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1. Introduction

Digital filters find wide variety of applications in modern digital signal processing systems [1, 2]. As

a result of the recent progress in such systems, there is an ever growing demand for sharp transition

band digital filters. These narrow transition bandwidth digital filters are usually designed by using the

frequency response masking (FRM) approach [3]. The computational efficiency of the FRM technique

makes it suitable for different applications, e.g. in audio signal processing and data compression [4].

Practical design of digital filters is based on optimization for satisfying the given design specifications

together with the hardware architecture. However, the optimization may be carried out in terms of

fixed configurations but variable multiplier coefficient values. On the other hand, the problem may

concern the optimization of the hardware architecture without taking the multiplier coefficient values

into consideration.

In order to optimize the given design specifications, the multiplier coefficient values can be determined

in infinite precision by using hitherto optimization techniques. However, in an actual hardware

implementation of the digital filters, the infinite precision multipliers should be quantized to their

finite precision counterparts, but these finite precision multiplier coefficients may no longer satisfy

the given design specifications. Consequently, from a hardware implementation point of view, there is a

need for finite precision optimization techniques, capable of finding the optimized digital filter rapidly

while keeping the computational complexity at a desired level. In principle, there exist two different

techniques for the optimization of digital filters, namely, gradient-based and heuristic optimization

approaches.

Gradient-based optimization techniques have been studied widely. In [5], an integer programming

technique was developed for the optimization of digital filters over a discrete multiplier coefficient
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space. In [6], a Remez exchange algorithm was used for the optimization of FRM finite impulse

response (FIR) digital filters and it was shown that this algorithm may provide a speed advantage over

the linear programming approach. However, both these techniques suffer from sub-optimality problems.

In [7], unconstrained weighted least-squares criterion was used to develop another technique for the

optimization of digital filters. Convex optimization approaches such as semi-definite programming [8]

and second-order cone programming [9] have also been applied to the optimization of digital filters.

However, if a large number of constraints are present, these optimization techniques may become

computationally inefficient in terms of time consumption and speed.

Heuristic optimization algorithms have emerged as promising candidates for the design and discrete

optimization of digital filters, particularly due to the fact that they are capable of automatically finding

near-optimum solutions while keeping the computational complexity of the algorithm at moderate

levels. Simulated annealing (SA) and genetic algorithms (GAs) were widely used in the design and

optimization of digital filters [10–12]. Particle swarm optimization (PSO) and seeker optimization

algorithm (SOA) are two newly developed algorithms suitable for the optimization of various digital

filters due to their few number of implementation parameters and high speed of convergence [13, 14]. It

was shown that SOA has advantages over PSO in terms of the speed of convergence and global search

ability [15]. Tabu search (TS) [16], ant colony optimization (ACO) [17], immune algorithm (IA) [18]

and differential evolution (DE) [19, 20] are alternative candidates for the optimization of digital filters.

All the foregoing techniques allow a robust search of the solution space through a parallel search in

all directions without any recourse to gradient information. However, the aforementioned techniques

were developed for infinite precision optimization of digital filters which require the user to perform a

quantization step for a hardware implementation.

In [21–23], a technique was developed for finite-precision design and optimization of FRM digital

filters using GAs. finite-precision optimization of FRM FIR digital filters using PSO was studied in

[24, 25] and finite-precision optimization of infinite impulse response based (IIR-based) FRM digital

filters was studied in [26, 27]. PSO was originally proposed by Kennedy and Eberhart in 1995 as a new

intelligent optimization algorithm which simulates the migration and aggregation of a flock of birds

seeking food [28]. It adopts a strategy based on particle swarm and parallel global random search, that

may exhibit superior performance to other intelligent algorithms in computational speed and memory.

In PSO, a potential candidate solution is represented as a particle in a multidimensional search space,

where each dimension represents a distinct optimization variable. The particles in the multidimensional

search space are characterized by corresponding fitness values. They make movements in the search

space towards regions characterized by high fitness values.

The conventional FRM digital filters incorporate FIR interpolation digital subfilters. These digital

subfilters are usually of high orders, rendering the resulting overall FRM digital filters as not

economical, since the resulting digital filters occupy large chip areas and consume high amounts of

power in their VLSI hardware implementations. In general, the multiplication operation is the most

cost-sensitive part in such an implementation. Therefore, there is every incentive to reduce the number

of multiplication operations in the digital filter realization. This problem may be circumvented by

employing IIR interpolation digital subfilters [29, 30].

There is a vast body of literature available for the design and optimization of digital IIR filters [31–33].

However, all the aforementioned designs are based on the exact transfer function coefficients which

leads to an uneconomical hardware realization of such filters. In order to realize the constituent

IIR interpolation digital subfilters on a hardware platform, the bilinear-lossless-discrete-integrator

(bilinear-LDI) digital filter design approach is employed [34]. These digital subfilters are realized as a
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sum/difference of a pair of bilinear-LDI digital allpass networks. The salient features of the bilinear-LDI

digital filters are that they lend themselves to fast two-cycle parallel digital signal processing speeds,

while being minimal in the number of digital multiplication operations (and, practically, minimal in

number of digital addition and unit-delay operations).

The starting point in the design of FRM digital filters is to find the multiplier coefficients constituent in

the FRM digital filter in infinite precision by using the hitherto gradient-based optimization techniques

(e.g. Parks-McClellan approach [35] for FIR digital filters) followed by a quantization step. The

quantization can be performed by constraining the multiplier coefficients values to conform to certain

number systems such as the signed power-of-two (SPT) system. SPT is a computationally efficient

number system which can further reduce the hardware complexity of the FRM IIR digital filters. In

this number system, each multiplier coefficient is represented with only a few non-zero bits within its

wordlength, permitting the decomposition of the multiplication operation into a finite series of shift and

add operations. Digital filters incorporating SPT multiplier coefficient representation are commonly

referred to as multiplierlessdigital filters [36]. However, the SPT representation of a given number is

not unique, resulting in redundancy in the multiplier coefficient representation. This redundancy can

adversely affect the corresponding computational complexity due to recourse to compare operations

repetitively.

The canonical signed digit (CSD) number system is a special case of the SPT number system

which circumvents the above redundancy problem by limiting the number of non-zero bits in the

representation of the multiplier coefficients. It is usually used in combination with subexpression

sharing and elimination, which in turn results in substantial reduction in the cost of the VLSI hardware

implementation of the digital filters [37]. In CSD number system, no two (or more) non-zero bits can

appear consecutively in the representation of the multiplier coefficients, reducing the maximum number

of non-zero bits by a factor of two in terms of shift and add operations [38].

After multiplier coefficient quantization, the resulting FRM digital filter may no longer satisfy the

given target design specifications. Therefore, the next step in the design of FRM digital filters is to

perform a further optimization to make the finite precision FRM digital filter to conform to the design

specifications. This can be achieved by resorting to a finite-precision optimization technique such as

PSO.

A direct application of the conventional PSO algorithm to the optimization of the above FRM digital

filters gives rise to three separate problems:

• The first problem arises because in the course of optimization, the multiplier coefficient update

operations lead to values that may no longer conform to the desired CSD wordlength, etc. (due

to random nature of velocity and position of particles). This problem is resolved by generating

indexed look-up tables (LUTs) of permissible CSD multiplier coefficient values, and by employing

the indices of LUTs to represent FRM digital filter multiplier coefficient values.

