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1. Introduction 

Cystic Fibrosis (CF) is the most common lethal monogenic disorder in Caucasians, 

estimated to affect one per 2500-4000 newborns. CF is caused by mutations in the gene 

encoding the CF transmembrane conductance regulator (CFTR) [1, 2]. CFTR acts mainly 

as a chloride channel and has other regulatory roles, including inhibition of sodium 

transport through the epithelial sodium channel, regulation of ATP channels and 

intracellular vesicle transport, acidification of intracellular organelles and inhibition of 

endogenous calcium- activated chloride channels [3-5]. CFTR is also involved in 

bicarbonate-chloride exchange [6]. In the airways, loss of functional CFTR promotes 

increase of oxidation status, tissue injury, modification of intracellular signaling 

pathways, cell apoptosis and inflammatory processes. 

Clinically, the reduced volume of the epithelial lining fluid and the increased viscoelasticity 

of the mucus lead to a dysfunction of the mucociliary clearance, and as a consequence, 

patients suffer from recurrent and chronic infections caused mainly by bacteria such as 

Staphylococcus aureus, Haemophilus influenzae, Burkholderia cepacia, and especially Pseudomonas 

aeruginosa. Moreover, the chronic P. aeruginosa lung infection causes a sustained 

inflammatory response in the lung. Antibiotics are administered to CF patients in long-term 

treatment with the hope of maintaining quality of life, weight and lung function, as well as 

to decrease the number of exacerbations and hospital admission [7, 8]. 

Today there are few formulations, mostly solutions, approved for inhalation in CF patients 

and there is a continuous research in the development of new inhaled antibiotic therapeutic 

systems for management of chronic CF lung disease. New formulations and delivery 

devices are needed to improve efficiency, portability and possibly increase the dose locally 

available.  
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Besides chronic bacterial infections, chronic airway inflammation is uniformly observed in 

patients with CF [9, 10], as a consequence of over-expression of proinflammatory 

enzymes. Thus, the lung, dipped in an environment rich in oxygen as well as a defective 

antioxidant system, is susceptible to injury mediated by oxidative stress. Reactive oxygen 

species, ROS, such as super oxide anion (O2•-) and hydroxyl radical (OH•), and reactive 

nitrogen species, RNS, such as nitrogen dioxide and peroxynitrite, are unstable molecules 

with unpaired electrons, capable of initiating oxidation. In order to prevent tissue 

damage, lungs are endowed with several antioxidant defences, including glutathione, 

heme oxygenase, superoxide dismutase, vitamins C and E, beta-carotene, uric acid [11]. 

However, when the presence of ROS and RNS overcomes the physiologic antioxidant 

defences, an oxidative stress status, occurs. Thus, as an adjunct to optimal antibiotic 

therapy, antioxidant/anti-inflammatory therapy is warranted to avoid a decline in lung 

function and tissue damage. 

1.1. Respiratory drug delivery  

Inhalation drug therapy consists of drug administration directly to the lung in form of 

micronized droplets or solid microparticles, highly recommended especially in 

pathologies affecting the lung (i.e. asthma, cystic fibrosis, chronic obstructive pulmonary 

disease). The administration of the active compound directly in the airways can be of 

great advantage: after inhalation, the site where the drug is deposited is less aggressive in 

terms of pH and enzymatic attach; additionally, the hepatic first-passage effect is 

bypassed. Both aspects influence the dose administered, which can be decreased 

compared to oral route. Moreover, the permeability of pulmonary epithelium is higher 

than the intestinal mucosa, due to a reduced resistance to substance transport. Finally, the 

drug dissolution, critical for many compounds, is less relevant in the case of solids, since 

the active compound is a very fine powder that impacts with a high surface area. In 

addition to biopharmaceutical aspects, inhalation bioavailability requires the deposition 

of the dose in the lung i.e., the active compound must be formulated in a respirable form. 

Development of formulations for inhalation is particularly challenging since the 

preparation of a respirable formulation and the selection of an adequate device for the 

administration are both required. Formulation and device constitute the dosage forms and 

affect the bioavailability of the inhaled drug. Concerning the formulation, dry powder 

inhalers (DPI) are preferred to solutions/suspensions due to drug stability, high 

concentration at the site of action and lack of propellant. The biggest issue encountered 

when formulating a dry powder for inhalation is its size which has to be small enough to 

guarantee the aerosolization and the deposition at the appropriate site of the respiratory 

tract. A failure in deposition may result in a failure of efficacy. Given that any discussion 

about the right size of particles for inhalation is meaningless without the consideration of 

their geometry and density, the concept of aerodynamic diameter has been introduced. 

The aerodynamic diameter (Dae) is a spherical equivalent diameter and derives from the 

equivalence between the inhaled particle and a sphere of unit density (0ߩ] undergoing 

sedimentation at the same rate (Eq. 1).  
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݁ܽܦ  = Dvට ఘఞఘబ (1) 

where Dv is the volume-equivalent diameter, ߩ is the particle density and χ is the shape 

factor.  

