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1. Introduction 

The generation of hydrogen by biological means is not energy intensive compared with the 

conventional thermochemical techniques, since the operating temperature and pressure are 

not very high. As raw materials organic waste streams can be used that can be considered as a 

renewable resource (Vijayaraghavan & Mohd Soom, 2006).The method of the dark 

fermentation has certain advantages compared with the other biological processes. In contrast 

to bio-photolysis and photo fermentation, the process needs no solar radiation, but the 

required energy is supplied by the organic substrates and hence the process is not interrupted 

during the night. Moreover, the production rate of the H2 of the fermentative bacteria in 

comparison with the other biological processes is greater (Kumar et al., 2000; Nath et al., 2005).  

The different process parameters that are relevant for hydrogen production have been 

surveyed (Li & Fang, 2007; Wang & Wan, 2009) and include the type of substrate, nutrient 

concentration, the inoculum, pH, reactor configuration, hydraulic retention time (HRT), 

organic loading rate (OLR). Carbohydrate-rich substrates are the most suitable for 

fermentative H2 production systems (Hawkes et al., 2002; Kapdan & Kargi, 2006; 

Meherkotay & Das, 2008; Ueno et al., 2007) seeded with saccharoclastic microorganisms, 

They are able to break down organic substances via the Embden-Meyerhof pathway 

resulting to different metabolic products depending on the type of microorganism and the 

environmental conditions driving their catabolism (Hallenbeck, 2009).  

The relevant microbial groups for the fermentative hydrogen production groups are 

clostridia and enterobacteria (Hallenbeck, 2005; Hawkes et al., 2007). Both groups were 

repeatedly experimentally confirmed as major hydrogen producers (Valdez-Vazquez & 

Poggi-Varaldo, 2009). 
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Table 1. Biochemical reactions relevant to hydrogen production 

Enteric bacteria are gram-negative rods, facultative aerobic, with relatively simple nutrient 

requirements and can not form spores (Schmauder, 1992). Among the species that can produce 

H2, are Escherichia (E. coli), Proteus (P. vulgaris), Enterobacter (E. aerogenes). Enteric bacteria 

ferment sugars to a variety of end products such as acetate, formate, lactate, succinate, ethanol, 

CO2 and H2. Hydrogen is produced according to equation 1 (Li & Fang, 2007). The maximum 
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possible hydrogen yield by this pathway is 2 mol H2 per mol hexose. In experiments with 

intestinal bacteria rather half of this value has been found (Hallenbeck, 2005). 

Clostridia are spore forming, gram-positive bacteria (Schmauder, 1992). Through 

sporulation they can survive for example dehydration, heat and large changes in pH. 

Clostridial catabolism includes a variety of reactions and hence fermentation end-

products such as acetate, acetone (C. pasteurianum), butyrate (C. butylicum), butanol (C. 

acetobutylicum) or caproic acid (C. kluyveri) (Schmauder, 1992). Hydrogen, using hexose as 

a substrate can be produced by two pathways with acetate and butyrate as end-products 

as equations 1 and 2 describe (Hallenbeck, 2005; Hawkes et al., 2007; Li & Fang, 2007). 

That fact that clostridia can produce higher amount of hydrogen makes them more 

attractive and hydrogen systems aiming at their growth must be strived. In experiments 

with mixed cultures yields between 1.5 mol H2/mol hexose and 2.5 mol H2/mol hexose 

were achieved (Wang & Wan, 2009). In practice the highest yield is achieved when the 

catabolism is driven through a mixed acetate butyrate according to equation 4 (Lengeler, 

1999). This is because hexose can be also metabolized by hydrogen neutral fermentation 

pathways with lactic acid, ethanol, acetone, butanol as end-products, or a portion of the 

substrate is consumed for the production of biomass, which theoretically can be 18.5% 

and 14.5% of the theoretical one through the acetate and butyrate hydrogen producing 

pathway respectively (Aceves-Lara et al., 2008). More over, a part of hydrogen that is 

already produced may be consumed by certain microorganisms as homoacetogens 

(equation 5) with acetate as end-product (Dworkin et al., 2006), or propionic acid bacteria 

(equation 6) (Li & Fang, 2007), or sulfate reducing bacteria (equation 7). The co-existence 

of microorganisms other than hydrogen producing that compete for substrate has been 

observed in many hydrogen producing systems (Hawkes et al., 2007; Hung et al., 2011a, 

2011b; Li et al., 2011). A major part of them belongs to the lactic acid bacteria (LAB) 

distinguished to heterofermentative LAB, which produce lactic acid together with CO2 

(equation 8) and minor quantities of ethanol and acetic acid and the homofermentative 

LAB, which produce mainly lactic acid (equation 9) (Martinko & Clark , 2009). Through 

the monitoring of the metabolites of carbohydrate solely is not always possible to 

determine the metabolic pathays used by the bacteria, since many clostridia are capable of 

secondary fermentation. C. propionicum can for instance metabolize lactic acid for the 

production of propionate and acetate (equation 10), while some homoacetogens utilize 

ethanol and CO2 yielding acetate (equation 11). In some cases, hydrogen can be also 

produced by secondary fermentation C. kluyveri can utilize ethanol and acetate yielding 

hexanoic acid and molecular hydrogen by the oxidation of reduced ferredoxin (Fd) 

(equation 12) and C. tyrobutyricum can transform lactate and ethanol to butyrate (equation 

14) (Martinko & Clark, 2009). It is therefore obvious that biological hydrogen production 

systems are complicated in terms of biological processes and microbial species involved.  