• The second problem stems from the fact that in case of FRM IIR digital filters, the resulting FRM

IIR digital filters may no longer be bounded-input-bounded-output (BIBO) stable. This problem can

be resolved by generation and successive augmentation of template LUTs until the BIBO stability

constraints remain satisfied [23].

• Finally, the third problem arises because even in case of having indexed LUTs, the particles may go

over the boundaries of LUTs in course of optimization (due to the inherent limited search space).

This can be resolved by introducing barren layers. A barren layer is a region, with a certain width
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and certain entries, which is added to the problem space such that the particles tend to shy away

from such a region. The width of the barren layers is calculated based on a worst case scenario that

may happen in the particles movements in the search space. However, the entries of barren layers

are different for different problems and depend on the topology of the search space and the fitness

function used in the problem.

This chapter discusses in detail the design, realization and discrete PSO of FRM IIR digital filters. FRM

IIR digital filters are designed by FIR masking digital subfilters together with IIR interpolation digital

subfilters. The FIR filter design is straightforward and can be performed by using hitherto techniques.

The IIR digital subfilter design topology consists of a parallel combination of a pair of allpass networks

such that its magnitude-frequency response matches that of an odd order elliptic minimum Q-factor

(EMQF) transfer function. This design is realized using the bilinear-LDI approach, with multiplier

coefficient values represented as finite-precision CSD numbers.

The above FRM digital filters are optimized over the discrete multiplier coefficient space, resulting in

FRM digital filters which are capable of direct implementation in digital hardware platform without any

need for further optimization. A new PSO algorithm is developed to tackle three different problems. In

this PSO algorithm, a set of indexed LUTs of permissible CSD multiplier coefficient values is generated

to ensure that in the course of optimization, the multiplier coefficient update operations constituent in the

underlying PSO algorithm lead to values that are guaranteed to conform to the desired CSD wordlength,

etc. In addition, a general set of constraints is derived in terms of multiplier coefficients to guarantee

that the IIR bilinear-LDI interpolation digital subfilters automatically remain BIBO stable throughout

the course of PSO algorithm. Moreover, by introducing barren layers, the particles are ensured to

automatically remain inside the boundaries of LUTs in course of optimization.

2. The conventional PSO algorithm

Let us consider an optimization problem consisting of N design variables, and let us refer to each

solution as a particle. Let us further consider a swarm of K particles in the N-dimensional search space.

The position of the k-th particle in the search space can be assigned a N-dimensional position vector

Xk = {xk1, xk2, . . . , xkN}. In this way, the element xkj (for j = 1, 2, . . . , N) represents the j-th
coordinate of the particle Xk.

The PSO optimization fitness function maps each particle Xk in the search space to a fitness

value. In addition, the particle Xk is assigned a N-dimensional velocity vector Vk =

{vk1, vk2, . . . , vkN}. The PSO optimization search is directed towards promising regions by

taking into account the velocity vector Vk together with the best previous position of the k-th

particle Xbestk
= {xbestk1

, xbestk2
, . . . , xbestkN

}, and the best global position of the swarm Gbest =

{gbest1
, gbest2

, . . . , gbestN
} (i.e. the location of the particle with the best fitness value).

The conventional PSO is initialized by spreading the particles Xk through the search space in a random

fashion. Then, the particles make movements through the search space towards regions characterized

by high fitness values with corresponding velocities Vk. The movement of each particle is governed

by the best previous location of the same particle Xbestk
, and by the global best location Gbest. The

velocity of particle movement is determined from the previous best location of the particle, the global

best location, and the previous velocity.
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Figure 1. Movement of Particles in PSO Algorithm

The velocity and position of each particle in the i-th iteration throughout the course of PSO are updated

in accordance with the equations:

vi
kj = wvi−1

kj + c1r1(x
i−1
bestkj

− xi−1
kj ) + c2r2(gi−1

bestj
− xi−1

kj ) (1)

if vi
kj < vmin ; vi

kj = vmin

if vi
kj > vmax ; vi

kj = vmax

xi
kj = xi−1

kj + vi
kj (2)

The parameter w represents an inertia weight; c1 and c2 are the correction (learning) factors, and r1 and

r2 are random numbers in the interval [0, 1]. The velocity is limited between vmin and vmax to avoid

very large particle movements in the search space, where vmin < 0 and vmax > 0. Fig. 1 illustrates

how the particles move in a two-dimensional search space (N = 2). In this figure, two particles are

present in the swarm, i.e. K = 2.

The first term in the right hand side of movement update Eqn. (1), weighted by w, signifies the

dependence of the current particle velocity on its value in the previous iteration. The second term,

weighted by c1, signifies an attractor to pull the particle towards its previous best position. The third

term, weighted by c2 controls the movement of the particle towards the global best position.

In addition to the update Eqns. (1) and (2), one can limit the coordinates in a particle between two user

defined values xjmin
and xjmax

in order to limit the search space. However, This operation increases the

complexity and consumes time.
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Figure 2. FRM Digital Filter Block Diagram
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Figure 3. Block Diagram Representation of Frequency-ResponseMasking

3. The conventional FRM design approach

3.1. Design of lowpass FRM digital filters

The block diagram in Fig. 2 shows a conventional FRM digital filter, where Ha(z) represents a FIR

interpolation lowpass digital subfilter, and where Hb(z) represents a power complementary counterpart

of Ha(z) in accordance with

|Ha(e
jω)|2 + |Hb(e

jω)|2 = 1 (3)

Here, z represents the discrete-time complex frequency, and ω represents the corresponding

(normalized) real frequency variable. Moreover, F0(z) and F1(z) represent FIR masking digital

subfilters, while Ha(zM) and Hb(z
M) represent M-fold interpolated versions of Ha(z) and Hb(z),

respectively. In case of FIR digital interpolation subfilters, for a linear-phase filter Ha(z) of order

NFIR, the relationship between Hb(z) and Ha(z) is as follows:

Hb(z) = z(NFIR+1)/2 − Ha(z) (4)

and hence Hb(z) can be implemented by subtracting the output of Ha(z) from the delayed version of

the input, as shown in Fig. 3.

The FRM digital filter in Fig. 2 has an overall transfer function

H(z) = Ha(z
M)F0(z) + Hb(z

M)F1(z) (5)
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Filter Passband Edge Stopband Edge

Case I

H(z)
2ILπ + ωp

M

2ILπ + ωa

M

F0(z)
2ILπ + ωa

M

2(IL + 1)π − ωa

M

F1(z)
2ILπ − ωp

M

2ILπ + ωp

M

Case II

H(z)
2ILπ − ωa

M

2ILπ − ωp

M

F0(z)
2(IL − 1)π + ωa

M

2ILπ − ωa

M

F1(z)
2ILπ − ωp

M

2ILπ + ωp

M

Table 1. Edge Frequencies of the Overall FRM FIR filter and Masking Subfilters

The masking digital subfilters F0(z) and F1(z) are employed to suppress the unwanted image bands

produced by the interpolated digital subfilters Ha(zM) and Hb(z
M). The masking filters are made to

have equal order (by zero padding) in order to ensure that their phase characteristics are similar. The

corresponding interpolated digital subfilters Ha(zM) and Hb(z
M) can realize transition bands which

are a factor of M sharper than those of Ha(z) and Hb(z), without increasing the number of required

non-zero digital multipliers. The magnitude frequency-response of the various subfilters incorporated

by the FRM digital filter design approach are shown in Fig. 4.