Hence, the aerodynamic behaviour depends on particle geometry, density and volume 

diameter: a small spherical particle with a high density will behave aerodynamically as a 

bigger particle, being poorly transported in the lower airways. The Dae can be improved 

reducing the volume diameter and the density or increasing the shape factor of the particles, 

by means of different processes, i.e. dry or wet milling, spray-drying, spray-freeze drying, 

and supercritical fluid technology. Among these, spray drying is a commonly used 

technique for the preparation of dry powders for inhalation.  

1.2. Spray drying  

Spray drying is a one-step process able to convert liquid feeds (i.e., solutions, suspensions 

and emulsions) in a dry powder. Firstly, the liquid is broken into droplets by means of a 

nozzle atomizer (atomization step); then, droplets come in contact with a heated gas in the 

drying chamber and the drying step starts; finally, the dried particles are separated from the 

heated gas by means of a cyclone (separation step) and collected into a glass container. The 

optimization of the aerodynamic properties of the powders produced via spray drying can 

be achieved modulating process parameters, solvent composition, solute concentration, 

liquid feed rate, inlet temperature, gas pressure and aspiration.  

1.3. The challenge of excipients for dry powder inhalers 

The primary function of the lung is respiration. To fulfil this purpose, the lung has a large 

surface area and a thin membranes. Many compounds have been tested to overcome drug 

delivery outcomes related to the small particle size requested for deposition. For example, in 

the spray drying process the powder properties can be modulated adding excipients able to 

affect the evaporation of spray droplets during the drying and consequently the particle 

shape. The safety of an inhalation drug product has to be taken into account: the structural 

and functional integrity of respiratory epithelium must be respected. This hardly limits the 

choice of excipients available for the formulation to few compounds, like sugars (lactose, 

mannitol and glucose) and hydrophobic additive (magnesium stearate, DSPC). As a matter 

of fact, natural amino acids (AAs) possess good safety profiles and, recently, showed to 

enhance flow aid properties when co-spray-dried with active compounds. As a support to 

AAs pulmonary safety, a formulation of Aztreonam and lysine (Cayston®, powder for 

instant solution and inhalation) has been recently approved by FDA for CF patients.  

2. Aerosolized antioxidant and anti-inflammatory agents in Cystic 

Fibrosis 

Oxidative stress has been identified as an early complication in the airways of infants and 

young children affected by CF [12, 13]. Recent clinical data suggest that oxidative damage of 
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pulmonary proteins during chronic infection may contribute to the decline of lung function 

in CF patients [14]. The massive infiltration of neutrophils in lungs of CF patients leads to 

the generation of oxygen-derived reactive oxygen species (ROS) and, in particular, H2O2 that 

contributes to irreversible lung damage and, ultimately, to patient death. Activated 

neutrophils migrate to the airways and release large amounts of ROS. On the other hand in 

CF epithelial cells, antioxidant defense systems appear to be defective in their ability to 

control the amount of ROS produced [15]. Therefore over-abundance of ROS and their 

products may cause tissue injury-events and modify intracellular signalling pathways 

leading to cell apoptosis and enhanced inflammatory processes. In addition to its Cl− 

channel function, CFTR has been proposed to carry antioxidant-reduced glutathione. A 

recent study demonstrated that oxidative stress can suppress CFTR expression and function 

while increasing the cellular GSH content. Chronic lung inflammation with episodes of 

acute exacerbations initiates several physiological and metabolic changes with harmful 

effects including weight loss and metabolic breakdown. Antioxidants (glutathione, vitamins, 

beta-carotene, selenium and flavonoids) as dietary support or pharmacological treatment 

can be a promising approach. Great attention has been focused on flavonoids [16, 17], 

polyphenolic compounds with antioxidant, anti-inflammatory and antibacteric activity, 

hugely present in fruits and vegetables. Among natural flavonoids, naringin (N, Fig. 1) 

extracted from grapefruits has shown anti-inflammatory, antioxidant and anticarcinogenic 

effects [18]. 

 

Figure 1. Naringin 4,5,7-trihydroxyflavanone 7-rhamnoglucosyde 

In addition, recent studies have reported that flavonoids may act as CFTR direct activators, 

stimulating transepithelial chloride transport [19-21]. Although flavonoids are inhibitors of 

tyrosine kinases and phosphatases, their effects on CFTR are probably independent of these 

activities, resulting from direct binding to an NBD of phosphorylated CFTR [22].  

With the aim to discover more effective activators of G551D-CFTR [19], some investigators 

have begun to examine the relationship between the chemical structure of flavonoids and 

their effects on CFTR Cl¦ channels. This study served to identify the pharmacophore portion 

of the skeletons molecular basis for interaction with the NBD. The well-documented 

antioxidant effect of flavonoids is unfortunately more evident in vitro than in vivo, due to the 
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high concentration needed, the susceptibility to oxidation and instability to the gastric pH in 

which they undergo hydrolysis and enzymatic degradation. Moreover, flavonoids show a 

very slight solubility in water, which leads to a very low dissolution rate, an irregular 

absorption of the drug from oral solid dosage forms in the gastrointestinal tract and a 

limited bioavailability. Despite a number of publications focused on the antioxidant effect of 

flavonoids, rather no attention has been addressed yet to their formulation in order to 

increase bioavailability. Recently, oral hydrophilic swellable matrices for a controlled release 

of some flavonoids [23, 24] and gastroresistant microparticles aiming at overcoming the acid 

environment have been formulated [25, 26]. An alternative strategy may be the direct 

aerosol delivery to the lung, which has the advantage to achieve higher locally available 

concentration of the antioxidant in the airways. 

