
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9 

 

 

 
 

© 2012 Londhe and Dixit, licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Genetic Programming: A Novel Computing 

Approach in Modeling Water Flows 

Shreenivas N. Londhe and Pradnya R. Dixit 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48179 

1. Introduction 

The use of artificial intelligence in day to day life has increased since late 20th century as seen 

in many home appliances such as microwave oven, washing machine, camcorder etc which 

can figure out on their own what settings to use to perform their tasks optimally. Such 

intelligent machines make use of the soft computing techniques which treat human brain as 

their role model and mimic the ability of the human mind to effectively employ modes of 

reasoning that are approximate rather than exact. The conventional hard computing 

techniques require a precisely stated analytical model and often a lot of computational time. 

Premises and guiding principles of Hard Computing are precision, certainty, and rigor [1].  

Many contemporary problems do not lend themselves to precise solutions such as 

recognition problems (handwriting, speech, objects and images), mobile robot coordination, 

forecasting, combinatorial problems etc. This is where soft computing techniques score over 

the conventional hard computing approach. Soft computing differs from conventional 

(hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 

partial truth, and approximation. The guiding principle of soft computing is to exploit the 

tolerance for imprecision, uncertainty, partial truth, and approximation to achieve 

tractability, robustness and low solution cost [1]. The principal constituents, i.e., tools, 

techniques of Soft Computing (SC) are Fuzzy Logic (FL), Neural Networks (NN), 

Evolutionary Computation (EC), Machine Learning (ML) and Probabilistic Reasoning (PR). 

Soft computing many times employs NN, EC, FL etc, in a complementary rather than a 

competitive way resulting into hybrid techniques like Adaptive Neuro-Fuzzy Interface 

System (ANFIS).  

The application of soft computing techniques in the field of Civil Engineering started since 

early nineties and since encompassed almost all fields of Civil Engineering namely 

Structural Engineering, Construction Engineering and Management, Geotechnical 
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Engineering, Environmental Engineering and lastly Hydraulic Engineering which is the 

focus of this chapter. The technique of ANN is now well established in the field of Civil 

Engineering to model various random and complex phenomena. Other techniques such as 

FL and EL caught attention of many research workers as a complimentary or alternative 

technique to ANN, particularly after knowing the drawbacks of ANN [2].  The soft 

computing tool of Genetic Programming which is essentially classified as an Evolutionary 

Computation (EC) technique has found its foot in the field of Hydraulic Engineering in 

general and modeling of water flows in particular since last 12 years or so. Modeling of 

water flows is perhaps the most daunting task ever faced by researchers in the field of 

Hydraulic Engineering owing to the randomness involved in many natural processes 

associated with the water flows. In pursuit of achieving more and more accuracy in 

estimation/forecasting of water related variables the researchers have made of use Genetic 

Programming for various tasks such as forecasting of runoff with or without rainfall, 

forecasting of ocean waves, currents, spatial mapping of waves to name a few.  The present 

chapter takes a stalk of the applications of GP to model water flows which will enable the 

future researchers who want to pursue their research in this field. The chapter is organized 

as follows. Next section deals with basics of GP. A review of applications of GP in the field 

of Ocean Engineering is presented in the next section followed by review of applications in 

the field of hydrology. Few applications in the field of Hydraulics are discussed in the 

subsequent section. It may be noted that papers published in reputed international journals 

are only considered for review. Two case studies are presented next which are based on 

publications of the first author. The concluding remarks and future scope as envisaged by 

the authors are discussed at the end.   

2. The evolutionary computation 

The paradigm of evolutionary processes distinguishes between an organism’s genotype, 

which is constructed of genetic material that is inherited from its parent or parents, and the 

organism’s phenotype, which is the coming to full physical presence of the organism in a 

certain given environment and is represented by a body and its associated collection of 

characteristics or phenotypic traits. Within this paradigm, there are three main criteria for an 

evolutionary process to occur as per [3] and they are  

• Criterion of Heredity: Offspring are similar to their parents: the genotype copying 

process maintains a high fidelity.  

• Criterion of Variability: Offspring are not exactly the same as their parents: the 

genotype copying process is not perfect. 

• Criterion of Fecundity: Variants leave different numbers of offspring: specific variations 

have an effect on behavior and behavior has an effect on reproductive success.  

The evolutionary techniques can be differentiated into four main streams of Evolutionary 

Algorithm (EA) development [4] namely Evolution Strategies (ES), Evolutionary 

Programming (EP), Genetic Algorithms (GA) and Genetic Programming (GP) [5].  However, 

all evolutionary algorithms share the common property of applying evolutionary processes 
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in the form of selection, mutation and reproduction on a population of individual structures 

that undergo evolution. The criterion of heredity is assured through the application of a 

crossover operator, whereas the criterion of variability is maintained through the 

application of a mutation operator. A selection mechanism then ‘favours’ the more fit 

entities so that they reproduce more often, providing the fecundity requirement necessary 

for an evolutionary process to proceed. 

3. Genetic programming:  

Like genetic algorithm (GA) the concept of Genetic Programming (GP)  follows the principle 

of ‘survival of the fittest’ borrowed from the process of evolution occurring in nature. But 

unlike GA its solution is a computer program or an equation as against a set of numbers in 

the GA and hence it is convenient to use the same as a regression tool rather than an 

optimization one like the GA. GP operates on parse trees rather than on bit strings as in a 

GA, to approximate the equation (in symbolic form) or computer program that best 

describes how the output relates to the input variables. A good explanation of various 

concepts related to GP can be found in [5] Koza (1992). GP starts with a population of 

randomly generated computer programs on which computerized evolution process 

operates. Then a ‘tournament’ or competition is conducted by randomly selecting four 

programs from the population. GP measures how each program performs the user 

designated task. The two programs that perform the task best ‘win’ the tournament. GP 

algorithm then copies the two winner programs and transforms these copies into two new 

programs via crossover and mutation operators i.e. winners now have the ‘children.’ These 

two new child programs are then inserted into the population of programs, replacing the 

two loser programs from the tournament. Crossover is inspired by the exchange of genetic 

material occurring in sexual reproduction in biology. The creation of offspring’s continues 

(in an iterative manner) till a specified number of offspring’s in a generation are produced 

and further till another specified number of generations are created. The resulting offspring 

at the end of all this process (an equation or a computer program) is the solution of the 

problem. The GP thus transforms one population of individuals into another one in an 

iterative manner by following the natural genetic operations like reproduction, mutation 

and cross-over. Figure 1 shows general flowchart of GP as given by [5].  

The tree based GP corresponds to the expressions (syntax trees) from a ‘functional 

programming language’ [5]. In this type, Functions are located at the inner nodes; while 

leaves of the tree hold input values and constants. A population of random trees 

representing the programs is initially constructed and genetic operations are performed on 

these trees to generate individuals with the help of two distinct sets; the terminal set T and 

the function set F.   