Here, Case I design is when the transition band of H(z) is extracted from that of Ha(zM) and Case II

design is when the transition band of H(z) is extracted from that of Hb(z
M). The edge frequencies of

the overall digital FRM filter and its constituent subfilters are given in Table 1, where IL represents the

number of image lobes to be masked given by:

IL =























⌊

Mωp

2π

⌋

Case I

⌈

Mωa

2π

⌉

Case II

(6)

where ⌊ ⌋ denotes the largest integer from the lower side, and ⌈ ⌉ signifies the smallest integer from the

upper side.

3.2. Design of bandpass FRM digital filters

In general, it is possible to extend the conventional FRM approach for the design of bandpass or

bandstop FRM digital filters. However, the resulting FRM digital filters are constrained to have identical

lower and upper transition bandwidths. In [39], this restriction was relaxed by realizing the bandstop

FRM FIR digital filter as a parallel combination of a corresponding pair of lowpass and highpass FIR
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Figure 4. Magnitude Frequency-Response of FRM Digital Filter. (a) Magnitude Frequency-Response of the Bandedge-Shaping

Digital Subfilters Ha(z) and Hb(z). (b) Magnitude Frequency-Response of the M-Interpolated Complementary Digital Subfilters
Ha(zM) and Hb(zM). (c) Magnitude Frequency-Response of the Masking Digital Subfilters F0(z) and F1(z) for Case I. (d)
Magnitude Frequency-Response of the Overall FRM Digital Filter H(z) for Case I. (e) Magnitude Frequency-Response of the
Masking Digital Subfilters F0(z) and F1(z) for Case II. (f) Magnitude Frequency-Response of the Overall FRM Digital Filter H(z)
for Case II [3].
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Figure 5. Bandpass FRM Digital Filter Block Diagram

digital filters. The latter lowpass and highpass FRM digital filters were obtained using a variation of the

conventional FRM approach.

Let the desired bandpass FRM digital filter H(z) have a lower transition bandwidth which is not
identical to its upper transition bandwidth. H(z) can be realized as a cascade combination of a pair
of lowpass and highpass FRM digital filters, so that

H(z) = Hl p(z)Hhp(z) (7)

where Hl p(z) represents a lowpass and Hhp(z) represents a highpass FRM digital filter. In this way,

Hl p(z) and Hhp(z) can be obtained with the help of Eqn. (5) as

Hl p(z) = Halp
(zM)F0lp

(z) + Hblp
(zM)F1lp

(z) (8)

Hhp(z) = Hahp
(zM)F0hp

(z) + Hbhp
(zM)F1hp

(z) (9)

The lower transition bandwidth is governed by the constituent transition bandwidth of the highpass
FRM digital filter, while the upper transition bandwidth is governed by the constituent transition
bandwidth of the lowpass FRM digital filter. The realization for bandpass FRM digital filter are as
shown in Fig. 5.

4. Design of FRM digital filters incorporating IIR interpola tion digital
subfilters

In the case of FRM IIR digital filters, Ha(z) and Hb(z) (in section 3) act as IIR interpolation digital
subfilters. The masking filters F0(z) and F1(z) are not changed (i.e. they are still equal order FIR digital
filters). Therefore, Eqn. (5) is still valid for the FRM IIR digital filter.

The IIR interpolation digital subfilter Ha(z) is chosen to have an odd order NI IR. Odd-ordered elliptic
transfer functions can be represented as a sum of or difference between two allpass transfer functions
[40]. Therefore, Ha(z) can be realized as the addition of two allpass digital networks G0(z) and G1(z)
as follows:

Ha(z) =
G0(z) + G1(z)

2
(10)

where G0(z) is odd-ordered and G1(z) is even-ordered. The interesting fact is that the difference
between G0(z) and G1(z) results in a filter that is power complementary to Ha(z), and can subsequently
be used as the power complementary interpolation digital subfilter Hb(z) as in the following:

Hb(z) =
G0(z)− G1(z)

2
(11)
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Figure 7. FRM Digital Filter Realization in Terms of Allpass Digital Networks G0(z) and G1(z)

It can be easily verified that Ha(z) and Hb(z) are power complementary digital filters [29], i.e. they

satisfy Eqn. (3). In addition, it is well known that this structure halves the number of multiplier

coefficients required for the implementation of FRM digital filters and therefore is the most economical

realization since it requires a total of only NI IR multiplier coefficients to realize both Ha(z) and Hb(z).
The overall transfer function of H(z) given by Eqn. (5) can be expressed as:

H(z) =
G0(z

M) + G1(z
M)

2
F0(z) +

G0(z
M)− G1(z

M)

2
F1(z) (12)

The block diagram in Fig. 6 shows the IIR interpolation digital subfilters Ha(z) and Hb(z) realized

as a parallel combination of two allpass networks. It should be noted that if Ha(z) is a lowpass filter,

Hb(z), which is the power complementary of Ha(z), is a highpass filter. Fig. 7 shows an overall FRM

IIR digital filter realization.

One may rearrange the structure in Fig. 7 by using Eqns. (10-11). This can be performed by defining

two digital subfilters as follows:

A(z) =
F0(z) + F1(z)

2
(13)

B(z) =
F0(z)− F1(z)

2
(14)

Then H(z) in Eqn. (12) simplifies to:

H(z) = G0(z
M)A(z) + G1(z

M)B(z) (15)

Digital Filters and Signal Processing252



G0(z
M)

G1(z
M)

A(z)

B(z)

+

Figure 8. Alternative Structure of the Overall FRM IIR Digital Filter

Fig. 8 shows the block diagram representing Eqn. (15).

The advantage of realizing the FRM IIR digital filter as shown in Fig. 8 is that two adders shown in Fig. 7

are removed and they are no longer required. This subsequently simplifies the hardware implementation

of the overall FRM IIR digital filter. However, it should be noted that the FIR masking digital subfilters

F0(z) and F1(z) are made to be equal order using zero padding, and this results in the masking filters

being moderately sparse. This is not the case when A(z) and B(z) are used instead. Therefore, the gain

in hardware that could be achieved by using the realization in Fig. 8 is offset by a greater number of

non-zero multiplier coefficients required in the realization of FRM IIR digital filters.

5. Realization of IIR interpolation digital subfilters using Elliptic Filters with
Minimum Q-factor (EMQF)

Bilinear-LDI transformation falls into the category of digital filter realization techniques that transform

an analog reference filter to its digital counterpart. Therefore, in order to determine the multiplier

coefficient values of the IIR interpolation digital subfilters Ha(z) and Hb(z) constituent in the FRM IIR

digital filter, a suitable analog reference filter Ha(s) and its power complementary analog filter Hb(s)
have to be determined, where s is the analog frequency domain variable. Once Ha(s) and Hb(s) have

been determined, the interpolation digital subfilters Ha(z) and Hb(z) are derived by using bilinear-LDI

technique (see Section 6).