2.1. Naringin dry powders production and characterization 

Naringin is a very slightly soluble molecule: its lipophilia can affect the dissolution of the 

drug when in contact with the liquids lining the lung. The micronization by means of spray 

drying process and addition of opportune additives able to improve powder wettability 

seem to be a valid strategy for the formulation of an efficacious dry powder inhaler. 

Micronized particles were produced by completely dissolving the active naringin (N) alone 

(#NET3) or with 5% w/w of leucine (#NET3-leu5) as dispersibility enhancer in 7/3 

water/ethanol solutions [27, 28]. Spray drying conditions were: inlet temperature 110°C, 

drying air flow 500L/min, aspirator 100%, feed rate 5ml/min, nozzle 0.5mm. Aerodynamic 

properties were determined by means of both single stage glass impinger (SSGI) and 

Andersen cascade impactor (ACI). The device used for the DPI deposition tests was the 

Turbospin (kindly donated by PH&T SpA) in which the dose to be aerosolized was pre-

metered in a size 2 gelatine capsule. Results demonstrated that the presence of leucine in the 

feed solution influenced particle size distribution, as well as powder density and 

morphology. Firstly, NET3-leu5 showed a d50 sensibly lower than NET3, evidencing a 

positive effect of leucine on particle diameter.  

 

Code # 
Leu content  

(% w/w) 
Spray yield (%) 

d50 (µm) and 

span 
FPF (%) 

NET3 0 59.4 ± 0.3 5.2 [1.6] 44.5 ± 1.5 

NET3-leu5 5 60.7 ± 2.5 3.3 [1.7] 51.3 ± 1.6 

FPF, fine particle fraction 

Table 1. Composition, spray drying yield, particle size distribution and fine particle fraction after SSGI 

of Naringin powders. 

Moreover, as showed by thermograms of NET3-leu5, DSC analyses indicated that spray-

dried powders containing the AA were amorphous materials. Spray drying process caused 

the loss of crystalline habitus of both N and leu raw material as evidenced by the absence of 
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the endotherms corresponding to N crystal melting point (247°C, Fig. 2b) and leu crystal 

melting point (275°C, Fig. 2a).  

 

Figure 2. Differential scanning calorimetry thermograms of Naringin raw material (a), Leucine raw 

material (b) and NET3-leu5 (c). 

 

 

Figure 3. X-ray patterns of Naringin raw material (a), Leucine raw material (b) and NET3-leu5(c). 

DSC results were confirmed by X-ray assessments, showing no crystalline state in NET3-

leu5 powder. In figure 3 X-ray patterns of N (Fig. 3a) and leu (Fig. 3b) as raw materials were 

reported in comparison with X-ray patterns of NET3-leu5 (Fig. 3c). The loss in crystallinity is 

an important issue for drugs, such as N, very slightly soluble in water, bringing to an 

increase of solid solubility.  

Microscopy observation revealed that particle morphology was affected by leucine content 

in the liquid feed: samples containing only N appeared as small particles, spherical in shape 

or very slightly corrugated and their SEM micrographs showed widespread aggregation 

(Fig. 4a).  



 
Development and Investigation of Dry Powder Inhalers for Cystic Fibrosis 23 

On the contrary, micrographs of samples produced with 5% leu displayed well separated 

particles with corrugated, raisin-like surfaces (Fig. 4b), beneficial for particles intended for 

inhalation.  

In fact, previous reports suggested that improvement of the respirable fraction may be 

obtained not only by lowering the size or the density of a powder, but also reducing 

interparticulate cohesion [29, 30]. Corrugated particles might also be more appropriate for 

dissolution in the lung fluid due to a larger area.  

 

Figure 4. SEM picture of (a) NET3 and NET3-leu5 

Regarding the in vitro deposition test by means of SSGI, the AA affected the aerodynamic 

properties of spray-dried powders as reported in table 1. NET3-leu5 showed an 

improvement of FPF due to both a reduction in the capsule and device retention and an 

increase in powder dispersibility. The latter is likely to be related to the absence of 

aggregates and high degree of particle corrugation, as observed by SEM analyses. These 

data were confirmed by ACI experiments (Fig. 5).  

 

Figure 5. ACI deposition patterns of NET3 (white bars) and NET3-leu5 (black bars).  

The powder containing the dispersibility agent (NET3-leu5) showed a lower deposition in 

the throat compared to NET3, with a resulting higher quantity of drug recovered from the 

deeper stages and an improving of the fine particle fraction.  
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These results are in agreement with previous report on the ability of surface corrugation to 

decrease interparticulate cohesion by reducing Van der Waals forces between particles and, 

consequently, increase powder respirability.  

In conclusion, the use of leucine as excipient was useful to reduce adhesion between 

particles and improve powder dispersion, when delivered from dry powder inhalers. 

Therefore, a careful formulation plays a key role in the aerosol performance of N dry 

powders: NET3-leu5 showed optimezed bulk and aerodynamic behaviour.  

