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1. Introduction 

Recent stringent emission regulations and depletion of energy sources have imposed special 

requirements on combustion technologies for the new millennium. By now it is well known 

that hydrocarbon sources, the bedrock of economic wealth and combustion science, are 

being depleted 100 000 times faster than they are being replenished. These factors will no 

doubt demand the development of novel combustion techniques. Among other concepts, 

combustion in a porous media offers a possible technological breakthrough and solutions 

for the near and long term. It can provide the basis for development for new combustion 

systems. The study of porous media phenomena itself can be a multidisciplinary field 

ranging from mechanical and chemical to geological and petroleum applications [1]. 

Porous media combustion, also known as filtration combustion, is defined as the process in 

which a self-sustaining exothermal reactive wave propagates over a porous reagent by 

means of gaseous oxidizer filtration through an inert solid matrix towards the reaction zone. 

As an internally self-organized process of heat recuperation, filtration combustion of 

gaseous mixtures in porous media differs significantly from the homogeneous flames. This 

difference is attributed to the following main factors: the highly developed inner surface of 

the porous medium results in efficient heat transfer between gas and solid; dispersion of the 

gas flowing through a porous media increases effective diffusion and heat transfer in the gas 

phase. To further elaborate, once a gas mixture is ignited inside the media, the heat release 

from the intense reaction zone is transferred to the solid matrix that subsequently feeds a 

fraction of the energy to the solid layers immediately above and below. This process 

facilitates a combustion process that ensures stability in a wide range of gas filtration 

velocities, equivalence ratios, and power loads. 

Stationary and transient systems are the two major design approaches commonly employed 

in porous combustion [2-8]. The first approach is widely used in radiant burners and surface 

combustor-heaters where the combustion zone is stabilized within the finite element of the 

porous matrix. The second (transient) approach involves a traveling wave representing an 
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unsteady combustion zone freely propagating in either downstream or upstream direction 

in the inert porous media (IPM). Strong interstitial heat transfer results in a low degree of 

thermal non-equilibrium between gas and solid. These conditions correspond to the low-

velocity regime of filtration gas combustion, according to classification given by Babkin [9]. 

The relative displacement of the combustion zone results in positive or negative enthalpy 

fluxes between the reacting gas and the solid matrix. As a result, observed combustion 

temperatures can be significantly different from the adiabatic predictions and are controlled 

mainly by the reaction chemistry and heat transfer mechanism. The upstream wave 

propagation, countercurrent to filtration velocity, results in under-adiabatic combustion 

temperatures, while the downstream propagation of the wave leads to the combustion in a 

super-adiabatic regime with temperatures much in excess of the adiabatic one. Super-

adiabatic combustion significantly extends conventional flammability limits to the region of 

ultra-low heat content mixtures. 

Superadiabatic filtration combustion of rich and ultra-rich mixtures creates a situation in 

which partial oxidation and/or thermal cracking of hydrocarbons take place. This 

technology for hydrogen or synthesis gas (or syngas, a gas mixture that contains varying 

amounts of carbon monoxide and hydrogen) production uses an IPM [10-13]. The fuels used 

in porous combustion systems are basically of gaseous form due to fluidity, volumetric 

capacity, and shorter mixing length scale [14-21]. Liquid fuel reactors have been developed 

and used to a smaller extent [22-30]. 

According with the theory and technology of filtration combustion and the required new 

combustion systems, a new hybrid porous reactor can be developed changing an inert solid 

volume fraction by solid fuels. Now the porous medium is composed of uniformly mixed 

aleatory solid fuel and inert particles [31]. This change produces hybrid filtration combustion 

for simultaneous conversion of solid and gaseous fuels to energy (lean combustion) or 

hydrogen and synthesis gas (rich combustion). 

As a result of composed porous medium, observed combustion temperatures can be lower 

than the IPM values and are controlled mainly by the heterogeneous reaction chemistry and 

heat transfer mechanism. Upstream and downstream wave propagations are present in the 

hybrid porous reactor. The upstream wave propagation in the composite bed is similar to 

the inert bed but the downstream wave propagation show a flat temperature profile with 

practically constant temperature along the reactor. 

The combustion temperature in composite bed decreases from rich to ultra-rich gas fuel-air 

mixtures, and also with the increase of solid fuel volume fraction in porous medium. That 

suggests a change of dominant kinetic mechanism and a shift from homogeneous to 

heterogeneous chemistry. At high downstream propagation velocities near the 

stoichiometric conditions the role of gas phase kinetics is dominant. In these conditions, the 

upstream wave propagation suppresses the heterogeneous oxidation processes by the 

complete consumption of oxidizer. At higher equivalence ratios, the wave propagation is 

slower. This increases the role of heterogeneous kinetics. As a result, the ignition and 

combustion temperatures drop. In turn, this affects the wave velocity. The mechanism of 

heterogeneous combustion becomes dominant for downstream wave propagation. The 
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slowly reacting solid fuel is directly exposed to oxidizer. The ignition initiated over the solid 

phase is further transferred to the gas phase. It is possible to suggest that the structure of the 

wave in this case involves a heterogeneous reaction front followed by the gas phase reaction 

front. These fronts are followed by a slow endothermic reaction between the formed steam 

and solid/gaseous fuels. 