EMQF filters have several advantages for the design of FRM IIR digital filters. The squared ripple

in the passband region of Ha(z) and the squared ripple in the stopband region of Hb(z) are equal as

indicated by Eqn. (3). On the other hand, the squared ripple in the stopband region of Ha(z) and the

squared ripple in the passband region of Hb(z) are equal. In addition, depending on whether the design

specifications require a Case I or Case II FRM technique, either Ha(z) or Hb(z) could determine the

maximum passband and stopband ripple of the overall FRM IIR digital filter H(z). Consequently,

the interpolation filter Ha(z) is chosen to have equal passband and stopband squared tolerances. In

this way, the resulting Hb(z) also displays equal passband and stopband squared tolerances. These

characteristics can be generalized for the analog reference subfilters Ha(s) and Hb(s). Therefore, there

is a need for an analog reference filter Ha(s) that together with its power complement Hb(s) can exactly

satisfy the passband and stopband relations in the FRM IIR filter. EMQF filters can successfully comply

with the specifications present in the FRM IIR filter design. In addition, an EMQF transfer function

can be easily designed by using bilinear-LDI transformation technique or any other structure consisting

of two digital allpass networks in parallel. Furthermore, filters having EMQF transfer functions are

minimally sensitive to component variations.
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Despite all the advantages of EMQF filters, they suffer from not being able to independently specify

passband and stopband ripples [41],[42] of the filter. Additionally, EMQF filters have exceedingly low

passband attenuation.

All the poles of an EMQF transfer function reside on a circle in the s domain rendering them to have

equal magnitudes. Given a squared passband and stopband tolerance of δp and δa, respectively, for an

EMQF filter, the passband ripple ∆p and minimum stopband attenuation ∆a can be obtained as follows

[43]:

∆p = −10 log(1 − δp) (16)

∆a = −10 log(δa) (17)

The required passband and stopband edge frequencies for the analog reference filter Ha(s) can be

determined using design specifications along with Table 1. Frequency wrapping from digital to analog

domain, and vice versa, has to be taken into account in accordance with:

ΩA =
2

T
tan(

ωdT

2
) (18)

where ΩA is the analog frequency variable, where ωd is the digital frequency variable, and where T is

the sampling period.

Once the transfer function of the analog reference filter Ha(s) is determined, it is represented as a sum

of two allpass analog filters G0(s) and G1(s). In addition, Hb(s), which is the power complementary

of Ha(s) is represented as the difference of G0(s) and G1(s). The poles of G0(s) and G1(s) are

determined by cyclically distributing the poles of the reference filter Ha(s) [43]. In the next section,

belinear-LDI design technique is used to transform the two allpass networks G0(s) and G1(s) into

digital domain.

6. Implementation of EMQF interpolation subfilters using bilinear-LDI design
approach

In this section, the design procedure in [34, 44] is briefly explained to design and implement digital

filters G0(z) and G1(z) using the the bilinear-LDI approach. This approach transforms analog reference

filters G0(s) and G1(s) to obtain their digital filter counterparts G0(z) and G1(z).

The bilinear frequency transformation maps the analog frequency variable s to its digital domain

counterpart z in accordance with:

s =
2

T

z − 1

z + 1
(19)

where T represents the sampling period, for mapping the transfer function of a prototype reference

filter from the analog domain to the digital domain. The bilinear transform maps the left half of the

complex s-plane to the interior of the unit circle in the z-plane. Therefore, BIBO stable filters in the

s domain are converted to filters in the z domain which preserve that stability. Similarly, if the analog

reference filter is minimum-phase, the previous characteristic of bilinear transform guarantees that the

resulting digital filter is also minimum-phase. It also preserves the sensitivity properties of the analog
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reference filter. However, bilinear transform may result in a digital filter that has delay-free loops in

its implementation. Unfortunately, delay-free loops prevent the implementation of a digital filter to be

realizable in hardware platform.

The LDI frequency transformation ensures the absence of delay-free loops in the digital implementation

and is given by

s =
1

T

(

z
1

2
− z

−

1

2

)

(20)

The LDI frequency transformation maps the hardware implementation of the analog reference filter to

digital domain. While the LDI frequency transformation guarantees that there are no delay-free loops in

the implementation of the digital filter, it does this to the cost of resulting in a digital filter having poor

magnitude-frequency responses. Moreover, it is incapable of preserving the BIBO stability properties

of the analog reference filter.

The bilinear-LDI approach is a combination of the two above mentioned realization techniques. In

bilinear-LDI transform, a precompensation is performed to the reference analog filter. Then, the

conventional LDI design technique is applied to a network resulting from the precompensated analog

prototype filter. The precompensation is such that the application of the LDI design technique results

in a filter that exactly matches the bilinear frequency transform of the uncompensated analog prototype

filter.

The resulting bilinear-LDI digital filters have several desirable features from a hardware realization

point of view. They are minimal in the number of digital multiplication operations. Although they are

not minimal in the number of digital adders and unit-delays, the additional adders and the additional unit

delay lead to certain advantages when the concept of generalized delay unit is used for the realization

of the network [34]. Moreover, The bilinear-LDI digital filters lend themselves to fast two-cycle

parallel digital signal processing speeds and they exhibit exceptionally low passband sensitivity to their

multiplier coefficient values, resulting in small coefficient wordlengths.

As discussed in Section 5, the analog reference filter Ha(s) is decomposed into two allpass analog

networks G0(s) and G1(s). The digital allpass networks G0(z) and G1(z) are obtained from G0(s) and

G1(s) using the bilinear-LDI design approach.

It should be pointed out that G0(s) is an odd-ordered allpass function. Therefore, it has a pole on the

real axis in the s domain. On the other hand, G1(s) ends up having an even-ordered allpass function. It

is well known that an allpass transfer function can be written in the general form [34]:

G(s) =
P(−s)

P(s)
(21)

where P(s) is a Hurwitz polynomial of order, say, ñ . Moreover, P(s) can be expressed as:

P(s) = EvP(s) + OdP(s) (22)

where EvP(s) denotes the even and OdP(s) denotes the odd part of P(s).
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K̃

−2

VA1
(s)

g(s)

VA2
(s)

Figure 9. Signal Flow Graph of G(s)

By simple manipulation of Eqns. (21) and (22) one can get

G(s) = K̃
1 − Z(s)

1 + Z(s)
(23)

Here, K̃ = 1 or −1, and Z(s) is a realizable reactive impedance given by

Z(s) =























OdP(s)

EvP(s)
for even ñ

EvP(s)

OdP(s)
for odd ñ

(24)

where ñ is the order of G(s) (odd when realizing G0(s) and even when realizing G1(s)). The impedance

Z(s) has a zero at s = 0 for even ñ and a pole at s = 0 for odd ñ, while having a zero at s = ∞ both

for even ñ and for odd ñ.

The bilinear-LDI digital realization of G(s) is achieved by using the following steps:

• The transfer function G(s) is decomposed in the form

G(s) = K̃[1 − 2g(s)] (25)

where

g(s) =
Z(s)

1 + Z(s)
(26)

Here, G(s) can be realized as the transfer function of the signal-flow graph in Fig. 9.