Population: These are the programs initially constructed from the data sets in the form of 

trees to perform genetic operations using Terminal set and Function set. The function set for 

a run is comprised of operators to be used in evolving programs eg. addition, subtraction, 

absolute value, logarithm, square root etc. The terminal set for a run is made up of the 
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values on which the function set operates. There can be four types of terminals namely 

inputs, constant, temporary variables, conditional flags. The population size is the number 

of programs in the population to be evolved. Larger population can solve more complicated 

problem. The maximum size of population depends upon RAM of the computer and length 

of programs in the population. 

4. Genetic operations 

Cross over: Two individuals (programs) are chosen as per the fitness called parents. Two 

random nodes are selected from inside such program (parents) and thereafter the resultant 

sub-trees are swapped, generating two new programs. The resulting individuals are 

inserted into the new population. Individuals are increased by 2. The parents may be 

identical or different. The allowable range of cross over frequency parameter is 0 to 100% 

Mutation: One individual is selected as per the fitness. A sub-tree is replaced by another one 

randomly. The mutant is inserted into the new population. Individuals are increased by 1.  

The allowable range of mutation frequency parameter is 0 to 100% 

Reproduction: The best program is copied as it is as per the fitness criterion and included in 

the new population.  Individuals are increased by 1. Reproduction rate = 100 – mutation rate 

– (crossover rate * [1 – mutation rate]) 

 

Figure 1. Flowchart of Genetic programming (Ref: [5]) 
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The second variant of GP is Linear genetic Programming (LGP) which uses a specific 

linear representation of computer programs. The name ‘linear’ refers to the structure of 

the (imperative) program representation only and does not stand for functional genetic 

programs that are restricted to a linear list of nodes only. On the contrary, it usually 

represents highly nonlinear solutions. Each individual (Program) in LGP is represented 

by a variable-length sequence of simple C language instructions, which operate on the 

registers or constants from predefined sets. The function set of the system can be 

composed of arithmetic operations (+, - , X, /), conditional branches, and function calls (f 

{x, xn, sqrt, ex ,sin, cos, tan, log, ln  }). Each function implicitly includes an assignment to a 

variable which facilitates use of multiple program outputs in LGP. LGP utilizes two-

point string cross-over. A segment of random position and random length of an 

instruction is selected from each parents and exchanged. If one of the resulting children 

exceeds the maximum length, this cross-over is abandoned and restarted by exchanging 

equalized segments. An operand or operator of an instruction is changed by mutation 

into another symbol over the same set.  The readers are referred to [7] and [8] for further 

details. 

Gene-Expression Programming (GEP) is an extension of GP, developed by [5]. The 

genome is encoded as linear chromosomes of fixed length, as in Genetic Algorithm 

(GA); however, in GEP the genes are then expressed as a phenotype in the form of  

expression trees. GEP combines the advantages of both its predecessors, GA and GP, 

and removes their limitations. GEP is a full fledged genotype/phenotype system in 

which both are dealt with separately, whereas GP is a simple replicator system. As a 

consequence of this difference, the complete genotype/phenotype GEP system surpasses 

the older GP system by a factor of 100 to 60,000. In GEP, just like in other evolutionary 

methods, the process starts with the random generation of an initial population 

consisting of individual chromosomes of fixed length. The chromosomes may contain 

one or more than one genes. Each individual chromosome in the initial population is 

then expressed and its fitness is evaluated using one of the fitness function equations 

available in the literature. These chromosomes are then selected based on their fitness 

values using a roulette wheel selection process. Fitter chromosomes have greater 

chances of selection for passage to the next generation. After selection, these are 

reproduced with some modifications performed by the genetic operators. In Gene 

Expression Programming, genetic operators such as mutation, inversion, transposition 

and recombination are used for these modifications. Mutation is the most efficient 

genetic operator, and it is sometime used as the only means of modification. The new 

individuals are then subjected to the same process of modification, and the process 

continues until the maximum number of generations is reached or the required 

accuracy is achieved.  

5. Why use GP in modeling water flows? 

It is a known fact that many variables in the domain of Hydraulic Engineering are of 

random nature having a complex underlying phenomenon. For example the generation 
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of ocean waves which are primarily functions of wind forcing is a very complex 

procedure. Forecasting of the ocean waves is an essential prerequisite for many ocean-

coastal related activities. Traditionally this is done using numerical models like WAM 

and SWAN.  These models are extremely complex in development and application 

besides being highly computation-intensive.  Further they are more useful for forecasting 

over a large spatial and temporal domain.  The accuracy levels of wave forecasts 

obtained through such numerical models again leaves scope for exploration of 

alternative schemes. These numerical models suffer from disadvantages like requirement 

of exogenous data, complex modeling procedure, rounding off errors and large 

requirement of computer memory and time and there is no guarantee that the results 

will be accurate. Particularly when point forecasts were required the researchers 

therefore used the data driven techniques namely ARMA, ARIMA and since last two 

decades or so the soft computing technique of Neural Networks. A comprehensive 

review of applications of ANN in Ocean Engineering is done by [9]. Although wave 

forecasting models were developed using Artificial Neural Networks by many research 

workers their was scope for use of another data driven techniques in that the ANN based 

models generally were unable to forecast extreme events with reasonable accuracy and 

the accuracy of forecasts decreases with increase in lead time as reported in many 

research papers. This became an ideal situation for the entry of another soft computing 

tool of GP which functions in a completely different way than ANN in that it does not 

involve any transfer function and evolves generations and generations of ‘offspring’ 

based on the ‘fitness criteria’ and genetic operations as explained in the earlier section 

the researchers thought, may be useful to capture the underlying trends better than ANN 

technique and can be used as a regressive tool. Same can be said about another 

important variable in hydraulic engineering “runoff or stream flow”.  

The rainfall -runoff modeling is very complex procedure and many numerical schemes are 

available as well as a large number of attempts by ANNs are also been made [2, 10, 11]. 

Thus Genetic Programming entered in rainfall-runoff modeling. It was also found that GP 

results were superior to that of M5 Model Trees another data driven modeling technique 

[12, 13]. Apart from these two variables the use of GP for modeling for many hydraulic 

engineering processes was found necessary for similar reasons. A review of these 

applications particularly in Ocean Engineering, Hydrology and Hydraulics (all grouped 

under Hydraulic Engineering) will be presented in the next three sections.  

6. Applications in ocean engineering 

As mentioned earlier papers published in reputed international journals are considered in 

this chapter. Primarily the applications of GP in Ocean Engineering were found for 

modeling of oceanic parameters like waves, water levels, zero cross wave periods, currents, 

wind, sediment transport and circular pile scour. Table 1 shows applications of GP in the 

field of Ocean Engineering listed chronologically followed by their review. This will 

facilitate the reader to have a glance of the work which would be presented next.  
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REF. 

NO. 