Moreover, the spray drying process, reducing particle size while improving particle superficial 

area exposed to fluids, caused a greater (up to 30 fold higher, Fig. 6) immediate solubility of 

micronized powders (NET3 and NET3-leu5] when in contact with water at 37°C, compared to 

unprocessed commercial batch (rawN). Leucine addition to powder formulation (NET3-leu5) 

further increased N solubility which started declining very quikly, reaching a nearly constant 

value after 30 minutes, due to recrystallization of the amorphous material.  

 

Figure 6. Aqueous solubility at 37°C of rawN (commercial batch, circles), NET3 (spray-dried batch 

without excipient, triangles) and NET3-leu5 (spray-dried batch with 5% leu, squares).  

2.2. In vitro biological activities of N dry powders in bronchial epithelial cells 

The developed dry powders have to be tested for verifying the ability to control airways 

inflammation. Two immortalized cell lines were selected as in vitro models: one, called 

CuFi1 (CF cells), was derived from human airway epithelial (HAE) cells of CFTR 

ΔF508/ΔF508 mutant genotype, the other, called NuLi1 (normal lung), was derived from a 

non-CF subject and used as control. These cell lines exhibited transepithelial resistance, 

maintained the ion channel physiology expected for the genotypes and retained NF-κB 

responses to inflammatory stimuli [31, 32] Cytotoxicity and effects on NF-κB pathway and 

on IL-6 and IL-8 release were examined.  

2.2.1. Effect of N and its formulations on cell viability 

Cytotoxicity (MTT assay) and cell viability (BrUd) evaluations (from 15 to 150µm) showed 

that neither rawN nor NET3 and NET3-leu5 are cytotoxic or cytostatic in both CF and non-
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CF bronchial cells. After a 24 h treatment, rawN did not significantly affect cell viability, as 

determined by MTT assay in the concentration ranging from 15 to 150 µM (data not shown), 

but it caused a dose-dependent reduction of cell growth of different extent in NuLi1 and 

CuFi1 cells, from 60 to 150 µM (Fig. 7a). Interestingly, spray-dried powders containing 

leucine induced a dose-dependent and significant cell growth inhibition only in normal 

bronchial NuLi1 cells (Fig. 7c), while it determined a 14% increase of cell proliferation in 

CuFi1 cells at the highest dose (150 µM). To evaluate the contribution of the AA to the 

increased cell proliferation induced by NET3-leu5 in CuFi1, Leu spray-dried alone was also 

tested. The AA did not show any significant effect in NuLi1 cells while it was able to 

increase CuFi1 cell proliferation at all the concentrations tested (Fig. 7d).  

 

Figure 7. Naringin and its DPI formulations do not inhibit CuFi1 and NuLi1 cell proliferation at 

concentrations lower than 60 µM. Cells were treated for 24 h with: (a) raw Naringin (rawN), (b) spray-

dried Naringin (NET3), (c) N co-sprayed with 5% leucine (NET3-leu5) (from 0.8 to 7.5 µM). Cell growth 

was determined using a colorimetric bromodeoxyuridine (BrdU) cell proliferation ELISA kit. The 

histograms report the percentage of growing cells in comparison with untreated cells (control, 100% 

proliferation). All data are shown as mean ± SD of three independent experiments each done in 

duplicate (*P < 0.05 and **P < 0.01 vs control). 

This finding suggests that the technological improvement of immediate drug solubility and 

powder flowability, as well as the presence of the AA, may increase the drug uptake and 

improve the CF cell altered metabolism, reducing the toxicity observed for unprocessed 

rawN (Fig. 7a). In accordance, increased and altered basal protein catabolism has been 

reported in CF patients by many reports [33-35]. 

2.2.2. Effect of N and its formulations on NF-κB pathway  

To study the anti-inflammatory effects of N in CuFi1 cells, we investigated the main 

molecular targets of NF-κB pathway in CuFi1 in comparison to normal bronchial NuLi1 
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cells. The NF-κB pathway is well known to play a crucial role in inflammatory process (36). 

In resting cells, the transcription factor NF-κB exists as homo- or heterodimer, maintained 

inactive in the cytosol by a family of inhibitor proteins named IκBs (IκBα, β, ε). In response 

to a wide range of stimuli such as cytokines and bacterial or viral products, IκB proteins are 

phosphorylated by IκB kinases (IKKα and β), ubiquitinated and degraded by the 26S 

proteasome. As a consequence, NF-κB dimers can localize into the nucleus and positively 

regulate the transcription of proinflammatory genes (37). This pathway is overactivated also 

in absence of any infection (38-40) in CF cells. In our experiments, CuFi1 cells exhibit higher 

expression levels of IKKβ and phosphoIKBα proteins compared to their normal counterpart 

NuLi1 cells (data from Western Blot analysis not shown). The effects of rawN, NET3 and 

NET3-leu5 at sub-toxic concentrations (30 µM) were evaluated at 2, 6 and 24 h on IKKβ and 

IκBα kinases, measuring both the expression levels and the phosphorylation status of the 

main molecular targets of the NF-κB pathway (i.e. IKKα, IKKβ and IκBα). Results are 

reported in figure 8.  