Furthermore, g(s) represents a lowpass or highpass analog filter that can be realized as the transfer

function of the voltage divider network in Fig. 10.
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+

r0 = 1Ω

+

Z(s)

−

VA2
(s)

−

VA1
(s)

Figure 10. Voltage Divider Circuit for g(s)

Lm

Cm

C1 L1

L2

C2

L3

C3

Figure 11. Realization of Impedance Z(s)

Finally, Z(s) represents realizable reactances (consisting of capacitors and inductors only) and can

be decomposed into its Foster II canonical form, as in Fig. 11, in accordance with

Z(s) =
1

Y(s)
(27)

Y(s) = sC1 +
1

sL1

+
m

∑
i=2

sCi

s2CiLi + 1
(28)

where m = ñ/2 for even ñ and m = (ñ + 1)/2 for odd ñ, and where Ci represent capacitances

and Li represent inductances (for i = 1, 2, . . . , m), and inductor L1 is only present for even ñ.

• The impedance Z(s) in Fig. 11 is substituted into Fig. 10 and the precompensation is applied to the

resulting network. This amounts to a modification of circuit elements in accordance with:

V
′

A1
(s) =

VA1
(s)

1 − sT/2
(29)

The resistance in r0 in Fig. 10 is modified to:

r
′

0 = z
1
2 r0 (30)
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and

L
′

1 = L1 (31)

C
′

1 = C1 +
T

2
+

T2

4L1

+
m

∑
i=2

Ci
T2

4Li

Ci +
T2

4Li

(32)

L
′

i
= Li





Ci +
T2

4Li

Ci





2

(33)

C
′

i
=

C
2
i

Ci +
T2

4Li

(34)

with r0 = 1Ω and for i = 2, 3, ..., m.

• Since the voltage/current signal-flow graph of the precompensated network [34] consists of analog

integrators only and it has no analog differentiators, it can be used for bilinear-LDI realization

method. Therefore, the analog integrators in the signal-flow graph of the precompensated network

are replaced by LDI digital integrators, and by impedance-scaling, the resulting network is scaled

by z
−

1
2 to eliminate any half-delay elements. The resulting digital network is displayed in Fig. 12.

The multiplier coefficients in Fig. 12 are as follows:

mLi
=

T

L
′

i

(35)

mCi
=

T

C
′

i

(36)

for i = 1, 2, ..., m.

Figure 12. Realization of the Bilinear-LDI Digital Allpass Network G(z) [34]
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7. Constraints for guaranteed BIBO stability

In order for the FRM digital filter consisting of CSD multiplier coefficients m̂FRM to be BIBO stable,

it is both necessary and sufficient for the bilinear-LDI IIR interpolation digital subfilters Ha(z) and

Hb(z) to be BIBO stable. Likewise, in order for the interpolation digital subfilters Ha(z) and Hb(z) to

be BIBO stable, it is both necessary and sufficient for the bilinear-LDI allpass digital networks G0(z)
and G1(z) to be BIBO stable. In this way, it is required that the bilinear-LDI digital allpass networks

G0(z) and G1(z) remain BIBO stable throughout the course of the PSO algorithm.

In the course of PSO algorithm, the infinite-precision multiplier coefficients mLi
and mCi

can only take

quantized values m̂Li
and m̂Ci

that belong to CSD(L, l, f ). In order for the bilinear-LDI digital allpass

networks G0(z) and G1(z) to remain BIBO stable, it is required that the values of the corresponding

quantized reactive elements L̂i and Ĉi remain positive [45] in the course of optimization. This is due to

the properties of the bilinear frequency transformation from analog to digital domain. In order to find

the conditions for BIBO stability and in accordance with Eqns. (35) and (36), one has:

L̂
′

i =
T

m̂Li

(37)

Ĉ
′

i =
T

m̂Ci

(38)

Moreover, in accordance with Eqns. (31-34), one has:

L̂
′

1 = L̂1 (39)

Ĉ
′

1 = Ĉ1 +
T

2
+

T2

4L̂1

+
m

∑
i=2

Ĉi
T2

4L̂i

Ĉi +
T2

4L̂i

(40)

L̂
′

i = L̂i





Ĉi +
T2

4L̂i

Ĉi





2

(41)

Ĉ
′

i =
Ĉ2

i

Ĉi +
T2

4L̂i

(42)

where L̂1 = ∞ for odd-ordered allpass network G0(z).

By substituting Eqns. (37) and (38) into Eqns. (39-42), and by solving the resulting equations for the

reactive elements L̂i and Ĉi, one can obtain

L̂1 =
T

m̂L1

(43)
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Ĉ1 =

T







4
m̂C1

− m̂L1
− 4





m

∑
i=2

1

4
m̂Li

− m̂Ci



− 2







4
(44)

L̂i =
T(m̂Li

m̂Ci
− 4)2

16m̂Li

(45)

Ĉi =
−4T

m̂Ci
(m̂Li

m̂Ci
− 4)

(46)

From Eqns. (43-46), L̂i > 0 and Ĉi > 0 provide that

m̂L1
> 0 (47)

m̂Li
> 0 (48)

m̂Ci
<

4

m̂Li

(49)

m̂C1
<

4






m̂L1
+ 4





m

∑
i=2

1

4
m̂Li

− m̂Ci



+ 2







(50)

Then, in order to make the CSD FRM digital filter BIBO stable, it is necessary and sufficient to

choose the values of the multiplier coefficients m̂FRM ∈ CSD(L, l, f ) such that the inequality

constraints (47-50) are satisfied. The equations and corresponding condition required for BIBO stability

are summarized in Table 2.

In order to make the CSD lowpass digital IIR FRM filter BIBO stable, it is necessary and sufficient

to choose the values of the multiplier coefficients m̂Li
, m̂Ci

∈ CSD(L, l, f ) such that the inequality

constraints of Table 2 are satisfied.

It should be pointed out that constraint (49) is most stringent when m̂Li
is at its largest possible value.

Similarly, constraint (50) is most stringent when m̂L1
, m̂Li

and m̂Ci
are all at their largest possible values

(while m̂Li
and m̂Ci

still adhere to constraint m̂Ci
< 4 (m̂Li

)−1
).