YEAR AUTHOR TITLE OF PAPER JOURNAL/PUBLICATION 

14 2007 Kalra R.,  Deo M.C. Genetic Programming to 

retrieve missing 

information in wave records 

along the west coast of 

India 

Applied Ocean Research 

25 2007 Singh, A. K., Deo 

M.C., Sanil Kumar 

V. 

Combined Neural network 

– genetic programming for 

sediment transport 

Journal of Maritime Engineering, The 

Institution of Civil Engineers, Issue 

MAO 

16 2007 Charhate S. B.,  

Deo M. C.,  

Sanil Kumar V. 

 

Soft and Hard Computing 

Approaches for Real Time 

Prediction of Currents in a 

Tide Dominated Coastal 

Area 

Journal of Engineering for the Maritime 

Environment. Proceedings of the 

Institution of Mechanical Engineers, 

London, M4  

15 2008 Ustoorikar K.S., Deo, 

M. C. 

Filling up Gaps in wave 

data with Genetic 

Programming 

 

Marine Structures 

18 2008 Jain., P., Deo M. C. Artificial intelligence tools 

to forecast ocean waves in 

real time 

  

The Open Ocean Engineering Journal 

22 2008 Charhate, S. B., Deo, 

M. C., Londhe S. N. 

Inverse modeling to derive 

wind parameters from 

wave measurements 

 

Applied Ocean Research 

17 2008 Gaur, S., and Deo, 

M. C. 

 

Real time wave forecasting 

using genetic programming

Ocean Engineering 

 

06 2008 Londhe S. N. Soft computing approach 

for real-time estimation of 

missing wave heights 

Ocean Engineering 

23 2009 Charhate, S. B., Deo, 

M. C., Londhe S. N. 

 

 

Genetic programming for 

real time prediction of 

offshore wind 

International Journal of Ships and 

Offshore Structures 

 

 

26 2009 Guven, A., 

Azmathulla, H. Md., 

Zakaria, N.A. 

Linear genetic 

programming for prediction 

of circular pile scour 

Ocean Engineering 

 

24 2009 Daga, M., Deo, M. C. Alternative data-driven 

methods to estimate wind 

from waves by inverse 

Modeling 

Natural Hazards, 49(2), 293-310   

 

08 2009 Guven, A.  Linear genetic 

programming for time-

series modelling of daily 

flow rate 

Journal of  Earth Syst. Sci., 118(2), 137-

146 
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19 2010 Kambekar, A. R., 

Deo, M. C.  

Wave simulation and 

forecasting using wind time 

history and data driven 

Methods 

 

Ships and Offshore Structures 

20 2010 

a 

Ghorbani, M. A. , 

Makarynskyy, O., 

Shiri, J., 

Makarynska, D. 

Genetic Programming for 

Sea Level Predictions in an 

Island Environment 

International Journal of Ocean and 

Climatic systems 

21 2010 

b 

Ghorbani, M. A., 

Khatibi, R., Aytek, 

A., Makarynskyy, 

O., Shiri, J. 

 

 

Sea water level forecasting 

using genetic programming 

and comparing the 

performance with Artificial 

Neural Networks 

Computers and Geosciences 

 

 

12 2012 Kambekar, A. R., 

Deo, M. C.  

Wave Prediction Using 

Genetic Programming And 

Model Trees 

Journal of Coastal Research, Doi: 

10.2112/Jcoastres-D-10-00052.1, 28(1), 

43-50 

Table 1. Applications of GP in Ocean Engineering 

One of the earlier applications was done to retrieve missing information in wave records 

along the west coast of India [14]. Such a need arises many times due to malfunctioning of 

instrument or drift of wave measuring buoy making it inoperative as a result of which data 

is not measured and it is lost forever. Filling up the missing significant wave height (Hs) 

values at a given location based on the same being collected at the nearby station(s) was 

done using GP. The wave heights were measured at an interval of 3 hours. Data at six 

locations around Indian coastline was used in this exercise. Out of the total sample size of 

four years the observations for the initial 25 months were used to evaluate the final or 

optimum GP program or equation while those for the last 23 months were employed to 

validate the performance and achieve gap in-filling with different quanta of missing 

information. It was found that both tree based and linear GP models worked in similar 

fashion as far as accuracy of estimation was considered. The data was made available by 

National Institute of Ocean Technology (NIOT) under the National Data Buoy Programme 

implemented by the Department of Ocean Development, Government of India from January 

2000 to December 2003 ( www.niot.res.in). The initial parameters selected for a GP run were 

as follows: initial population size = 500; mutation frequency = 95%; crossover frequency = 

50%. The fitness criterion was the mean squared error. 

When the similar work was also carried out using ANN it was found that GP produces 

results that are marginally more satisfactory than ANN. Another exercise was also carried 

out especially to estimate peaks by calibrating a separate model for high wave data which 

showed a marginal improvement in prediction of peaks. A similar exercise was carried out 

by [15], albeit in altogether different area of Gulf of Mexico near the USA coastline.  Gaps in 

hourly significant wave height records at one location were filled by using the significant 

wave heights at surrounding 3 locations at same time instant and the soft tool of GP and 
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ANN. In all data spanning over 4 years was used for the study. The exercise was carried out 

for 4 locations in the Gulf of Mexico. The data can be downloaded from 

www.ndbc.noaa.gov. The typical value of the population size was 500, number of 

generations 15 and number of tournaments 90,00,000. The mutation and the cross-over 

frequency also varied for different testing exercises and it ranged from 20% to 80%. The 

fitness criterion was the mean squared error between actual observations and corresponding 

predictions. 

The suitability of this approach was also tried for different gap lengths ranging from 1 day 

to 1 month and it was concluded on the basis of 3 error measures that the accuracy of gap 

filling decreases with increase in the gap length. The accuracy of the results were also 

judged by calculating statistical parameters of the wave records without gaps filled and 

with gaps filled using GP model. When the gap lengths did not exceed 1 or 5 days all the 

four statistics were faithfully reproduced. Compared to ANN GP produced marginally 

better results. In both the cases Linear Genetic Programming technique was employed.  

In another earlier works of GP current predictions over a time step of twenty minutes, one 

hour, 3 hours, 6 hours, 12 hours and 24 hours at 2 locations in the tidal dominated area of 

the Gulf of Khambhat along west coast of India was carried out using two soft techniques of 

ANN and GP and 2 hard techniques of traditional harmonic analysis and ARIMA [16]. The 

work involved antecedent values of current only to forecast the current for various lead 

times at these locations. The fitness function selected was the mean square error, while the 

initial population size was 500, mutation frequency was 95%, and the crossover frequency 

was kept at 50%. The authors concluded that the model predictions were better for 

alongshore currents and small interval of times. For cross shore currents ARIMA performs 

better than ANN and GP even at longer prediction intervals. In general the three data 

driven techniques performed better than harmonic analysis. The new technique GP 

performed at par with ANN if not better. Perhaps the only drawback of the work was that 

the data (spanning over 7 months) is less than a year indicating that all possible variations in 

data set were not presented while calibrating the model making it susceptible when it is 

used at operational level.  

