like (arg1 + MAX) was

coded as + arg1 MAX. We did not impose any restrictions on each program’s size except that

each vector has a maximum length of 100 (this is several times more than sufficient to code

any of the five operations needed to manipulate the stack).

In his original work, Langdon chose to use a population of size 1, 000 individuals with 101

generations. In the DE case, it is known from experience that using large populations is

usually inadequate. So, we fixed a population of 10 individuals with 10, 000 generations for

LDEP, amounting to about the same number of evaluations.

We used the same fitness function that was defined by Langdon. It consists in 4 test sequences,

each one being composed of 40 stack operations. As explained in the previous section, the

makenull and push operations do not return any value, they can only be tested indirectly

by seeing if the other operations perform correctly.

Results

In Langdon’s experiments, 4 runs out of 60 produced successful individuals (i.e. a fully

operational stack). We obtained the same success ratio with LDEP: 4 out of the first 60 runs

yielded perfect solutions. Extending the number of runs, LDEP evolved 6 perfect solutions

out of 100 runs, providing a convincing proof of feasibility. Regarding CMA-LEP, results are

less convincing, since only one run out of 100 was able to successfully evolve a stack.

An example of successful solution is given in table 7 with the raw evolved code and a

simplified version where redundant code is removed.
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Operation Evolved operation Simplified operation

push write(1 ,write(dec_aux ,arg1 )) stack[aux] = arg1
aux = aux - 1

pop write(aux ,((aux + (dec_aux + inc_aux )) aux = aux + 1
+ read(inc_aux ))) tmp = stack[aux];

stack[aux] = tmp + aux;
return tmp

top read(aux) return sp[aux]

empty aux if (aux > 0) return true
else return false

makenull write((MAX - (0 + write_aux(1 ))),MAX ) aux = 1

Table 7. Example of an evolved push-down stack

5. Conclusions

This chapter explores evolutionary continuous optimization engines applied to automatic

programming. We work with Differential Evolution (LDEP) and CMA-Evolution Strategy

(CMA-LEP), and we translate the continuous representation of individuals into linear

imperative programs. Unlike the TreeDE heuristic, our schemes include the use of float

constants (e.g. in symbolic regression problems).

Comparisons with GP confirm that LDEP is a promising optimization engine for automatic

programming. In the most realistic case of regression problems, when using constants, steady

state LDEP slightly outperforms standard GP on 5 over 6 problems. On the artificial ant

problem, the leading heuristic depends on the number of steps: for the 400 steps version

GP is the clear winner, while for 600 steps generational LDEP yields the best average fitness.

LDEP improves on the TreeDE results for both versions of the ant problem, without needing

a fine-tuning of the solutions tree-depth.

For both regression and artificial ant, CMA-LEP performs poorly with the same representation

of solutions than LDEP. This can be deemed not really surprising since the problems we

tackle are clearly outside the domain targeted by the CMA-ES heuristic that drives evolution.

Nonetheless it is also the case for DE, which still produces interesting solutions, thus this

points to a fundamental difference in behavior between these two heuristics. We suspect

that CMA-ES lack of elitism may be an explanation. It also points to a possible inherent

robustness of the DE method, on fitness landscapes that are possibly more chaotic than the

usual continuous benchmarks.

The promising results of LDEP on the artificial ant and on the stack problems are a great

incentive to deepen the exploration of this heuristic. Many interesting questions remain open.

In the beginnings of GP, experiments showed that the probability of crossover had to be set

differently for internal and terminal nodes: is it possible to improve LDEP in similar ways?

It is to be noticed that in our experiments the individual vector components take their values

in the range (−∞,+∞), since it is required by the standard CMA-ES algorithm. It could be

interesting to experiment DE-based algorithms with a reduced range of vector component

values, for example [−1.0, 1.0], that would require to modify the mapping of constant indices.
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