 

Figure 8. Naringin and its DPI formulations inhibit the key enzymes of the NF-κB pathway in CF 

bronchial epithelial cells. CuFi1 (a) and NuLi1 (b) cells were treated with raw Naringin (rawN), spray-

dried Naringin (NET3) and N co-sprayed with 5% leucine (NET3-leu 5) at 30 µM concentration for the 

indicated time points. Cell lysates were analyzed by Western blot with antibodies against IKKα, IKKβ 

and pIκBα. Same filters were stripped and re-probed with total IκBα and anti-actin used as loading 

control. More representative results are shown (upper panels). Immunoreactive bands were quantified 

using Quantity One program. Densitometric analyses (mean ± SD) of three independent experiments 

are reported as relative intensity of IKKα, IKKβ or pIκBα/IκBα on actin and expressed as arbitrary units 

vs control (lower panels). (*P < 0.05 and **P < 0.01 vs control). 
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As regards to IKKα, NET3 and NET3-leu5 caused a reduction of IKKα but rawN did not in 

CuFi1 cells, while all powders did not cause any significant effect in normal airways 

epithelial cells (Fig. 8b). As IKKβ, its expression was generally reduced in CuFi1 cells: the 

highest decrease was observed at 6 h in NET3-leu5-treated cells (Fig. 8b). Interestingly, the 

observed reduction of expression levels of both the enzymatic subunits of the IKK complex 

in CuFi led to a significant and prolonged decrease of IκBα phoshorylation. In fact, this 

effect started early (2 h) and was retained all over the treatment time (24 h) in CF bronchial 

epithelial cells (Fig. 8a). On the contrary, in normal bronchial epithelial cells only a delayed 

(24 h) decrease of IκBα phosphorylation was observed as a consequence of the reduction of 

IKKβ subunit only expression level. Leucine spray-dried alone did not give any significant 

result in all Western Blot analyses (data not shown). 

Previous evidence indicates that IKKβ plays a more crucial role for NF-κB activation in 

response to pro-inflammatory cytokines and microbial products [40], even though both the 

catalytic subunits of the IKK complex are able to regulate NF-κB activation and have a 

complementary role in the control of inflammation [41]. N formulations are effective in 

inhibiting both IKK subunits expression, and therefore caused a prolonged reduction of 

IκBα phosphorylation in CuFi1 cells.  

2.2.3. Effect of N and its formulation on Interleukin-8 (IL-8) and interleukin-6 (IL-6) 

release 

The direct effect of NET3-leu5 on the main cytokines involved in inflammatory response, 

interleukin 8 (IL-8) and interleukin 6 (IL-6) was also investigated. To this aim, CuFi1 cells 

were treated with NET3-Leu5 at 30 and 60 µM in the presence and absence of LPS-

stimulation from Pseudomonas aeruginosa. Results (Fig. 9) showed that NET3-leu5 inhibited 

both cytokine production in unstimulated as well as in LPS-stimulated CuFi1 cells and the 

production of IL-8 more than IL-6. 

 

Figure 9. Effect of Naringin co-sprayed with 5% leucine (NET3-leu5) on basal and LPS-induced 

secretion of IL-8 (A) and IL-6 (B) in Cystic Fibrosis bronchial epithelial (CuFi1) cells. Data are presented 

as mean percentage of released cytokines in the control supernatants (untreated and unstimulated) ± SD 

of two independent experiments each done in duplicate. (*P < 0.05 vs control supernatants). 

These data indicate that the inhibition of NFkB pathway by NET3-leu5 results in a reduction 

of the release of pro-inflammatory cytokines. NET3-leu5 seems involved in controlling the 
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pro-inflammatory status of CF cells in the presence as well as in the absence of bacterial 

stimulation. However, LPS-stimulated cytokine secretion is dependent on Toll-like receptor-

4 (TLR-4] signaling which expression is reduced in the CF airway epithelial cells, promoting 

the bacterial colonization and chronic infection in CF lung (42). 

3. Aerosolized antibiotics in cystic fibrosis 

Pulmonary infections are the major cause of morbidity and mortality in cystic fibrosis (CF), 

with Pseudomonas aeruginosa (Pa) acting as the princISOl pathogen. The viscous mucus 

lining the lung of CF patients impairs the mucociliary function, facilitating recurrent and 

chronic respiratory infections caused mainly by Pa but also by Haemophilus influenzae, 

Bulkolderia cepacia [7, 8]. Treatment of lung disease by antibiotics is an accepted standard 

in CF cure aiming at reducing decline in lung function and number of hospitalizations [43]. 

Aminoglycosides, such as gentamicin sulfate (G) (Fig. 10), are indicated in the management 

of acute exacerbations of CF as well as in the control of chronic infection and eradication of 

Pa infections. Various clinical studies on gentamicin inhalation treatment in cystic fibrosis 

patients chronically infected with Pseudomonas aeruginosa have shown that antibiotic 

solutions for aerosol treatment produce both subjective and objective improvement. 