The propagation of downstream hybrid combustion waves in the fuel loaded medium has 

resulted in wide combustion fronts with superadiabatic combustion temperatures. Due to 

the wide flat temperature profiles it has been found impossible to determine the wave 

velocity with sufficient accuracy. The flat temperature profile also suggests that the fuel 

particles are burning upstream of the front. 

The use of rich and ultra-rich mixtures of gas fuel with air hybrid filtration combustion for 

hydrogen and syngas production has big potential. Hydrogen and syngas concentration 

increases with an increase of equivalence ratio for gas fuel/air mixtures in the inert porous 

medium and composite bed. In comparison, more high concentration of hydrogen and 

syngas is obtained in the composite porous media. Hydrogen conversion for gas fuel/air 

mixtures for hybrid filtration combustion waves is 50% for higher equivalence ratio. 

2. Physical and mathematical description of the hybrid process 

Lean combustion results in complete burnout of the hydrocarbon fuel, with the formation of 

carbon dioxide and water. Thus, both the composition of the final products and the heat 

release are well defined. In contrast to the lean case, the partial oxidation products of rich 

and ultra-rich waves are not clearly defined. In such a case, fuel is only partially oxidized in 

the wave, and the total heat release could be kinetically controlled by the degree of partial 

oxidation. As a result, chemical kinetics, heat release, and heat transfer are strongly coupled 

in the rich and ultra-rich waves, rendering it a more complicated and challenging 

phenomenon than the lean wave.  

In the following we describe the governing equations, derived from fundamental principles, as 

well as some suitable models and assumptions that allow the formulation of a mathematical 

model. Such a model can be tractable by numerical simulation. We consider the bulk volume V 

of the bed separated into the volume occupied by the solid particles, Vs, and the volume 

occupied by the gas Vg (i.e. V = Vg +Vs). As usual, we define the porosity θ as the fraction of 

bulk volume V occupied by the gas: Vg = θ V. The composition of the gas is characterized by 

the molar fractions {yj, j = 1,...,NSP of the NSP chemical species in the gas phase. On the other 

hand, the solid phase is composed of reacting fuel particles and inert particles. For the sake of 

conciseness, in this section we will refer to this solid fuel simply as fuel (it is implicit, by our 

definition of hybrid filtration combustion, that some of the species in the gas phase are also 

components of a gaseous fuel injected into the porous medium). To specify the composition of 

this solid medium we define partial (mass) densities for the fuel and inert gas as 

 ρ ρ= =;
f i

f i
s s

m m

V V
  (1) 
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where mf and mi are respectively the mass of fuel and the mass of inert component in a given 

volume V. Note that these densities are based on the solid volume, so that mf  = ρf θ V, and 

similarly for mi. Here and in all this chapter the subscripts (g) refer to the gas phase, (s) to the 

solid phase, (f) to the fuel component in the solid, and (i) to the inert component in the solid.  

2.1. Conservation of mass for gaseous species 

For an arbitrary volume V in the porous medium, the conservation of mass for the j-th 

species in the gaseous mixture is given by 

 θ ρ ρ ρ θ
∂

+ ⋅ + ⋅ =
∂   ( )d d d d .g j g j g j j j

V A A V

y V y A y A S V
t

u n w n
   

  (2) 

The first term on the left-hand side (LHS) is of course the local rate of variation of the molar 

quantity of species j in the volume, where ρg is the molar density of the gas. The second term 

is the advection of species j by the gas flowing out of V through is bounding surface A ( n


is 

the outward normal vector). This flow is calculated using the filtration velocity u


, so that 

the integration is taken over the whole area A. The third term is the additional transport 

across that bounding surface due to the diffusion velocity, jw


, of species j relative to the 

mean gas velocity. The right-hand side contains the integration of the source term, Sj, per 

unit of bulk volume. This term contains the net production of species j by homogeneous 

reaction in the gas phase, heterogeneous reaction with the solid fuel, and volatile matter 

release by that fuel, as explained later. 