Online wave forecasts over lead times of 3, 6, 12 and 24 hours were carried out at two 

locations in the gulf of Mexico using past values of wave heights (3 in number) and the soft 

computing technique of GP [17]. The data measured from 1999 to 2004 was available for free 

download on the web site of National Buoy Centre (http://www.ndbc.noaa.gov). The data 

belonged to the hourly wave heights measured over a period of 15 years with an extensive 

testing period of about 5 years which is the most in the papers reported till this time (with 

ANN as modeling tool). The locations chosen were differing to a large extent in that one was 

a deep water buoy and the other was a coastal buoy. The work was different from others in 

one aspect that monthly models were developed instead of routine yearly models. However 

any peculiar effect of this either good or bad on forecasting accuracy was not evident from 

the 3 error measures calculated.  Though the results of GP were promising (high correlation 

coefficients for 3 and 6 hr forecast) the forecasting accuracy decreased for longer lead times 
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of 12 hr and 24 hr. It was found that the results of GP were superior to ANN. For GP model 

the initial population size was 500 while the number of generations was 300. The mutation 

frequency was 90 percent while the cross over frequency was 50 percent. Values of these  

control parameters were selected initially and thereafter varied in trials till the best fitness 

measures were produced. The fitness criterion was the mean squared error between the 

actual and the predicted value of the significant wave height. Another exercise on real time 

forecasting of waves for warning times up to 72 hours at three locations along the Indian 

coastline using alternative techniques of ANN, GP and MT was carried out by [18]. The data 

was measured from 1998 to 2004 by the national data buoy program (www.niot.res.in).   

Forecasting waves up to 72hr and that too with reasonable accuracy is itself a specialty of 

this work. The data had many missing values which were filled by using temporal as well as 

spatial correlation approaches. Both MT and GP results were competitive with that of the 

ANN forecasts and hence the choice of a model should depend on the convenience of the 

user. The selected tools were able to forecast satisfactorily even up to a high lead time of 72 

hrs. The authors have rightly stated that this accuracy was possible in the moderate ocean 

environment around Indian coastline where the target waves were less than around 6 m and 

2.5 m for the offshore and coastal stations respectively. The paper does not provide any 

information about the initial parameters chosen for implementing GP. The significant wave 

height and average wave period at the current and subsequent 24 hr lead time were 

predicted from continuous and past 24-hourly measurements of wind speeds and directions 

as well as two soft computing techniques of GP and MT [19]. The data collected at 8 

locations in Arabian Sea and Indian Ocean (www.niot.res.in) was used to develop both 

hind-casting and forecasting models. Both the methods, GP and MT, performed 

satisfactorily in the given task of wind wave simulation as reflected in high values of the 

error statistics of R, R2, CE and low values of MAE, RMSE and SI. This is noteworthy since 

MT is not purely non-linear like GP. Although the magnitudes of these statistics did not 

indicate a significant difference in the relative performance of GP and MT, qualitative scatter 

diagrams and time histories showed the tendency of MT to better estimate the higher waves. 

Forecasting at higher lead times were fairly accurate compared to the same at lower ones. In 

general the performance of wave period was less satisfactory than that of wave height and 

this can be expected in view of a highly varying nature of wave period values. For details 

regarding the initial GP parameters involved in calibration readers are referred to the 

original paper where an exhaustive list of parameters is given. Lately [12], extended their 

earlier work by forecasting Significant wave height and zero cross wave period over time 

intervals of 1 to 4 days using the current and previous values of wind velocity and wind 

direction at 2 locations around the Indian coastline. It was found out that best results were 

possible when the length of the input sequence matched with that of the output lead time. 

As observed earlier here also it was found that the accuracy of prediction decreases with 

increase in lead time. However the results were satisfactory for 4 days ahead predictions 

also. In general it was observed that results of MT were slightly inferior to that of GP. 

Separate models were also developed to account for the monsoon (rainfall season in India) 

which showed a considerable improvement over yearly models. The models calibrated at 

one location when applied for another nearby locations also shown satisfactory performance 
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provided both sites have spatial homogeneity in terms of openness, long offshore distances 

and deep water conditions. This work used tree based GP where as earlier mentioned three 

works used Linear Genetic Programming.  

GP was used to forecast sea levels averaged over 12 h and 24 h time intervals for time 

periods from 12 to 120 h ahead at the Cocos (Keeling) Islands in the Indian Ocean [20]. The 

model produced high quality predictions over all considered time periods. The presented 

results demonstrates the suitability of GP for learning the non-linear behavior of sea level 

variations in terms of the R2 (with values no lower than 0.968), MSE (with values generally 

smaller than 431) and MARE (no larger than 1.94%). This differs from earlier applications 

particularly for wave forecasting in that for forecasting of waves it was difficult to achieve 

higher order accuracy in terms of r, rmse and other error measures for as far as 24 hour 

forecast. Perhaps the recurring nature of sea water levels (the deterministic tidal component 

which is inherent in water level, is the reason behind this high level accuracy. In order to 

assess the ability of GP model relative to that of the ANN technique, a comparison was 

performed in terms of the above mentioned statistics. The developed GP model was found 

to perform better than the used ANNs. In the current work, the linear genetic programming 

approach was employed. The water level at Hillary’s Boat Harbor, Australia was predicted 

three time steps ahead using time series averaged over 12hr, 24hr, 5 day and 10 day time 

interval and the soft tool of GP [21]. The results are compared with ANN. Total 12 years of 

data was used out of which 3 years of data is used for model validation. Tree based GP was 

used. The results of 12 hr averaged input data were found to be better than 24 hr averaged 

input data and in general the accuracy of prediction reduced for higher lead times. For both 

the cases GP results were better than ANN. For 5 day averaged inputs performance of GP 

was inferior to that of ANN though it improved for 10 day averaged inputs. It may be noted 

that the input data is averaged over 12hr, 24hr, 5days and 10 days which means there is 

possibility of loss of information which can be major draw back of this work. For both the 

above works the hourly sea-level records from a SEA-level Fine Resolutions Acoustic 

Measuring Equipment (SEA-FRAME) station were used. The information about initial 

parameters of GP is however not mentioned in both the works. 