Interestingly, among aminoglycosides, G has shown the ability to partially restore the 

expression of the functional protein CFTR (cystic fibrosis transmembrane conductance 

regulator) in CF mouse models bearing class I nonsense mutations [44-47]. In particular, Du 

and coll. [45] demonstrated that G was able to induce the expression of a higher CFTR level 

compared to tobramycin. Aminoglycoside antibiotics can suppress premature termination 

codons by allowing an amino acid to be incorporated in place of the stop codon, thus 

permitting translation to continue to the normal end of the transcript. Regarding the use of 

aminoglycosides in the treatment of airways infections and class I CFTR mutations, the main 

problem is their reduced penetration in the endobronchial space after intravenous (IV) 

administration, combined with their high systemic toxicity. Since aminoglycosides peak 

sputum concentrations are only 12 to 20% of the peak serum concentrations [48] to achieve 

adequate drug concentrations at the site of action, it is necessary to use large IV doses, 

which may produce serum levels associated with renal and oto-toxicity.  

These problems can be overcome by the use of aerosolized aminoglycosides, which can 

deliver high dose of drug directly to the lungs, while minimizing systemic exposure. 

Therefore, the first aim of the research was to develop micronized gentamicin powders, easy 

to handle and stable for long time; the second goal was to obtain a dry powder suitable for 

pulmonary administration. 

3.1. Design and development of a new dry powder inhaler of gentamicin 

Differently from Naringin, Gentamicin is a very soluble drug: as its high hydrophilia 

guarantees a rapid drug solubility and diffusion in the fluids lining the lung, as it may cause 

high hygroscopicity and instability, preventing the formulation of a stable and respirable 

dry powder. As it is well known, hygroscopicity modulates the moisture content of the  
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Figure 10. Gentamicin sulfate structure. 

particles in the final dosage form prior to aerosol generation and it is correlated to chemical 

or physical instability of the product. For aerosols formulation, the agglomeration leads to 

an inability to generate particles of respirable size. Moreover, as aerosol particles enter the 

lungs, they experience a high-humidity environment (99.5% relative humidity at 37°C): 

inhaled particles may be subject to hygroscopic growth, increasing their dimensions and 

affecting lung deposition. In this case, excipients able to modify the hygroscopic properties 

of a drug need to be considered. A dry powder formulation was obtained by co-spray-

drying Gentamicin and leucine from 7/3 hydro-alcoholic solutions, using an organic solvent 

less polar than ethanol, the isopropanol. Microparticles were designed while studying the 

effect of leu, feed composition and process parameters on particle formation, 

physicochemical properties and aerosol performance. In addition, the effect of the 

engineered particles on cell viability and cell proliferation of CuFi1 cells was investigated.  

3.1.1. Manufacturing and characterization of G/leu co-spray-dried powders 

Due to its high polarity, G raw material was deliquescent, becoming liquid after 1 hour of 

exposure to room conditions. In order to reduce hygroscopicity and to increase powder 

dispersibility, G was subject to spray drying process alone or with leu as flowability 

enhancer using water or water-isopropanol (ISO) mixtures. 

Preliminarly, the solubilities of the drug and excipient in the feed systems were determined; 

G freely soluble in water exhibited the lowest solubility in water/ISO 7/3 (v/v) system, the 

poor solubility of leu is even lower in water-co-solvent systems (Table 2). 
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Liquid feed composition G (mg/ml) Leu (mg/ml) 

Water Freely soluble 24.2±1.0 

Water/ISO 8/2 (v/v) 351.8±25.1 11.2±0.5 

Water/ISO 7/3 (v/v) 135.9±24.6 9.5±0.2 

Table 2. Gentamicin and L-leucine solubility in liquid feeds used for spray drying at pH 7.0±0.1. 

As reported in Table 3, addition of the organic co-solvent into the water feed was extremely 

helpful in terms of process yield suggesting a reduction in powder cohesiveness and, 

therefore, a potential enhancement of the aerosolisation properties (49). Differently, leu 

addition did not have a linear effect on spray drying yield (Table 3). 

 

 Code # Leu content (%w/w) Process yield (%) d50 (µm) and span 

20
%

 v
/v

 I
S

O
 GISO2 0 78.0 ±3.8 4.74 [2.10] 

GISO2-leu5 5 73.9 ±0.5 6.19 [1.88] 

GISO2-leu10 10 65.0 ±5.5 4.07 [1.81] 

GISO2-leu15 15 84.6 ±3.3 3.72 [1.58] 

GISO2-leu5 20 77.5 ±0.6 4.82 [1.73] 

30
%

 v
/v

IS
O

 GISO3 0 85.5 ±0.7 4.24 [1.97] 

GISO3-leu5 5 86.6 ±1.2 3.77 [1.36] 

GISO3-leu10 10 85.9 ±0.9 3.69 [1.51] 

GISO3-leu15 15 82.0 ±2.1 3.90 [1.62] 

GISO3-leu20 20 80.8 ±1.3 4.11 [1.90] 

Table 3. Physical characteristics of spray dried particles: liquid fees composition, process yield, particle 

size and bulk density. 

Optimized process parameters led to micronized powders with d50 (ranging from 3.7 µm to 

4.8 µm) similar for all batches produced (Table 3), with no evident effect of solvent and leu 

content on the particles diameter.  