Although the diffusion velocities jw


can in principle be obtained by solving a system of 

equations, involving the binary mass diffusion coefficients for each pair of species in the gas, 

such treatment is computationally difficult and expensive. Therefore, the usual simplified 

approach is based on Fick’s law  

 = − ∇j j j jy D yw


  (3)  

where Dj is the diffusion coefficient of species j into the gaseous mixture. Hence, from Eq. (2) 

one readily obtains 

 θ ρ θρ ρ
∂

= ∇ ⋅ ∇ − ∇ ⋅ + =
∂

( ) ( ) ( ) ; for 1, ,g j g j j g j j SPy D y y S j N
t

u


   (4) 

Among other parameters, the filtration velocity u


must be known in Eqs. (4) in order to 

solve them for yj. In many applications with porous media in reactors of simple geometry 

(for instance, a long and narrow cylinder), the filtration velocity is determined by a global 

mass balance of the reactor, and the whole problem can be analyzed as one-dimensional.  

By their definition, the mole fractions must satisfy 

 
=

=
1

1
SPN

j
j

y   (5) 



 
Hybrid Filtration Combustion 205 

so that, one of the NSP equations (4) can be eliminated, and the associated mole fraction can 

be obtained by difference from Eq. (5). We remark that, as shown in Ref. [32], solving (NSP – 

1) species equations in this way can produce numerical problems, when the exact diffusion 

velocities have been substituted by Fick’s law, conducing to a violation in global mass 

conservation. The error vanishes when all diffusion coefficients are equal (Dj = D), and it is 

negligible if the species for which the equation was removed has a relatively high 

concentration in the mixture.  

The gas volume Vg in the region V receives chemical species which come from: (i) advection 

by the gas flowing into Vg, (ii) enter Vg as a component of volatiles evolved from the solid 

fuel, or (iii) enter Vg as a product of heterogeneous reactions of the solid fuel with gaseous 

species. The species will react in the gaseous phase according to a homogeneous reaction 

mechanism. The presence of heterogeneous reactions means that simultaneously some of 

these species will be consumed in such reaction. The superposition of these processes 

determine the net source term Sj in the equation (4). 

2.1.1. Homogeneous reaction 

The homogenous reaction of the NSP species in the gas is generally expressed as a system of 

NHO reactions  
 

 α αη η α
= =

′ ′′←⎯→ = 
1 1

M M ; for  1, ,
SP SPN N

j j j j HO
j j

N   (6)  

where Mj represents symbolically the molecule of species j, and α αη η′ ′′( , )j j are the 

stoichiometric coefficients of the j-th species in the α-th homogeneous reaction. These 

reactions are considered, in principle, reversible so that the rates of consumption and 

production of species j are given by 

 α α α α α α α α
α α

η η η η
= =

′ ′′ ′′ ′+ + 
1 1

and
HO HON N

j f j b j f j br r r r   

respectively. Here, rfα is the forward reaction rate (→), and similarly rbα is the backward 

reaction rate (←). Thus, the net production for the j-th species by the homogeneous reaction 

mechanism is 

 α α α α
α

η η
=

′′ ′= − −,
1

( )( )
HON

j HO j j f bS r r   (7) 

The forward and backward reaction rates can be obtained from the law of mass action. 

Considering the mechanism (6) as composed of elementary reactions, the order of the 

reactions corresponds to the stoichiometric coefficients, and therefore 

  αα
η

α α α αρ η
′′

==

′ ′= = ∏
11

; with
SP SP

j

N N
n

f f g jj
jj

r k y n   (8) 
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and 

  αα
η

α α α αρ η
′′′′

==

′′ ′′= = ∏
11

; with
SP SP

j

N N
n

b b g jj
jj

r k y n  (9) 

In these expressions, kfα and kbα correspond to the forward and backward kinetic factors, 

which are usually modelled using the Arrhenius law 

  α
α

α α

 
 = −
 
 

exp
fb

f f g
g

E
k A T

RT
  (10) 

where the constants Afαand bα , as well as the activation energy Efα, are data to be provided 

for each reaction. These parameters constitute an essential part of the chemical reaction 

model (and one of the most difficult to obtain). The backward kinetic factors are computed 

from the forward factors using the equilibrium constants Kα of the reactions 

  

α α

α
α α α α

α

η η

′′ ′−

=

  
 ′ ′′ = = −

      


1

with exp ( )
SP

n n oN
f jo

b j j
g gj

k gp
k K

K RT RT
   (11) 

where po is the pressure of the standard state (po = 1 bar), R is the universal gas constant and 

gj is the Gibbs free energy of species j (gj = hj - Tsj). These properties depend on gas 

temperature, and can be obtained from available regression functions, which can be written 

as polynomials in Tg such as  

  
=

= 
0

m
n

j nj g
n

h a T   (12) 

for the enthalpy, and as  

 
−

=

= +
1

0

ln
m

n
j nj g m g

n

s b T b T   (13) 

for the entropy (as, for example, NASA polynomials).  