Estimation of wind speed and wind direction using the significant wave height, zero cross 

wave period, average wave period and the soft tools of ANN and GP was carried out at 5 

locations around Indian coastline [22]. The paper has three folds in that in the first attempt 

both ANN and GP were tried for estimating the wind speed in which GP was found better 

and therefore in the second fold GP was only used to determine both wind speed and 

direction by calibrating the model by splitting of wind vector into two components. Two 

variants of GP, one based on Tree based approach and the other on Linear Genetic 

Programming were also tried though the accuracy of estimation for both the approaches 

was at par. In the third fold a network of wave buoys were formed and wind direction and 

wind speed at one location was estimated using the same at other locations. This was also 

done by combining data of all locations and making a regional model. All the attempts 

yielded highly satisfactory results as far as accuracy of estimation is considered. It was also 

confirmed that for estimation of only wind speed the non-splitting of wind velocity gives 
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better results. Similarly wind speed and its directions were predicted for intervals of 3hr, 

6hr, 9hr, 12hr and 24 hr at locations along the west coast of India using two soft computing 

techniques of ANN and GP and previous values of the same [23]. It was found that GP 

rivaled ANN predictions at all the cases and even bettered it particularly for open sea 

location. The results for prediction of wind speed and wind direction together were better 

when training of GP and ANN models was done on the basis of splitting of wind vector into 

two components along orthogonal directions although a separate model for wind speed 

alone was better (as shown by [22]). In general long interval predictions were less accurate 

compared to short interval predictions for both the techniques. Data for one location was for 

about 1.5 years while for the other location it was for 3 years. A discussion on appropriate 

use of statistical measures to assess the model accuracy was also presented. A similar work 

was carried out to estimate the wind speed at 5 locations around the Indian coastline using 

the wave parameters and 3 data driven techniques namely GP (program based- tree type), 

MT and another data driven tool of Locally weighted projection regression (LWPR) by [24]. 

All models showed tendency to underestimate higher values in given records. When all of 

the eight error statistics employed were viewed together, no single method appeared 

distinctly superior to others, but the use of an average evaluation index EI which they have 

suggested in this work gave equal weightage to each measure showed that the GP was more 

acceptable than other methods in carrying out the intended inverse modeling. Separate GP 

models were developed to estimate higher wind speeds that may be encountered in stormy 

conditions. At all the locations, these models indicated satisfactory performance of GP 

although with a fall in accuracy with increase in randomness. For all the above works the 

data was measured by national data buoy program of India (www.niot.res.in) however no 

mention is made about the initial parameters chosen for GP implementation. 

The estimation of longshore sediment transport rate at an Indian location was carried out using 

GP and combined GP-ANN models [25]. The data was actually measured by one of the authors 

in his field study. The inputs were significant wave height, zero cross wave period, breaking 

wave height, breaking wave angle and surf zone width. The limitation of the work was the 

amount of data (81) used for training and testing of the models. The choice of control 

parameters was as follows: initial population size = 500; mutation frequency = 95%; crossover 

frequency = 50%. The initial trial with GP yielded reasonable results (r = 0.87). However by first 

training the ANN with same inputs and using the output as input for GP model yielded better 

results ( r = 0.92). Thus the paper shows that combined ANN-GP model is more attractive than 

single GP model. It may be noted this is a kind of work done in the domain of Ocean 

Engineering wherein a different parameter (sediment transport rate) is modeled rather than the 

usual parameters of waves, periods etc. Another different work was carried out by [26], for 

prediction of scour depth due to ocean/lake waves around a pile/pier in medium dense silt and 

sand bed using Linear Genetic Programming and Adaptive Neuro-Fuzzy Inference system and 

measured laboratory data. For initial GP parameters readers are referred to actual paper where 

in an exhaustive list of parameters is provided. The study was carried out in both dimensional 

and non-dimensional form in which non-dimensional form yielded better results. The relative 

importance of input parameters on scour process was also investigated by first using all the 
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influential parameters as inputs and then removing them one by one and observing the results. 

The drawback of the work is perhaps the small number of data used in model making (total 38 

data, 28 of which is used for training the model) which may be impediment in operational use 

of this model. The results were found to be superior to ANFIS results.  

In all the above cases where GP is compared with another data driven technique like ANN, 

MT or LWPR it was found that GP is superior to all of them in terms of accuracy of results. 

However it can be said that GP needs to be explored further particularly for prediction of 

extreme events like water levels, wave heights during hurricanes. A detailed study on effect 

of variation of GP control parameters like initial population, mutation, crossover percentage 

etc. on model accuracy is now need of the day. Similarly the critic on other approaches 

about decreasing forecasting accuracy with increase in the lead time seems to be true for GP 

as well. This needs more attention if GP is here to stay.  

7. Applications in hydrology 

Table 2 exhibits the applications of GP in Hydrology chronologically which are reviewed in 

this paper. The table also indicates that the applications of GP to the field of Hydrology 

started much earlier as compared to Ocean Engineering. 

Genetic Programming is used in Hydrology (science of water) for various purposes such as 

modeling of phenomena like rainfall-runoff process, evapo-transpiration, flood routing, 

stage-discharge curve. The GP approach was applied to the flow prediction of the Kirkton 

catchment in Scotland (U.K.) [27]. The results obtained were compared to those attained 

using optimally calibrated conceptual models and an ANN. The data sets selected for the 

modeling process were rainfall, streamflow and Penman open water evaporation. The data 

used for calibration was of 610 days while that of validation was of 1705 days. The models 

were developed with preceding values of rainfall, evaporation and stream flow for 

predicting stream flow one time step ahead. Two conceptual models as well as ANN were 

employed for developing the stream flow forecasting model. It was observed that the 

rainfall data was the most influencing factor on the output. All models performed well in 

terms of forecasting accuracy with GP performing better. The paper does not give any 

details about the values of the parameters used for calibration of GP model. In another work 

one day ahead forecasting of runoff knowing the rainfall and runoff of the previous days 

and the soft computing tool of Linear Genetic Programming was carried out in Lindenborg 

catchment of Denmark by [28]. The models were developed for forecasting runoff as well as 

variation of runoff by using previous values of variation of discharge as input as well as 

previous values of discharge as input along with rainfall information. It was found that it was 

necessary to include information of discharge rather than variation of discharge. The model 

predicting discharge gave wrong local peaks in the low regime where as models predicting 

variation of discharge gave less wrong peaks in the low flow. Both the models had difficulty 

in predicting high peaks. The models were also developed using ANN. The author concluded 

that GP is more efficient in peak flow prediction where as ANNs were better in dealing with 

the noise. The author suggested specialized model for each type of flow to improve the 
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Table 2. Applications of GP in Hydrology 

accuracy at peak prediction. He also suggested coupling of black box models with gray 

models. No specific information is provided about the initial values of GP parameters. The 

rainfall-runoff relationship in two different catchments was discovered by [29] using GP. 