8. Proposed PSO of FRM IIR digital filters

The proposed particle swarm optimization of BIBO stable FRM IIR digital filters is carried out over

the CSD multiplier coefficient space CSD(L0 or 1, l0 or 1, f0 or 1), where L0 or 1 represents the multiplier

coefficient wordlength, where l0 or 1 represents the maximum number of non-zero digits, and where

f0 or 1 represents the number of fractional part digits (for FIR or IIR digital subfilters, respectively).
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Element Equation Inequality Constraints

L̂1

T

m̂L1

m̂L1
> 0

Ĉ1
1
4

T







4
m̂C1

−m̂L1
−4





m

∑
i=2

1

4
m̂Li

−m̂Ci



−2







m̂C1
<4







m̂L1
+4





m

∑
i=2

1

4
m̂Li

−m̂Ci



+2







−1

L̂i
T(m̂Li

m̂Ci
− 4)2

16m̂Li

m̂Li
> 0

Ĉi
−4T

m̂Ci
(m̂Li

m̂Ci
− 4)

m̂Ci
< 4 (m̂Li

)−1

Table 2. Relations for Elements of Back-Transformed Reactance

The starting point of any stochastic algorithm plays an important role in the convergence behavior of the

optimization algorithm [46]. Therefore, it is important to generate the initial swarm in proper positions

in the search space rather than complete random generation of the initial population. In order to achieve

this, the following technique is employed:

8.1. Initiation of PSO

To start the PSO algorithm from a good position in the search space the infinite precision multiplier

coefficient values of the seed particle are generated by using classical techniques as discussed in

previous sections. These infinite precision multiplier coefficient values are turned into their finite

precision counterparts by simply rounding them to their closest CSD values. This seed particle is used

as the center of the swarm and a cloud of particles are generated randomly around the seed particle. It

should be noted that the distance of the randomly generated particles should not be far from the seed

particle. In this way, the initial swarm contains particles which have high chances of being near the

optimal solution. The multiplier coefficient values of the swarm are taken from a set of CSD LUTs

which are constructed as follows:

8.2. FRM IIR digital filter template LUTs

It is necessary and sufficient to choose the values of the multiplier coefficients, such that the inequality

constraints (47-50) are satisfied. In order to achieve this, the LUTs are constructed as follows:

• One LUT is constructed for all multiplier coefficient values m̂FIR ∈ CSD(L0, l0, f0) for the

masking digital subfilters F0(z) and F1(z). The values of L0, l0 and f0 are determined empirically

based on the amplitude frequency-response of the masking digital subfilters F0(z) and F1(z).

• A LUT is constructed for all multiplier coefficient values m̂I IR ∈ CSD(L1, l1, f1) for the digital

allpass networks G0(z) and G1(z). Once again, the values of L1, l1 and f1 are determined

empirically. Also, it is expedient to assume that m̂I IR have only positive values.

• The above CSD LUT is used to form one size-reduced LUT per the multiplier coefficient for

digital allpass networks G0(z) and G1(z), where each size-reduced LUT initially includes CSD

values bounded from below by the smallest representable value belonging to CSD(L1, l1, f1), and
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from above by the corresponding value of the finite-wordlength coefficients for the seed particle.

The size-reduced LUTs are augmented before PSO process commences. The purpose of this

augmentation is to ensure that the exploration space include as many of those CSD multiplier

coefficients m̂L1
, m̂C1

, m̂Li
and m̂Ci

which still satisfy the BIBO stability constraints (47-50).

The above constructed LUTs are used as template LUTs. There are two problems concerning the PSO

of FRM IIR digital filters over the CSD multiplier coefficient space. To overcome these problems, the

template LUTs must be further processed. These two problems and the way to solve them are discussed

in the following.

8.3. PSO indirect search method

In PSO, the required new particle position is obtained from the previous position of the particle through

the addition of a random (normalized) velocity value. However, by directly applying the conventional

PSO to the above optimization over the CSD multiplier coefficients, one may obtain new particle

positions whose coordinate values are no longer in CSD(L0 or 1, l0 or 1, f0 or 1). In order to overcome

this problem, the optimization search is carried out indirectly via the indices to the LUT CSD values

(as opposed to LUT CSD values themselves). In this way, the CSD coordinate values for each particle

position are obtained by integer indices to the CSD LUTs. The key point in the indirect search rests

with ensuring that the index set is closed, i.e. by ensuring that each index points to a valid CSD value

in the LUT, and that the resulting particle in the course of PSO adheres to the prespecified CSD number

format.

If the velocity values are replaced by their closest integer values, the update equations become modified

to

v̂i
kj = [wv̂i−1

kj + c1r1(x̂
i−1
bestkj

− x̂i−1
kj ) + c2r2(ĝi−1

bestj
− x̂i−1

kj )]1 (51)

if v̂i
kj < v̂min ; v̂i

kj = v̂min

if v̂i
kj > v̂max ; v̂i

kj = v̂max

x̂i
kj = x̂i−1

kj + v̂i
kj (52)

Here, x̂kj, v̂kj, x̂bestkj
, ĝbestj

, v̂min and v̂max are all integer values where v̂min < 0 and v̂max > 0. In

addition, w is limited in the interval [0, 0.5) (as discussed shortly).

8.4. Barren layers

Due to their finite length, the template LUTs inevitably lead to a bounded optimization search space. In

order to ensure that the particles do not cross over to the outside of the search space in the course of PSO,

the search space is constructed as a combination of two regions, namely the interior and barren layers.

The barren layer is constructed to yield relatively low fitness values, and is represented as header and

footer in the template LUT. There are two problems concerning the construction of the barren layers:

1 [R] denotes rounding R to its closest integer, where R is assumed to be a real value.

Digital Filters and Signal Processing262



8.4.1. barren layer entries

The first problem in the construction of barren layers concerns how to make the fitness values in the

barren layer relatively low. This problem can be resolved by filling the header part by unrealistically

large, and the footer part by unrealistically small CSD multiplier coefficient values.

8.4.2. barren layer width

The second problem, on the other hand, concerns how to determine the width of the barren layer such

that the particles do not cross over to the outside of the search space even under the worst case scenario.

These two problems relate to the number of entries and the CSD values of the entries in header and

footer parts of the template LUTs. To overcome this problem, let us consider the j-th variable in the

k-th particle is in the boundaries of one of the template LUTs in iteration i − 1. The worst case scenario

occurs when xi−1

kj moves toward the barren layer with the peak permissible velocities (vmax for the

header, and vmin for the footer). If in the i-th iteration xi
kj is in the footer:

x̂i
bestkj

> x̂i
kj (53)

ĝi
bestj

> x̂i
kj (54)

and if it is in the header:

x̂i
bestkj

< x̂i
kj (55)

ĝi
bestj

< x̂i
kj (56)

Eqns. (53-56) show that the velocity of the particle in iteration i + 1 tends to move the particle in a

direction opposite to the direction of the barren regions. Here, the worst case happens when r1 = r2 =
0. In this way, the number of entries L f in the footer part, and the number of entries Lh in the header

part is determined in accordance with

L f = |v̂min|+ [w|v̂min|] + [w[w|v̂min|]] + . . .

≤ |v̂min|+
|v̂min|

2
+

|v̂min|

4
+ . . .

= 2|v̂min| (57)

Lh = v̂max + [wv̂max] + [w[wv̂max]] + . . .

≤ v̂max +
v̂max

2
+

v̂max

4
+ . . .

= 2v̂max (58)

Let us recall that since 0 ≤ w < 0.5,

if v : positive integer ⇒ [wv] ≤
v

2
(59)
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In addition, after some iterations v̂i+1
kj = 0. Otherwise, if w ≥ 0.5, v̂i+1

kj can never become zero, and

the width of the barren layer will be infinity.

The augmented LUTs remains fixed in the course of PSO, restricting automatic particle movement

inside the limited search space. Modifying the index values inside each particle by adding the current

indices to the length of the footer barren region, L f , PSO algorithm is ready to start the optimization of

FRM digital filters.