2.1.2. Volatiles release 

The process of volatiles release from the solid fuel, by thermal decomposition and pyrolysis, can 

be modelled as one or several irreversible reactions, which we can represent symbolically as 

 

µ µ

µ µ

µ µ

⎯⎯⎯→ + −

⎯⎯⎯→ + −

⎯⎯⎯→ + −

( )
1

( )
2

( )

1 1 1 1

2 2 2 2

{Fuel} V (1 )S

{Fuel} V (1 )S

{Fuel} V (1 )S

v

v

v
Nv

v v v v

k

k

k
N N N N

  
  (14) 
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to indicate the conversion of the solid fuel into volatiles {V1, V2, … ,VNv},all of which have a 

prescribed chemical composition. The constants {μβ, β= 1, … , Nv}, which are also parameters 

of the model, denote the fraction of fuel mass that is transformed into the volatile Vβ via the 

β-th reaction in the system (14). Such transformation leaves a solid substance Sβ which will 

react heterogeneously with the surrounding gas (as, for example, coke when coal is being 

burned). For each of these Nv reactions, the model postulates a kinetic factor that can be put 

into an Arrhenius form 

 β β
ββ β

 
= − = 

 

( ) exp for 1,...,
bv
s v

s

T
k A T N

T
  (15) 

as a function of the solid particles temperature Ts. These factors are defined such that for a 

given mass of fuel mf, the rate at which mass of volatile Vβ is released into the gas phase is 

given by 

 ββ β µ=( ) ( )v v
fr k m   (16) 

The model requires the activation temperatures Tβ, the pre-exponential constants, and the 

composition of the released volatiles. Typically for coal, the species present in the volatiles 

are H2, H2O, CO, CO2, CH4 and some other hydrocarbons. The composition can be defined in 

terms of the mass fraction of the species present in such gaseous mixtures. We use σjβ to 

indicate the mass fraction of species j in the volatile β. Therefore, superposing the effects of the 

Nv vias of volatilization, the source of species j in the gas phase, per unit of bulk volume, is  

  β ββ
β

θ ρ
µ σ

=

−
=  ( )

,
1

(1 ) vN
f v

j v j
j

S k
W

  (17) 

due to the volatilization process. Wj is the molecular weight of species j and ρ f is defined in 

Eq.(1). 

2.1.3. Heterogeneous reaction 

The solid substances Sβ left by the volatilization mechanism can further react with several 

species from the surrounding gas. This heterogeneous reactions can be treated in a similar 

way to what is done in 2.1.1 for the homogeneous reactions. First, we need to define 

precisely the solids Sβ. When the solid fuel is coal, the usual assumption is to consider Sβ as 

pure carbon for all the volatilization reactions (14). Global heterogeneous reactions that can 

take place in such conditions are for example 

 

+ ⎯⎯→

+ ⎯⎯→

+ ⎯⎯→

+ ⎯⎯→ +

2

2 2

2

2 2

2C O 2CO

C O CO

C CO 2CO

C H O CO H

  (18) 
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For some other fuels, whose fixed carbon fraction is mostly C, such as wood pellets, the 

treatment of Sβ as C could also be a good approximation. Alternatively, a more accurate 

representation of Sβ could be a pseudo-molecule CxHy, that can be used to represent coke or 

other form of carbonized material. Since we want to consider the solid fuel as just one 

component of the solid phase, in addition to the inert material, the heterogeneous reactions 

cannot discriminate between different solid species, and therefore the heterogeneous 

reaction mechanism must be written as 

 γ γν ν
= =

′ ′′+ ⎯⎯→ = 
1 1

S M M for 1
SP SPN N

j j j j HE
j j

γ , ,N    (19) 

where NHE is the number of reactions in the heterogeneous mechanism and S denotes the 

molecular formulae for the solid material left by the pyrolysis (C or CxHy). As before, Mj 

stands for the molecule of j-th species in the gas phase, and the constants γ γν ν′ ′′( , )j j  are the 

stoichiometric coefficients for the j-th species in the γ-th heterogeneous reaction. A more 

general treatment would be to consider different solid species Sβ generated by the 

volatilization reactions. In that case, different S molecules could appear for different γ in the 

equations (19). The model for the kinetics could be essentially the same than the one shown 

below, but such an approach would require to characterize the solid phase by the content of 

inert material and more than one solid fuel species: ρi, ρS1, ρS2,..., instead of ρi and ρf. 

Consequently, that would demand to solve mass conservation equations for ρS1, ρS2,..., 

instead of just one for ρf (See 2.2). Although in conceptual terms there is no more complexity 

in such a procedure, we prefer do not follow that line here, in order to avoid the 

introduction of too many parameters, which are currently difficult to obtain and validate. 