The results obtained with a deterministic lumped parameter model, based on the unit 

hydrograph approach were compared with those obtained using a stochastic machine 
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learning model of GP. For the Welsh catchment in UK, the results between the two models 

were similar. Since rainfall and runoff were highly correlated, the deterministic assumption 

underlying the IHACRES model (deterministic) was satisfied. Therefore, IHACREX could 

achieve a satisfactory correlation between calibration and simulation data. The GP approach 

which did not require any causal relationships achieved similar results. The behavior of the 

studied Australian catchment is very different from the Welsh catchment. The runoff ratio 

was very low (7%), and hence, the a priori assumptions of IHACRES (and other 

deterministic models) were a poor representation of the real world. This was demonstrated 

by the inability of IHACREJS to use more than one season’s data for calibration purposes 

and only able to use data from a high rainfall period. Since the GP approach did not make 

any assumptions about the underlying physical processes, calibration periods over more 

than one season could be used. These led to significantly improved generalizations for the 

modeled behavior of the catchment. In summary, either approach worked satisfactorily 

when rainfall and runoff were correlated. However, when this correlation was poor, the 

CFG-GP had some advantages because it did not assume any underlying relationships. This 

is particularly important when considering the modeling of environmental problems, where 

typically the relationships are nonlinear, and are often measured at a scale which does not 

match with conceptual or deterministic modeling assumptions.  Readers are referred to 

original paper for details of parameters setting for evolving the rainfall-runoff model.  In 

their work of GP in hydrology, [30] first used a simple example of the Bernoulli equation to 

illustrate how GP symbolically regresses or infers the relationship between the input and 

output variables. An important conclusion from this study was that non-dimensionalizing 

the variables prior to symbolic regression process significantly enhance the success of GSR 

(Genetic Symbolic Regression). GP was then applied to the problem of real-time runoff 

forecasting for the Orgeval catchment in France. GP functions as an error updating 

procedure complementing the rainfall-runoff model, MIKE11/ NAM. Ten storm events were 

used to infer the relationship between the NAM simulated runoff and the corresponding 

prediction error. That relationship was subsequently used for real-time forecasting of six 

storm events. The results indicated that the proposed methodology was able to forecast 

different storm events with great accuracy for different updating intervals. The forecast 

hydrograph performs well even for a long forecast horizon of up to nine hours. However, it 

was found that for practical applications in real-time runoff forecasting, the updating 

interval should be less than or equal to the time of concentration of the catchment. The 

results were also compared with two known updating methods such as the auto-regression 

and Kalman filter. Comparisons showed that the proposed scheme, NAM-GSR, is 

comparable to these methods for real time runoff forecasting. Readers are referred to 

original paper for details of initial values of various parameters used in calibrating the GP 

model. The rainfall-runoff models were created on the basis of data alone as well as in 

combination with conceptual models and Genetic Programming [31]. The study was carried 

out in Orgeval catchment of France having an area about 104 km2 using hourly rainfall 

runoff data of 10 storms for calibration and 6 storms for testing the models. The models 
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were calibrated to forecast the temporal difference between the current and future discharge 

rather than absolute value of discharge for the lead times of 1 to 12 hours. In fact the paper 

discusses the phase lag associated with temporal time series forecasting models and 

removal of it by forecasting the temporal difference. The results were superior to conceptual 

numerical model. The model was then calibrated using a hybrid method in that the surface 

runoff value was first forecasted by using a conceptual forecasting model and then using the 

simulation error and GP to forecast the stream flow. The hybrid models provided a many 

fold improvement over the raw GP models. The paper in our opinion serves as a basic paper 

in the field of application of GP in Hydrology and readers may read the paper in original for 

all details about the GP models developed. The details are not produced here to save the 

space.  Linear Genetic Programming technique was used to predict daily river discharge one 

day ahead using previous values of the same at Schuylkill River at Berne, PA, USA [8]. 

Additionally the models were developed using multilayer perceprton as well as Generalized 

Regression Neural Networks (GRNN). The statistical ARMA method was also used to 

develop the stream flow forecasting model. The results showed that both LGP and NN 

techniques predicted the daily time series of discharge with quite good agreement as 

indicated by high value of coefficient of determination and low values of error measures 

with the observed data. LGP models generally predicted the maximum and minimum 

discharge values better than the NN models though LGP results were also far from accurate. 

The robustness of the developed models was tested by using applied data which was 

neither used in training or testing and the results were judged using Akaike Information 

Criterion (AIC). For LGP parameters readers are requested to refer the comprehensive list 

presented in the paper. 

The potential of the GP-based model for flood routing between two river gauging stations 

on river Walla in USA was explored for single peaked as well as multi-peaked flood 

hydrographs by [32]. The accuracy of GP models was far superior than modified 

Muskingum method which is a traditional physics based hydrologic flood routing model 

which also showed time lag in predictions. The inputs were current and antecedent 

discharge at upstream station and antecedent discharge at downstream station while the 

output was current discharge at the downstream station. The LGP was employed for the 

flood routing exercise. The optimal GP parameters used in this study were: crossover rate, 

0.9; mutation rate, 0.5; population size, 200; number of generations, 500; and functional set, 

i.e. simple arithmetic functions (plus, minus, multiply, divide). 

The utility of genetic programming in modeling the eddy-covariance (EC) measured evapo-

transpiration flux was investigated by [33]. The performance of the GP technique was 

compared with artificial neural network and Penman-Monteith model estimates. EC 

measured evapo-transpiration fluxes from two distinct case-studies with different climatic 

and topographic conditions were considered for the analysis and latent heat is modeled as a 

function of net radiation, ground temperature, air temperature, wind speed and relative 

humidity. Results from the study indicated that both data-driven models (ANN and GP) 

performed better than the Penman-Monteith method. However, the performance of the GP 
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model is comparable with that of ANN models. One of the important advantages of 

employing GP to model evapo-transpiration process is that, unlike the ANN model, GP 

resulted in an explicit model structure that can be easily comprehended and adopted. 

Another advantage of GP over ANN was found that unlike ANN, GP can evolve its own 

model structure with relevant inputs reducing the tedious task of identifying optimal input 

combinations. This work was extended by [34] where in an additional data driven tool of 

Evolutionary Polynomial Regression was used to model the evapo-transpiration process. 

Additionally the effect of previous states of input variable (lags) on modeling the EC 

measured AET (actual evapo-transpiration) is investigated. The evapo-transpiration is 

estimated using the environmental variables such as net radiation (NR), ground 

temperature (GT), air temperature (AT), wind speed (WS) and relative humidity (RH). It has 

been found out that random search and evolutionary-based techniques, such as GP and EPR 

techniques, do not guarantee consistent performance in all case studies e.g. good and/or bad 

performance for modelling AET. The authors further stated that this may be due to the 

practical impossibility of conducting exhaustive search, i.e. searching the entire solution 

space, to reach the optimal model. The results of ANN, GP and EPR were mostly at par with 

each other though EPR models were easier to understand. Readers may refer the original 

papers for above two works for the values of GP parameters. 

Recently the stage –discharge relationship for the Pahang River in Malaysia was modeled 

using Genetic Programming (GP) and Gene Expression Programming (GEP) by [35]. The 

data was provided by Malaysian Department of Irrigation and Drainage (DID). Gene 

Expression Programming is an extension of GP. GEP is a full-fledged genotype/phenotype 

system in which both are dealt with separately, whereas GP is a simple replicator system.  