9. Design methodology

The design methodology for the proposed PSO of BIBO stable bilinear-LDI based FRM IIR digital

filters over the CSD multiplier coefficient space can be summarized as follows:

1. Designing the interpolation digital subfilter: the first step in determining the interpolation subfilter

specifications is to fix the interpolation factor M from a pre-specified range. This is done in a way

that the order of the FIR masking filters is kept minimal. Using the passband edge frequency ωp

and stopband edge frequency ωa and the expressions for boundary frequencies given in Table 1,

one can determine the filter case and calculate the approximate passband edge θ̃ and stopband edge

φ̃ of the digital interpolation lowpass subfilter H(ejω), for every value of the user specified range

of interpolation factors M. The order of the FIR masking filters depends on the minimum distance

between consecutive image replicas of either the interpolated subfilter Ha(ejMω) or its complement

Hb(e
jMω). Then, displacement λM and distance D̃M for each interpolation factor M are given as:

λM = max[|(
π

2
− θ̃)|, |(

π

2
− φ̃)|] (60)

D̃M =
π

M
−

2λ

M
(61)

To minimize the length of FIR-masking filters, the value of M that results in the largest value of D̃M
is chosen. This determines the optimal interpolation factor M as well as the approximate passband

edge θ̃ and stopband edge φ̃ of the digital interpolation subfilter H(ejω). EMQF filters have the

property of equal square magnitude ripple size in the passband and stopband. Therefore, of the

two ripple specifications, whichever gives the smallest tolerance in the squared magnitude response

determines both the passband ripple Rp and stopband attenuation Ra of the interpolation digital

subfilter Ha(ejω). The interpolation digital subfilter order NI IR is then determined using Rp, Ra,

θ̃ and φ̃. NI IR must be rounded to the nearest larger odd integer so that it can be implemented by

a parallel combination of two allpass networks. With the order NI IR, and passband and stopband

ripples Rp and Ra fixed, the ratio of the analog passband edge θA and stopband edge φA is a constant

k given by [47]

D =
100.1Ra − 1

100.1Rp − 1

q = 10
− log(16D)

N
I IR
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q = q0 + 2q5
0 + 15q9

0 + 150q13
0

kp =

[
1 − 2q0

1 + 2q0

]2

k =
√

1 − k2
p

In order to satisfy the passband edge specification, the digital passband edge ωp = θ̃ for Case I

filters. The digital stopband edge ωa is then determined using the analog ratio k. (Here, frequency

warping from digital to analog domain, and vice versa, given by Eqn. (18) needs to be taken into

account.) Similarly, ωa = φ̃ for Case II filters, and ωp can be determined by using ratio k. Also,

using given ripple specifications along with the boundary frequencies described in Table 1, one can

determine the transfer function of the FIR masking filters F0(e
jω) and F1(e

jω).

2. Generation of seed FRM digital filter particle: The seed FRM digital filter particle is formed as

follows:

• A particle with B1 coordinates is formed in which each coordinate serves as an index of the

corresponding CSD LUT for each multiplier coefficient constituent in the interpolation digital

subfilters. For FRM IIR digital filters, the multiplier coefficients correspond to the bilinear-LDI

allpass digital networks G0(z) and G1(z).

• A particle with B2 coordinates is formed in which each coordinate serves as an index of the

corresponding CSD LUT for each multiplier coefficient in the FIR masking digital subfilters

F0(z) and F1(z).

3. Generation of Initial Swarm: An initial swarm of K particles is formed by generating a random

cloud around the seed particle as discussed in section 8.1.

4. Fitness Evaluation: The fitness function for CSD FRM IIR digital filters is defined in accordance

with

f itnessmagnitude = −20log[max(εp, εa)] (62)

f itnessgroup−delay = ςp (63)

f itness = f intessmagnitude − f itnessgroup−delay (64)

where

εp = max
︸︷︷︸

ω∈∆ωp

[Wp|H(ejω)− 1|] (65)

εa = max
︸︷︷︸

ω∈∆ωa

[Wa|H(ejω)|] (66)

ςp = max
︸︷︷︸

ω∈∆ωp

[Wgd|τ(ω)− µτ |] (67)
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with ∆ωp representing the passband frequency region(s), with ∆ωa representing the stopband

frequency region(s), and with τ(ω) representing the group-delay frequency response of the FRM

IIR digital filter. Here, Wp, Wa, and Wgd represent weighting factors for the passband and stopband

magnitude responses, and for the group-delay response, respectively. Moreover, µτ represents the

average group-delay over the passband region.

In [48], a convenient way to represent digital networks in terms of matrix representation is presented.

This technique can be used to find the magnitude and group delay frequency response of the digital

network in Fig. 12. Let us consider the input to the digital network in Fig. 12 to be xD and the

output of it to be yD . In addition, let the output of the i-th time delay in Fig. 12 to be xi and the

input to the i-th time delay to be yi. The transfer function matrix of the network, T, can be found as

y = Tx (68)

where y = [yD , y1, y2, . . . , y2m+1]
t 2and x = [xD , x1, x2, . . . , x2m+1]

t, and T is a (2m + 2) ×
(2m + 2) matrix with the entries obtained as Eqn. (69).

T=



























0 1 −1 0 0 0 ... 0 0
1 0 0 0 0 0 ... 0 0

mC1
mC1

1−mC1
(1+

m

∑
i=1

mLi
) −mC1

mC1
mL2

−mC1
... mC1

mLm −mC1

0 0 mL1
1 0 0 ... 0 0

0 0 mC2
mL2

0 1−mC2
mL2

mC2
... 0 0

0 0 mL2
0 −mL2

1 ... 0 0

...
...

...
...

...
...

. . .
0 0 mCm mLm 0 0 0 1−mCm mLm mCm

0 0 mLm 0 0 0 −mLm 1



























(69)

Since xi = z−1yi, the transfer function G(z) =
yD

xD
can be found as

G(z) = z−1e[I − z−1D]−1c (70)

where e is a row vector and c is a column vector of length 2m + 1, and where I is the identity

matrix and D is a (2m + 1)× (2m + 1) matrix in accordance with

T =











0 e

c D











(71)

2 Xt denotes the transpose of the matrix X.
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The matrix T is also useful in finding the group delay of H(z). The group-delay of H(ejω) is given

by

τ(ω) = −Im

{

1

H(ejω)

dH(ejω)

dω

}

(72)

With the help of Eqn. (12), the expression
dH(ejω)

dω
can be written as

dH(ejω)

dω
=

1

2

[ dG0(e
jω)

dω
(F0(e

jω) + F1(e
jω))+

d(F0(e
jω) + F1(e

jω))

dω
G0(e

jω)+

dG1(e
jω)

dω
(F0(e

jω)− F1(e
jω))+

d(F0(e
jω)− F1(e

jω))

dω
G1(e

jω)
]

(73)

The derivative of FIR filters can be easily found from their transfer function. In order to find the

derivative of the digital allpass networks G0(z) and G1(z), the following expression can be used

dG(ejω)

dω
= −je−jω

2m+1

∑
i=1

Gxi(e
jω)Giy(e

jω) (74)

where Gxi(z) is the transfer function between xD and yi, and where Giy(z) is the transfer function

between xi and yD . The transfer functions Gxi(z) and Giy(z) can be found from the transfer

function matrix T as follows

Gxi(z) = axi + z−1
exi[I − z−1

D]−1
c (75)

Giy(z) = aiy + z−1
e[I − z−1

D]−1
ciy (76)

where axi and aiy are scalars, exi is a row vector and ciy is a column vector of length 2m + 1, in

accordance with [axi exi] is the i-th row of the matrix T, and [aiy c
t
iy]

t is the i-th column of

the matrix T. Having the expressions for H(ejω) and
dH(ejω)

dω
, the group delay can be obtained in

accordance with Eqn. (72).