The mass rate of consumption, per unit of bulk volume, through the γ-th reaction of the fuel 

that has remained solid (in the S form), can be formulated as  

 
ν

γ γ ρ ω
′

=

= −∏( )( )

1

( ) (1 )
SP

j

N
HH

g jf
j

r k y F   (20) 

where ω and F are defined below, and γ
( )H
fk is a kinetic factor defined such that when 

multiplied by the product of the concentrations in Eq.(20), gives the rate of mass 

consumption per unit area of solid fuel. This kinetic energy can be postulated to follow as 

usual an empirical Arrhenius law 

 γ γ
γγ

 
= − 

 

( )
( ) ( ) exp

HbH H
sf

s

E
k A T

RT
  (21) 

for which the activation energy Eγ and pre-exponential constants must be provided. The last 

two factors in Eq. (20) takes into account the surface area of solid fuel per unit of bulk 

volume. F is the ratio of particles surface area to the volume of porous medium. For a 

homogeneous porous medium with particles of characteristic mean size d, it has the value 
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θ−

=
6(1 )

F
d

  (22) 

The factor (1-ω) is the fraction of F that corresponds to solid fuel area. The variable ω can be 

defined as the degree of fuel burnout, since ω = 1 corresponds to the state when all the fuel 

that remained in the solid phase has been consumed. The minimum value for ω depends on 

the initial fraction of fuel in the porous medium (see 2.2).  

Taking into account the production and consumption of gaseous species by the reactions 

(19), the net production of species j by the whole heterogeneous reactions mechanism is 

then 

 γ γ γ
γ

ν ν
=

′′ ′= − ( )
,

S 1

1
( )

HEN
H

j HE j jS r
W

  (23) 

where WS is the molecular weight of S. We have taken reactions (19) as irreversible, but if 

there were reversible reactions among them, the treatment can be done in the same way as 

in subsection 2.1.1, applying the equilibrium constants to obtain backward reaction rates 

that should be subtracted from γ
( )Hr in Eq. (23). 

In summary, the species mass conservation equations can be written more explicitly as 

 θ ρ θρ ρ
∂

= ∇ ⋅ ∇ − ∇ ⋅ + + + =
∂ , , ,( ) ( ) ( ) ; for 1, ,g j g j j g j j HO j v j HE SPy D y y S S S j N
t

u


   (24) 

where the net sources of species j by homogeneous reactions, volatilization and 

heterogeneous reactions are given by Eqs. (7), (17) and (23), respectively.  

2.2. Conservation of mass for solid fuel 

To derive an equation expressing the mass conservation of solid fuel we consider first a 

region of volume V(t), in the burning porous medium, whose boundary surface moves with 

the local velocity v


at which the solid fuel combustion propagates. In that situation the mass 

conservation of fuel is given by 

  ρ θ− = − 
( ) ( )

d
(1 )d d

d
f f

V t V t

V B V
t

  (25) 

where Bf is the rate of mass fuel consumption, per unit volume, by heterogeneous reaction 

and volatilization. The derivative on the LHS of Eq. (25) gives 

 ρ θ ρ θ
∂

− + − ⋅ = −
∂  

( ) ( ) ( )

[ (1 )]d (1 ) d df f f

V t A t V t

V A B V
t

v n


  (26) 

whence the governing equation for the partial density of fuel in the solid phase becomes 
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 ρ θ ρ θ
∂

− + ∇ ⋅ − = −
∂

[ (1 )] [ (1 ) ]f f fB
t

v


  (27) 

The loss of mass of fuel by volatilization is given by the summation of the Sj,v terms in Eq. 

(17), for all the species. On the other hand, the loss of fuel mass due to heterogeneous 

reactions is given by the summation of all the consumption rates in Eq. (20), for all of such 

reactions. Therefore,  

 γ
γ

ρ θ ρ θ
= =

∂
− + ∇ ⋅ − = − −

∂
  ( )

,
1 1

[ (1 )] [ (1 ) ]
SP HEN N

H
f f j v

j

S r
t

v


  (28) 

The evaluation of the rates γ
( )Hr requires the degree of fuel burnout ω. Denoting by ρ̂i and 

ρ̂ f the intrinsic densities (true densities) of the inert material and the fuel respectively, ω 

can be obtained from the relations 

 ρ ρ ρ ρ
θ θ

 
+ = + −  − − 

ˆ ˆ 1
(1 ) (1 )

f f
f i f i

V V

V V
  (29) 

and  

 ω− = =
6

(1 )
f fA V

F
V d V

  (30) 

where Vf represents the volume occupied by the fuel particles in a given bulk volume V, and 

Af represents their surface area. Combining Eqs. (29), (30) and (22) we have 

 
ρ ρ ρ

ω
ρ ρ

− +
=

−

ˆ ( )

ˆ ˆ

f f i

f i

  (31)  

so that the value of ω, at a given position, can be determined using the instantaneous local 

values of ρf and ρi at that position.  