Stage and discharge data from 2 years were used to compare the performance of the GP and 

GEP models against that of the more conventional (stage-rating curve) SRC and 

(Regression) REG approaches. The GEP model was found to be considerably better than the 

conventional SRC, REG and GP models. GEP was also relatively more successful than GP, 

especially in estimating large discharge values during flood events. For details of initial GP 

parameters the original paper may be referred. The paper elaborates the details of the Gene-

expression programming, the new variant of GP.  

Like applications in Ocean Engineering it can be said that there is a lot of scope for use of GP 

in the field of Hydrologic Engineering and more and more applications needs to be tried 

out.  

8. Applications in hydraulics 

A few applications of GP in Hydraulic Engineering are also reported in reputed journals which 

are from open channel hydraulics. Various GP models were developed by [36] to predict 

velocities across a compound channel with vegetated floodplains. The velocity data was 

collected in a laboratory flume with steady flow and deep channel and relatively shallow 

vegetated floodplain on either side. The GP model was developed with all 12 variables in 

dimensional form depicted accurate results though the evolved equation was complex. The GP 
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models were developed with dimensionless variables and separate for main channel and 

floodplain. Both the velocity prediction on flood plain and main channels showed good 

correlations with measured values. However the resulting expressions were complex. A 

dimensionally aware GP was then used to predict the velocity separately in main channel and 

flood plains. The performance of the symbolic expressions induced by the dimensionless GP for 

the floodplain and main channel was marginally better than those for the dimensionally aware 

GP. However, the expressions were more complex and not particularly useful for knowledge 

induction. The dimensionally aware GP was shown to hold more scientific information, as units 

of measurement were included, although it was also shown to be open ended in that it does not 

strictly adhere to the dimensional analysis framework, thereby allowing improved goodness-of-

fit whilst yielding on goodness-of-dimension. The paper provides no information about the 

initial values of GP parameters used in evolving the GP model. GP was applied to the 

determination of the Chezy’s roughness coefficient for corrugated channels in wake-

interference flow, i.e. hyper-turbulent flow by [37]. The GP models were calibrated using the 

experimental data devised by carrying out experiments for 3 plastic corrugated pipes with 

variations of discharge and slope. GP quite easily and quickly supplied at least two good 

formulae that fit the experimental data better and are more parsimonious than the monomial 

formula (mathematical). Moreover, GP has supplied six parsimonious expressions (one or two 

constants compared to four for the monomial formula) for the Chezy’s resistance coefficient, all 

confirming the dependencies on hydraulic radius, slope and roughness index. It can be said that 

the two new formulae for the Chezys resistance coefficient, derived from these GP formulae by 

means of ‘mathematical/physical post-refinement’, are suitable for explaining the effect of the 

macro-roughness elements, with respect to the behavior of the rough commercial channels and 

their traditional expressions for resistance coefficients. The work indicated that this approach, 

which combines data-mining techniques together with a theoretical understanding, provides 

very good results. It was also commented that strictly speaking, GP is a data-driven technique, 

but prior knowledge during the setting up of the evolutionary search and final physical post-

refinement of the hypothesis should make it very close to a white box technique, especially 

when GP is used in scientific discovery problems. The initial model parameters can be found in 

the original paper. To save space the list is not provided here. 

An alternative approach of GP was proposed in the estimation of relative scour depth using 

field data by [38]. The comparison between the GP model with ANN found that the GP 

model has good ability of forecasting the scour depth. The discharge intensity and height of 

fall were used as inputs to estimate scour depth below tail water. The predictive ability of 

this approach is however clouded by use of very small number of data (total 91 data sets) 

used for calibration and testing of the model. The values of initial model parameters can be 

referred from the original paper.  

9. Case study I: Soft computing approach for real-time estimation of 

missing wave heights 

The work dealt with application of GP to retrieve the missing/ lost wave data at a particular 

location using the wave heights at other locations in the region. Six regional networks (with 
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buoys 42001, 42003, 42007, 42036, 42039,42040) were developed in the Gulf Of Mexico 

(Figure 2) around USA coastline to estimate the  wave heights at a location using wave 

heights at other five locations in the network. The required data from these six buoys was 

measured by National Data Buoy Center (NDBC, http://www.ndbc.noaa.gov) of National 

Oceanic and Atmospheric administration of USA (NOAA, http://www.noaa.gov ). The 

common wave data at all the above six locations for the years 2002-2004 was used in the 

present work. The networks were developed by having one station as target location at a 

time and remaining five locations as inputs turn by turn.  Approximately 70% of the total 

values were used to calibrate the model and the remaining was kept unseen for testing. 

While doing this a particular event which occurred during Hurricane Ivan in 2004 at buoy 

42040 which involved a Significant Wave Height of 15.96 m was focused for studying the 

performance of developed models during extreme events. It is to be noted that the exercise 

was of estimation and not of forecasting for which both the tools did not performed well as 

noted in the section on applications of GP in Ocean Engineering. 

Thus a network was developed with wave buoy 42040 as the target and buoys 42001, 42003, 

42007, 42036, 42039 as inputs. Along with 42040 the other locations namely 42003, 42007, 

42039 also experienced largest ever wave heights of 11.04, 9.09, 12.05 making the entire 

event a truly extra ordinary event having a return period of over 5000 years [39].  The initial 

parameters selected for a GP run were as follows: initial population size 500, mutation 

frequency 95%, and crossover frequency 50%. The fitness criterion was the mean squared 

error.  

Additionally a three layer Feed Forward Neural Network was also developed for the same 

buoy network. The results were also compared with a large-scale continuous wave 

modeling /forecasting systems (NOAA’s WAVEWATCH III model) which follows the 

approach of physics-based model.  Though WAVEWATCH III is a continuous running 

forecasting model it was the only source of information for wave environment at a location 

and therefore in absence of any reliable observed data, these results were used for 

comparison. The GP model estimated a wave height of 13.67m as against 15.96 m as 

compared to 9.05m that of ANN model and 7.82m of WAVEWATCH III, which was an 

excellent result as far as GP approach is considered. Figure 3 shows the wave plot at 42040 

in testing. 

From results of all the models developed by both the approaches (ANN & GP), it was 

observed that all models performed reasonably well in testing as evident by wave height 

plots, scatter plots along with the correlation coefficient ranging from 0.85 to 0.98, MAE 

from 0.13 to 0.28, RMSE from 0.20 to 0.45 m and coefficient of efficiency from 0.67 and 0.96. 

When it was tried to remove 42001 from the network as it is away from the prevailing wind 

direction by training a separate GP model with 42003, 42007, 42036, and 42039 as ‘input 

buoys’ and 42040 as ‘target buoy’, though the value of correlation coefficient was increased, 

the peak prediction was not in a fair range of accuracy for extreme event of Hurricane Ivan. 