Organic co-solvent had a massive effect on hygroscopicity too (Fig. 11). In particular, by 

adding 30% v/v of ISO into the aqueous feed, humidity uptake by G powders was reduced 

from 10.5% (water) to 4.8% (water/ISO) after exposure at room conditions. In the presence of 

10% w/w leu, G lost its water avidity [0.9% weight gained after 80 min). These effects may 

be explained by the addition of the lower-soluble component (leu) into the liquid feeds, able 

to reach the critical concentration for shell formation as the droplet evaporation progresses 

during spray-drying process [50]. Such enrichment in leu at the particle surface seems to 

slow down water uptake of hygroscopic drug such as G, in agreement with previous 

observations [51] and, potentially, increase powder flowability. 

Leu effect on spray-dried powders appears clearly, after microscopy studies, as an evident 

increase in particle corrugation. Morphology studies showed an increase in particle 
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corrugation as an effect of leu presence in spray-dried powders. As an example, SEM 

pictures of particles dried from 8:2 water/ISO ratio solutions were reported in figure 12. 

 

 

Figure 11. Weight gained after 80 min of exposure at room conditions by G raw material (cross), G 

spray-dried from 7:3 w water-ISO (circles) v/v systems, and G/10%leu spray-dried from water-ISO 7:3 

v/v mixture (triangles). 

 

 

Figure 12. SEM pictures of powders dried from water/ISO 8:2 v/v systems containing: a) G; b) GISO2-

leu5; c) GISO2-leu10; d) GISO2-leu5. 
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As well known, the morphology of spray-dried particles is strongly influenced by the solubility 

of the components and their initial saturation in the liquid feeds. G, freely soluble in water, led to 

the formation of spherical particles when spray dried alone (Fig. 12a, G). According to previous 

observations [52], during the co-spray drying process, the saturation of the lower-soluble 

component (leu) may increase faster than that of hydrophilic one (G), due to the preferential 

evaporation of alcohol and the associated change in the solvent/co-solvent ratio. This led to the 

formation of a primary solid shell which collapsed, hence corrugated microparticles were 

formed. As the relative amount of the less soluble component increased, particle corrugation was 

more and more evident; particles from almost spherical became raisins like (Fig. 12b, GISO2-

leu5) or irregularly wrinkled (Fig.12d, GISO2-leu5). Such surface modification has been shown to 

be beneficial for particles intended for inhalation [29]: a corrugated surface improves powder 

dispersibility by minimizing contact areas and reducing interparticulate cohesion and, therefore, 

corrugated particles disperse better than spherical ones. 

3.1.2. Aerodynamic behavior of G/leu powders 

As aerodynamic properties, batches dried from water were hygroscopic, cohesive powders, 

difficult to insert into and come out from the capsule and with unsatisfying aerodynamic 

properties (data not shown). In particular, neat G dried from water was a cohesive and 

sticky material, unable to be aerosolized.  

 

 Code # 
Leu content 

(%w/w) 

Charged 

Dose (mg) 
ED (%) FPF (%) FPD (mg) 

20
%

 v
/v

 I
S

O
 GISO2 0 60 95.8±1.9 14.5±7.8 8.7±4.7 

GISO2-leu5 5 80 98.0±0.2 21.9±5.1 16.6±3.9 

GISO2-leu10 10 120 99.4±0.1 32.6±5.6 35.2±6.0 

GISO2-leu15 15 120 99.6±0.2 46.8±0.5 47.7±0.5 

GISO2-leu5 20 120 99.3±0.3 50.9±1.0 48.8± 0.9 

30
%

 v
/v

IS
O

 GISO3 0 60 90.9±7.9 13.4±8.5 7.5±4.9 

GISO3-leu5 5 70 97.2±0.5 22.3±3.0 14.8±2.0 

GISO3-leu10 10 110 99.4±1.1 28.8±5.0 28.4± 5.0 

GISO3-leu15 15 120 99.1±0.3 49.4±0.8 50.4±0.8 

GISO3-leu20 20 120 99.2±0.0 50.2±1.0 48.2±0.9 

ED, emitted dose; FPF, fine particle fraction; FPD, fine particle dose 

Table 4. Aerodynamic properties of spray-dried powders after single stage glass impinger deposition 

experiments; device TURBOSPIN, charged with capsules type 2 (mean ± SD of three experiments). 

G spray drying from hydroalcoholic solvent (GISO2 and GISO3) reduced powder cohesivity and 

enabled the aerosolization process; however, the resulting aerodynamic properties were still not 

satisfying (FPF less than 15%; Table 4). The inclusion of leu substantially increased emitted doses 

(ED up to 99.6% for #GISO2-leu15) and fine particle fractions (FPF up to 49.4% for #GISO3-leu15). 

Taking into account the relative reduction in drug content, further increase in the excipient/drug 

ratio up to 20/80 w/w did not improve DPI performance. The organic co-solvent led to the best 
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FPF and FPD values. As example, GISO3-leu15  formulations, containing 15% w/w of leu and 

obtained from 30% v/v of ISO/water feed, emitted 50.4 mg of fine G after one actuation of the 

Turbospin device. These results are in agreement with previous studies [29, 30, 53] evidencing 

the enhancement of powder aerosol performance as particle surface corrugation goes up to a 

certain degree; further corrugation enhancement did not improve aerodynamic properties. The 

plot in figure 13 allows to appreciate a dramatic increase in both particle corrugation (SEM 

micrographs) and FPF as the leu content increased.  