2.3. Conservation of energy of the gas phase 

For the analysis of energy conservation in the gas, we consider the thermal and the chemical 

energies of the gaseous species, and neglect the kinetic energy of the flow. The energy per 

mole of gas is then eg = hg - p/ρg , with hg being the total enthalpy per mole of gas mixture 

  
=

= 
1

SPN

g j j
j

h y h   (32) 

The enthalpies of the different species (hj) include their enthalpy of formation (and they can 

be computed with functions like Eq. (12)). Proceeding similarly to the analysis of mass 

conservation, an integral balance of energy in a volume V results in 
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 θρ ρ θ
∂ 

+ ∇ ⋅ = + ∂   ( ) ( ) d d dg g g g V A

V V A

e e V H V H A
t

u


  (33) 

where HV refers to sources of energy per unit of bulk volume, and HA denote energy fluxes 

going into the volume across the boundary surface of V, per unit of gas-phase area. We have 

also neglected here the work done on the gas by surface forces (such as pressure and viscous 

stresses), and body forces (such as gravity). Those mechanical effects on the total energy are 

clearly negligible in comparison with the thermal effects. 

The fluxes in HA can be joined into a vector q


 such that = − ⋅AH q n
 

, and then Eq. (33) leads 

to the differential equation 

 θρ ρ
∂

+ ∇ ⋅ = − ∇ ⋅
∂

( ) ( )g g g g Ve e H
t

u q
 

  (34) 

Generally, it is preferred to use the enthalpy as the primitive variable for the gas energy 

equation. In that case Eq. (34) reads as 

 
θ

θρ ρ
∂∂

+ ∇ ⋅ = + ∇ ⋅ + − ∇ ⋅
∂ ∂

( )
( ) ( ) ( )g g g g V

p
h h p H

t t
u u q
  

  (35) 

The pressure terms appearing in (35) are also associated with mechanical energy of the flow. 

They contribute in part to the energy of deformation due to gas expansion (which is stored 

in the gas as thermal energy), and also to the flow acceleration due to pressure gradients 

(which changes the kinetic energy). As stated above, we consider these mechanical energy 

contributions negligible, in comparison with the thermal energy in a reactor. Consequently, 

the first two terms on the RHS of Eq. (35) are discarded. 

The energy flux vector q


 contains the heat diffusion, which can be expressed by Fourier’s 

law, and the additional transport of energy due to the diffusion of species, with different 

enthalpies, in the multi-component gas 

 λ ρ λ ρ
= =

= − ∇ + = − ∇ − ∇ 
1 1

SP SPN N

g g g j j j g g j j j
j j

T y h T h D yq w
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  (36) 

In this equation we have introduced again Fick’s law for the diffusion velocities, while λg is 

the gas thermal conductivity.  

According to the processes described previously, the energy source term HV must contain (i) 

HV,v: the enthalpy carried into the gas by the volatiles evolved from the solid fuel, (ii) HV,HE: 

the energy released toward the gas by the heterogeneous reactions of the solid fuel and (iii) 

HV,Q: the heat transfer from the solid phase (inert material and fuel) to the gas. 

With regards to the enthalpy flow contributed by the volatiles, it can be calculated as 

 
=

= , ,
1

( )
SPN

V v j v j s
j

H S h T   (37) 
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where the total molar flow of species j carried in the volatiles, Sj,v ,is given by Eq. (17). We 

make the assumption that this volatiles gases are released at the temperature Ts of the solid 

phase. Note that the solid phase is characterized by a common local temperature as 

discussed in subsection 2.4. 

The heterogeneous reactions involve the adsorption of gaseous species into the fuel 

particles, and the desorption of the reaction products back to the gaseous phase. Using the 

heterogeneous reaction model described in sub-section 2.1.3, we have that for the γ-th of 

such reactions, the enthalpy transport associated with those adsorbed and desorbed flows 

could be in principle estimated as 

 
γ γ

γ γν ν
= =

′ ′′ ′′ 
( ) ( )

S S1 1
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SP SP

H HN N

j j g j j
j j

r r
h T h T

W W
  

In the first expression the enthalpies of the incoming species can be evaluated at the 

temperature Tg of the gas in the neighborhood of the fuel particle. In the second expression 

however the enthalpies of the outgoing products should be evaluated at a temperature ′′T
that would have to be approximated in some way. Such an estimation is a difficult task, so 

that a practical approach is to consider that a fraction ε of the heat reaction is retained in the 

solid particle, contributing to its internal energy, while the remaining fraction  (1- ε) goes 

into the gas phase as the net flow of sensible enthalpy. More explicitly, the heat released by 

the γ-th heterogeneous reaction in the solid is 
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  (38) 

with QRγ being the standard heat of reaction and Δhj are sensible enthalpies. On the other 

hand, we assume that  
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  (39) 

(By definition, QRγ is negative for exothermic reactions, whence the minus sign in Eq. (39)). 