Due to better performance of the network with inclusion of buoy 42001 especially for 

extreme event, buoy 42001 was retained in the network. Also it was found that 42039 was a 

potential candidate for redeployment in any other suitable position outside the network as  
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Figure 2. Study area and Buoy Locations (Ref: [6]) 

 

Figure 3. Wave height comparison at 42040 during Hurricane Ivan (Ref: [6]) 

the buoy network developed for 42039 , provided the wave heights using wave heights at 

other five locations in the network with the best accuracy achieved between all the networks 

(r = 0.98). Figure 4(a, b) shows the scatter plots for results of buoy 42039. Table 3 shows 

results reproduced from [6] giving the details of developed networks along with correlation 

coefficient between the model estimated and observed values for both GP and ANN models. 

In general it was shown that GP was superior to other soft tool of ANN and numerical 

model WAVEWATCH in retrieving the missing wave heights including the extreme events 

and in redeployment of buoy at other location outside the network.  
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Figure 4. a. Scatter plot for buoy 42039 (GP approach); b. Scatter plot for buoy 42039 (ANN approach) 

(Ref: [6]) 

 

network Input buoys Target buoy rANN rGP 

BN1 42003, 42007, 42036, 42039, 42040 42001 0.85 0.88 

BN2 42001, 42007, 42036, 42039, 42040 42003 0.87 0.91 

BN3 42001, 42003, 42036, 42039, 42040 42007 0.90 0.92 

BN4 42001, 42003, 42007, 42039, 42040 42036 0.92 0.94 

BN5 42001, 42003, 42007, 42036, 42040 42039 0.98 0.98 

BN6 42001, 42003, 42007, 42036, 42039 42040 0.94 0.97 

Table 3. Results of buoy networks [6] 

10. Case study II: Comparison of data-driven modelling techniques for 

river flow forecasting 

In the case study GP was used for prediction of average daily flow values one day in 

advance at two locations, Rajghat and Mandaleshwar, in the Narmada basin, India using the 

previous values of measured streamflows at these two locations. The observations of daily 

average stream flow values at both these stations for the years 1987–1997 were obtained 

from the Central Water Commission, Narmada Division, Bhopal, India. Considering the 

variations in daily stream flow values four separate models for the monsoon months of July, 

August, September and October were prepared along with the one separate but common 

model for the non monsoon months of November–June. Thus five models were developed 

in all for each station (total 10 models) to predict discharge at one day in advance. In a view 

of fair judgment along with GP, ANN and Model trees approach was also employed to 

develop the models. The number of antecedent discharge values which were used for 

predicting discharge one day in advance was decided by carrying out the auto-correlation 

analysis.  
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The GP models were developed with major fitness function of mean squared error, initial 

population size of (2048), mutation frequency of  (95%) and the cross-over frequency of 

(53%) with same data division for both ANN and GP models so that their results could be 

compared. All the developed forecasting models were tested for unseen inputs and their 

qualitative and quantitative performance was judged by means of correlation coefficient (r) 

between the observed and forecasted values along with root mean square error (RMSE) and 

plotting scatter plots between the same. Hydrographs were also plotted to visualize the 

behavior of the forecasting models particularly for extreme events (peaks). 

After examining the results it was observed that for the location of Rajghat in the month of 

July, ANN model exhibited a reasonable performance in testing with an ‘r’ value of 0.75 

between the observed and forecasted discharges whereas GP model had showed a better ‘r’ 

value of 0.78 with better performance for higher values of stream flow, though over-

predicted in some instances. The MT model gave a lower ‘r’ value of 0.7 and prediction of 

MT model for high stream flows was poor as compared to ANN and GP models. The scatter 

plot (Fig. 5) between the observed and forecasted discharges confirmed this with a balanced 

scatter except at the high values of measured stream flows. 

 

 

Figure 5. Scatter plot for RajJuly Model 

For the months of August and September, models showed similar performance with GP 

models performing better than their  ANN and MT counterparts (r GP = 0.75,rANN = 0.7, r MT = 

0.72 for Raj Aug and r GP = 0.79,rANN = 0.76, r MT = 0.78 for Raj Sept). For the October model, 

the predicted discharges in testing were highly in agreement with the observed values for 

both the models as shown by the discharge hydrograph (Fig. 6). The results were also 

supported by a high value of correlation coefficient (r = 0.92 for ANN and GP and r = 0.87 

for MT) for all the three models in testing. 
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The Mandaleshwar models behaved in a similar fashion as that of the Rajghat models with 

correlation coefficients of r > 0.7 for all ANN, GP and MT models. For the month of August 

the performance of all models was reasonable with r values of 0.74, 0.78 and 0.71 for ANN, 

GP and MT models respectively. The other monthly models of ANN, GP and MT also 

performed well, with high correlation coefficients in testing (r > 0.86).  It was again observed 

that GP models work better while predicting extreme events. The maximum observed 

discharge of 3790 m3/s was predicted as 1742 m3/s by the ANN model, 3342 m3/s by the GP 

model and 1718 m3/s by the MT model. Figure 7 shows discharge hydrographs for the 

ManNov-June models. The RMSE values also showed a similar trend to that of the 

correlation coefficients.  

Thus it was seen that the GP technique outperforms both ANN and MT in almost all the 

cases in terms of overall accuracy in prediction. The GP approach based on evolutionary 

principles has a completely different approach to the ANN technique in that it does not 

involve any transfer function, and evolves generations of “offspring” based on the “fitness 

criteria” and genetic operations; this seems to capture the underlying trends better than the 

ANN technique. Thus it can be said that ANN and MT perform almost equally but GP 

performed better than both of them where prediction accuracy in both normal and extreme 

events is concerned. 

11. Concluding remarks and future scope 

Applications of GP for modeling water flows were discussed in the preceding sections of this 

chapter. It may be noted that every attempt is made to provide readers the details of GP 

techniques and their parameters employed in each work. However in view of keeping the 

length of the chapter in stipulated limits sometimes the readers are referred to the original 

paper.  Details about the data are also provided at appropriate locations. Interested readers 

may further enquire the authors or download the data whenever possible from the web sites 

to perform the similar exercise. The applications were from three particular areas of water 

flows namely Ocean Engineering, Hydrology and Hydraulics. It was shown in all the 

applications for that modeling of natural random processes of complex underlying 

phenomenon the Genetic Programming can certainly be employed. The results of this 

technique were found to be superior than other contemporary soft computing techniques. 

However it was also seen that the tool is not explored to its full capacity by the research 

community in any of the above fields. The developed GP models also need to be applied at 

operational level. For this a partnership between the researchers and practitioners is 

necessary. The GP models can certainly work as supplementary tool if not as replacement 

techniques. It can be said that the early days of GP modeling are over and the tool needs to be 

used more judiciously for the problems worthy of its use. Otherwise a stage will be reached 

where in GP will be used because data is available. It’s use is certainly for the phenomena 

which are difficult to explain and model. However if the technique is to stay here it needs to 

be explored further for more challenging problems like modeling of infiltration, high flood 

events, hurricane path, storm surge, tsunami water levels to name a few.  
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Figure 6. RajOct Model results [13] 

 

Figure 7. ManNovJune Model results [13] 
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