 

Figure 13. FPF and SEM images of G powders spray-dried from liquid feeds containing 20% ISO and 

increasing amount of leu. 

MMAD, FPF and FPD values obtained by Andersen cascade impactor deposition studies 

(Table 5) confirmed the observed trend. Capsules charged with 120 mg of powder emitted 

almost the whole dose from the device after the pump actuation, as indicated by ED ≥ 99%. 

Among all formulations, GISO3-leu15  (G/15%leu from 30% v/v of ISO/water feed) showed 

very satisfying aerodynamic properties as proved by MMAD of 3.45 µm, FPF 58.1% and 

FPD of 56.4 mg (Table 5). 

 

Code # ED (%) MMAD (µm) 
FPD 

(mg) 
FPF (%) 

20
%

 

v
/v

 

IS
O

 

GISO2-leu15 99.7±0.3 4.0±0.1 49.3±1.7 46.0±2.7 

GISO2-leu5 99.6±0.4 4.2±0.1 39.3±0.3 42.5±0.2 

30
%

 

v
/v

 

IS
O

 

GISO3-leu15 99.2±0.3 3.4±0.2 56.4±1.1 58.1±3.6 

GISO3-leu20 99.2±0.2 3.3±0.1 54.7±2.2 58.0 ± 0.5 

Table 5. Aerodynamic properties of G spray-dried powders containing 15 or 20% w/w leu after 

Andersen cascade impactor deposition experiments (mean ± SD) 

3.1.3. Effect of G/leu powders on viability of cf airways epithelium 

In order to establish whether the particle engineering has any cytotoxic or cytostatic effect 

on bronchial epithelial cells [31, 32], CuFi1 cells were treated for 24 h with increasing 
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concentrations (from 0.0002 to 2 µM expressed as G content) of GISO3 or GISO-Leu15 

powders in comparison to raw G. Results indicated that neither raw G nor its formulations 

generally inhibited cells viability as determined by MTT assay (Fig. 14 B). Only Raw G at 

concentrations higher than 0.02 µM showed a slight but significant decrease in cell survival. 

An interesting observation is that an increase in leu content up to 15%, as in GISO3-leu15 , 

faintly but not significantly decreased CuFi1 viability at concentration ranging from 0.02 to 

0.2 µM (P<0.05) (Fig. 13 B) whereas at 2.0 µM did not. As previously oserved in formulations 

for inhalation containing leucine [27], this effect seems to be related to leu ability to improve 

cell proliferation and metabolism of bronchial epithelial CF cells. 

Furthermore ELISA BrdU immunoassay confirmed that raw G slightly reduced CF cell 

growth only at the highest concentration [2 µM, P<0.01] (Fig. 14 A). 

Therefore, G/leu systems had no cytotoxic or cytostatic effect on CF epithelial lung cells 

(CuFi1 model), at concentrations up to 2 µM.  

 

Figure 14. Effect of Gentamicin and its DPI formulations on CuFi1 cell proliferation and viability. Cells 

were treated for 24 h with: raw Gentamicin (rawG, ▲), spray-dried Gentamicin (GISO3 ◊) and G co-

sprayed with 15%w/w leucine (GISO3-leu15  ■) at concentrations from 0.0002 µM to 2 µM. Cell growth 

(A) was determined using a colorimetric bromodeoxyuridine (BrdU) cell proliferation ELISA kit. Cell 

viability (B) was determined by MTT assay. All data are shown as mean ± SD of three independent 

experiments, each done in duplicate (*P<0.05 and **P<0.01 vs control). 

An proper engineering process, use of hydro-alcoholic feeds and the AA addition, allow the 

preparation of micronized powders able to be aerosolized. The addition of small amount of 

the AA led to the production of dry formulations with excellent emitted dose and good 

aerodynamic properties after actuation of the Turbospin device. Finally, the engineered 

particles showed no cytotoxic or cytostatic effect on bronchial epithelial cells bearing a CFTR 

F508/F508 mutant genotype.  

4. Conclusions 

The engineering process by spray drying and the use of water-co-solvent systems as liquid 

feed allowed micronized powders to be produced with high yield, starting from Naringin or 

Gentamicin sulfate, drugs with different physicochemical properties. The addition of a small 
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amount of a safe excipient, as leucine, led to powders with excellent emission doses, 

counteracting both G high hygroscopicity and N cohesiveness and low solubility. In 

particular, N DPI containing 5% leu (NET3-leu5) and G DPI containing 15% leu (GISO3-

leu15 ) were able to deliver almost the total dose of drug loaded in the capsules, with about 

60% of FPF. Finally, N and G engineered powders showed no cytotoxic or cytostatic effect 

on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype. As to efficacy, 

NET3-leu5 powder, containing natural polyphenol and AA, were able to negatively 

modulate NF-ĸB pathways in absence of stimulation in bronchial epithelia and to reduce the 

overexpressed IL-8 and IL-6 production both in basically and in LPS-stimulated conditions. 

These findings, together with the well-known G antibiotic activity support the use of G-leu 

and N-leu DPIs in the treatment of infections and intrinsic inflammation of CF lungs.  
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