As a result, the net flow of energy toward the gas phase is 

 γ γ γ
γ γ

ε
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= = − −  ( )
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1
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  (40) 

We look now to the third component of HV, namely the convective heat transfer to the gas 

on the surface of the solid medium. This heat flow can be calculated, in a simplified form, as 
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  ξ= −, ( )V Q s gH F T T   (41) 

where ζ is the heat transfer coefficient, which can be estimated from empirical relations for 

porous media, as for example [33]  

 = + 0.6 1/3Nu 2 1.1Re Prg   (42) 

In this expression the characteristic length for the Reynolds and Nusselt numbers is 

taken as two times the particles size d, and the velocity is the effective mean velocity of 

the flow:  
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Upon substituting Eq. (36) into (35), the equation for energy conservation in the gas phase 

becomes 
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Recall that we are using total enthalpies hj, which include the enthalpy of formation, so 

that the heat released by the homogeneous reactions in the gaseous phase is implicit in Eq. 

(44).  

This equation of energy, coupled with the equations for mass conservation of species, and 

the equations for the solid phase, give rise to a system of simultaneous partial differential 

equations that must be solved by a numerical iterative scheme. In that case Eq. (44) can be 

solved for hg as its primitive variable, and the gas temperature can be obtained by solving 

the polynomial equation 
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0 1
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nj g g nj nj j
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in each iteration. This equation for Tg results from Eqs. (32) and (12).  

2.4. Conservation of energy of the solid phase 

The conservation of energy for the solid phase can be analyzed in the same volume V(t) 

used in subsection 2.3, with a boundary that moves at the velocity ( v


) of propagation of 

solid fuel consumption. In this way we have  

 ρ ρ θ+ − = +  
( ) ( ) ( )

d
( )(1 )d d d

d
f f i i s s s

V t V t A t

e e V G V H A
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  (46) 

or equivalently 
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where ef , ei are the internal energies of fuel and inert particles respectively, Gs is the total 

source of energy for the solid medium per unit of bulk volume, and Hs is the influx of 

energy on the boundary surface per unit of solid area. Because of the thorough mix and 

contact between inert and fuel particles, we assume that they are in local thermal 

equilibrium. Consequently, the thermal state of the solid medium can be characterized by 

only one local temperature Ts. If that is not the case (for instance, if the specific heats of the 

inert and fuel particles were too different), separate energy equations for both the fuel and 

inert material can be formulated. 

The source Gs is determined by the convective heat transfer between the solid and the gas, 

and the fraction of the heat released by the heterogeneous reactions that has remained in the 

solid phase. According to Eqs. (39) and (41) we have 
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  (48) 

The influx Hs is given essentially by heat conduction through the solid medium. This can be 

written as = − ⋅s sH q n
 

, with the heat flux λ= − ∇s s sTq


, and λs being the equivalent thermal 

conductivity of the solid medium.  

Upon substituting these expression into Eq. (47), and converting the surface integral into 

volume integral, the equation for energy conservation of the solid phase becomes 
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2.5. Summary 

In this section, we have presented the formulation of a mathematical model for hybrid 

filtration combustion, along with some model assumptions that would allow a 

computational approach. Such treatment will depend of course on the boundary and initial 

conditions for particular reactor designs. As we have shown, a crucial factor for the 

modelling of these complex phenomena is the availability of model parameters such as ε, 
the composition of the volatiles Vβ , etc. The parameterization of a model of this nature 

requires extensive experimental work. Our purpose is not to derive here all these 

parameters, but to show some experimental results that highlight the potential of ultra-rich 

hybrid filtration combustion for hydrogen and syngas production.  
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3. Hydrogen production by hybrid filtration combustion 

In this section, we show experimental results for wave velocities, combustion temperature, 

and H2 and CO concentrations for hybrid combustion of gas and solid fuels in porous 

media. 

3.1. Natural gas and coal particles 

The porous medium is composed of uniformly mixed aleatory coal and alumina spheres 

with varying volume fractions. This section provide the data on natural gas-air flames 

stabilized inside hybrid porous media with a volumetric coal content from 0 to 75% for an 

equivalence ratio φ = 2.3 and a filtration velocity of 15 cm/s. 

The solid temperatures recorded for hybrid filtration combustion in coal-alumina beds, 

decreased from 1537 K at 15 % of coal in porous media to 1217 K at 75 % (Fig. 1a). The wave 

velocity is reduced with increase of coal volume fraction. At high coal contents the wave 

velocity is limited by the oxygen availability and the bed displacement resulting from the 

coal consumption. The latter factor suggests that the wave velocity in the packed bed with 

100% coal content will be close to zero. 