The passband and stopband weighting factors Wp and Wa are easily determined from user

specifications. The group-delay weighting factor is set as

Wgd =
ζ × f itnessmagnitude

f itnessgroup−delay
(77)

where ζ is a fixed constant such that 0 < ζ < 1, and where f itnessmagnitude and f itnessgroup−delay

are obtained by examining the seed FRM digital filter particle. The weighting factor for the

group-delay increases as ζ → 1.
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Maximum Passband Ripple Ap 0.1[dB]

Minimum Stopband Loss Aa 40[dB]

Lower Stopband-Edge Normalized Frequency ωa1
0.31π[Rad]

Lower Passband-Edge Normalized Frequency ωp1
0.33π[Rad]

Upper Passband-Edge Normalized Frequency ωp2
0.60π[Rad]

Upper Stopband-Edge Normalized Frequency ωa2
0.61π[Rad]

Normalized Sampling Period T 1[s]

Lowpass Filter Interpolation Factor Ml p 6

Highpass Filter Interpolation Factor Mhp 5

Table 3. Design Specifications for Bandpass FRM IIR Digital Filter

K w c1 c2 v̂min v̂max L f Lh

700 0.4 2 2 −5 5 10 10

Table 4. PSO Design Parameters for Bandpass FRM IIR Digital Filter

L0 l0 f0 L1 l1 f1

11 3 10 12 3 7

Table 5. CSD Parameters for Bandpass FRM IIR Digital Filter

10. Application examples

10.1. Bandpass FRM IIR digital filter design example

Consider the design of a bandpass FRM IIR digital filter satisfying the magnitude response design

specifications given in Table 3 over the CSD multiplier coefficient space.

The parameters for the PSO of bandpass FRM IIR digital filter is shown in Table 4 and the CSD

parameters are presented in Table 5.

Given the design specification in Table 3, The order of the digital allpass networks G0lp
(z), G1lp

(z),

G0hp
(z) and G1hp

(z) are found to be 3, 4, 3 and 4, respectively. In addition, the digital masking subfilters

F0lp
(z), F1lp

(z), F0hp
(z) and F1hp

(z) have the same length as the previous example, i.e. 24, 42, 25 and

35 respectively, resulting in N = 140. In this example a set of fifteen CSD LUTs are required, fourteen

LUTs for the multiplier coefficients mC0,1
, mC0,2

, mC0,3
, mL0,2

, mL0,3
, mC1,1

, mL1,1
, mC1,2

and mL1,2

constituent in the digital allpass networks G0lp
(z), G1lp

(z), G0hp
(z) and G1hp

(z), and one template

LUT for all the multiplier coefficients constituent in the masking digital subfilters F0lp
(z), F1lp

(z),

F0hp
(z) and F1hp

(z).

Finally, by using Parks McClellan approach, the subfilters F0lp
(z), F1lp

(z), F0hp
(z) and F1hp

(z) can be

designed. Also, by using the EMQF technique, the digital allpass networks G0lp
(z), G1lp

(z), G0hp
(z)

and G1hp
(z) can be designed. Consequently, the magnitude and group delay frequency responses of the

overall infinite-precision bandpass FRM IIR digital filter H(z) is obtained as shown in Figs. 13 and 14.
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Figure 13. Magnitude Frequency-Response of the Overall

Infinite-Precision Bandpass FRM IIR Digital Filter H(ejω)
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Figure 14. Group Delay Frequency-Response of the Overall

Infinite-Precision Bandpass FRM IIR Digital Filter H(ejω)

0 0.5 1 1.5 2 2.5 3 3.5
−80

−70

−60

−50

−40

−30

−20

−10

0

10

ω [Rad]

|H
(e

jω
)|

 [
d
B

]

Figure 15. Magnitude Frequency-Response of the Overall

CSD Bandpass FRM IIR Digital Filter H(ejω) Before PSO
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Figure 16. Group Delay Frequency-Response of the Overall

CSD Bandpass FRM IIR Digital Filter H(ejω) Before PSO

Multiplier CSD Representation Decimal Value
mC0,1

00001.0001̄001̄ 0.9297

mC0,2
00010.0001̄01̄0 1.9219

mL0,2
00000.1000010 0.5156

mC1,1
00001.001̄001̄0 0.8594

mC1,2
10000.1̄01̄0000 15.375

mL1,1
00001.0001̄01̄0 0.9219

mL1,2
00000.00101̄01̄ 0.0859

Table 6. Digital Multiplier Values for the Lowpass Section of the Bandpass FRM IIR Digital Filter

Based on the infinite-precision bandpass FRM IIR digital filter, the corresponding CSD FRM IIR initial

digital filter is obtained to have a magnitude and group delay frequency responses as shown in Figs. 15

and 16.

By applying the proposed PSO to the initial FRM IIR digital filter and after about 160 iterations, the

PSO converges to the optimal bandpass FRM IIR digital filter having a magnitude frequency response

as shown in Fig. 17. In addition, Fig. 18 gives us a closer look to the magnitude frequency response of

the passband region of the bandpass FRM IIR digital filter. Fig. 19 illustrates the group delay frequency

response of the optimized bandpass FRM IIR digital filter. The values of the multiplier coefficients for

the lowpass and highpass sections of the bandpass FRM IIR digital filter are obtained as summarized in

Tables 6 and 7.
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Figure 17. Magnitude Frequency-Response of the Overall

CSD Bandpass FRM IIR Digital Filter H(ejω) After PSO
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Figure 18. Magnitude Frequency-Response of the

Passband Region of the Overall CSD Bandpass FRM IIR

Digital Filter H(ejω) After PSO
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Figure 19. Group Delay Frequency-Response of the Overall CSD Bandpass FRM IIR Digital Filter H(ejω) After PSO

Multiplier CSD Representation Decimal Value
mC0,1

00001.001̄01̄00 0.8438

mC0,2
00010.0001001̄ 2.0547

mL0,2
00000.1000001̄ 0.4922

mC1,1
00001.01̄00010 0.7656

mC1,2
10000.0100001 16.2578

mL1,1
00001.00001̄01 0.9766

mL1,2
00000.00101̄01̄ 0.0859

Table 7. Digital Multiplier Values for the Highpass Section of the Bandpass FRM IIR Digital Filter

Frequency-Response Characteristic Before PSO After PSO
Maximum Passband Ripple Ap 0.8982[dB] 0.0978[dB]

Minimum Stopband Loss Aa 9.1715[dB] 40.0172[dB]

Maximum Group Delay 312[Samples] 239[Samples]

Table 8. Frequency-Response Analysis of the CSD Bandpass FRM IIR Digital Filter Before and After PSO

Table 8 represents the comparison of the CSD bandpass FRM IIR digital filters before and after PSO.
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