The hydrogen concentration increased with an increase of coal content with the maximum 

of 22% at a coal content of 75%. The result shows that high combustion temperatures 

facilitate hydrogen production in hybrid filtration combustion. The carbon monoxide also 

increased with an increase of coal content.  

The maximum hydrogen conversion reached 55% at a coal content of 75% compare to 35.1% 

for natural gas flames propagating in the inert porous bed (Fig. 1b). 

3.2. Butane and wood pellets 

The porous media was composed of uniformly mixed aleatory wood pellets and alumina 

spheres. The equal volumes of 5.6 mm solid alumina balls and wood pellets were mixed 

resulting in the packet bed with a porosity of ~40%. Experimental data were collected for a 

slightly increasing filtration velocity in a range of equivalence ratios from stoichiometry (φ = 

1.0) to φ = 2.6. 

The solid temperature of butane/air mixtures in the inert porous medium increases from 

1510 K at φ = 1.45 to 1610 K at φ = 2.6 (Fig. 2a). The solid temperatures recorded for hybrid 

filtration combustion in wood pellets-alumina spheres porous media, decrease from 1477 

K at φ = 1.45 to 1216 K at φ = 2.6. For butane/air mixtures in the inert and composite 

porous media the maximum absolute velocity value of ~0.012 cm/s is observed for φ = 1.45 

(Fig. 2b). 

Hydrogen concentration increases with an increase of equivalence ratio for butane/air 

mixtures in the inert porous medium. In comparison, more than four times higher 

concentration of hydrogen is measured for butane/air mixtures in the composite porous 
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media made of alumina and wood pellets. For butane/air mixtures in the inert porous 

medium the concentration of carbon monoxide increased with equivalence ratio and for an-

inert porous media the concentration of CO remains almost constant with the equivalence 

ratio. 

 

Figure 1. Combustion temperatures and wave velocities (A) and degree of conversion to hydrogen (B) 

for rich and ultra-rich waves for natural gas mixtures with air varying the volume of coal in the porous 

media from 0 to 75% [34]. 

The hydrogen yield is calculated using the initial hydrogen content in butane for the case of 

inert bed and the initial hydrogen content in butane and wood pellets for the case of the 

composite bed. The maximum yield recorded for the inert porous medium is close to 10% at 

φ = 2.6 (Fig. 2c). The maximum yield recorded for the composite pellets is ~48% at φ = 2.4.  
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Figure 2. Combustion temperatures (A), wave velocities (B) and degree of conversion to hydrogen (C) for 

rich and ultra-rich waves for butane mixtures with air in the inert bed and composite porous media [35]. 

3.3. Propane and polyethylene pellets 

The reactor is filled with a uniformly mixed aleatory polyethylene pellets and alumina 

spheres whose diameter is 5.6 mm. The geometry of polyethylene pellets are 2.4x5.0x4.4 
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mm. Experimental data were collected at a range of equivalence ratios (φ) from φ =1.0 to φ 

=1.7. The air/propane flow rate was maintained constant at 5.7 L/min yielding a filtration 

velocity of 11.3 cm/s. 

 

Figure 3. Combustion temperatures (A), wave velocities (B) and hydrogen concentration (C) in rich 

mixtures of propane with air for gaseous and hybrid filtration combustion waves. 
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The solid temperature of propane/air mixtures in the inert porous medium decreases from 

1159 K at φ = 1.0 to 987 K at φ = 1.2 (Fig. 3a). Then the temperature increase to 1346 K at φ = 

1.7. The solid temperatures recorded for hybrid filtration combustion in polyethylene 

pellets-alumina spheres porous media, shows similar behaviour and decrease from 1215 K 

at φ = 1.0 to 1070 K at φ = 1.4. Then the temperature increase to 1279 K at φ = 1.7. The 

experimental results for propane/air mixtures in the inert and composite porous media 

upstream wave were recorded in all the range of equivalence ratios studied (Fig. 3b). 

Hydrogen concentration increases with an increase of equivalence ratio for propane/air 

mixtures in the inert porous medium and composite porous media made of alumina and 

polyethylene pellets. The maximum generated mole fraction of hydrogen is 6.7% for hybrid 

propane. Carbon monoxide is also generated in both porous media reactor. 

4. Conclusion 

In this chapter we have defined the hybrid filtration combustion process. The physical 

phenomena involved as well as their mathematical description by the governing equations 

enforcing mass and energy conservation for both the gas and solid phases are discussed.  

We presented experimental evidence that such a process of hybrid filtration combustion can 

actually be achieved in practice. In particular we showed applications for reformation of 

gaseous and solid fuels into hydrogen and syngas. This was shown for several combinations 

of gaseous and solid fuels.  
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