Aim of this work was to experimentally study the effect of HRT and OLR on bio-

hydrogen production in terms of maximization of H2 yield, so as to optimize substrate 

utilization efficiency that contributes to the cost effectiveness of the process. Experiments 

were carried out in large-lab scale reactors of 30 L working volume. In this way, 
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experience in the start-up procedure, selection of only H2 producing microorganisms and 

the stability of long term continuous operation without methanogenesis of such a set-up 

could be gained. This can further be used for the scale-up of bio-hydrogen production 

towards the final aim of commercial implementation. An attempt towards the clarification 

of the possible metabolic pathways and the involved microorganisms, with along as their 

possible interactions was also undertaken. The way that these microorganisms behave 

and interract with each other and their milieu  is very important for the design of effective 

hydrogen producing systems. The understanding of these processes can help the designer 

to manipulate hydrogen production by the suitable variation of the process parameters. 

With the use of molecular biological techniques it is possible to acquire better insights into 

such systems.  

2. Materials and methods 

2.1. Experimental set-up 

Dark fermentation experiments were conducted in two identical 40 L reactors made of 

borosilicate glass (QVF) with a working volume of 30 L heated at 37 °C ± 2 °C by a heating 

pipe. The content of the fermenter was homogenized by external recirculation with 

eccentric screw pumps (Netsch). The pH was regulated by means of a pH glass electrode 

(Endress & Hauser, Orbisint CPS11) and a pH measuring transducer (Endress & Hauser, 

Mycom) connected to a programmable controller (Endress & Hauser, Memograph), which 

controlled 2 dosing pumps (Metrohm, Dosimat) for automatic addition of a sodium 

hydroxide solution 25% v/v and a hydrochloric acid solution 25% v/v, respectively. The 

Organic Loading Rate (OLR) was adjusted to the desired level by dosing (Metrohm, 

Dosimat) with molasses diluted 1:2 w/w and supplemented with nutrients. Every 100 mL 

of nutrient solution contained the following quantities in g; 1.72 FeSO4∙7H2O, 0.36 

CaCl2∙2H2O, 3.78 KCl, 0.17 MgCl2∙6H2O, 11.46 NH4Cl, 1.05 KH2PO4, 0.181 FeCl2∙4H2O, 

0.041 NiCl2∙6H20, 0.021 CoCl2∙6H2O, 0.011 ZnCl2, 0.170 KI, 0.177 (NaPO3)6, 0.0085 

MnCl2∙4H2O, 0.0085 NH4VO3, 0.0085 CuCl2∙2H2O, 0.0061 Al2(SO4)3∙18H2O, 0.0085 

NaMoO4∙2H2O, 0.0085 H3BO3, 0.0085 Na2WO4∙2H2O, Na2SeO3 0.0085, 0.170 cysteine. 

Depending on the Hydraulic Retention Time (HRT) applied, the following quantities of 

this solution were added to the molasses solution; 33 mL for HRT > 2 d, 66 mL for 1 d< 

HRT < 2 d and 123 mL for HRT < 1 d. 

The HRT was independent of substrate dosing. It was regulated by the pumping 

(Prominent, Gamma/L) of tap water and automatic removal of excess mixed liquor by a 

peristaltic pump (Ismatec, MPC Standard) controlled by a water lever sensor (Endress & 

Hauser, Liquiphant). The tab water was stored in containers and was daily sparged with N2 

in order to reduce the dissolved oxygen concentration bellow 1 mg/L.  The produced biogas 

quantity was measured with a drum-type gas meter (Ritter, TG 05) and registered into the 

programmable controller. The produced gas was collected in gas bags (Lindte). In Figure 1 

the experimental set-up is presented. 
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Figure 1. Experimental set-up 

2.2. Reactor operation 

The inoculum of the reactor has been acquired from the anaerobic digester of the Sewage 

Treatment Plant for Research and Education (LFKW) of the University of Stuttgart 

(Germany). It was diluted to 2% to 4% Total Solids (TS) concentration and sieved 

consecutively through 4 mm and 2 mm mesh size to prevent clogging of the tubing. It was 

then pretreated for 24 h at 105 °C, in order to kill the methanogenic bacteria. The dried 

sludge was pulverized and solved into tab water for the start-up of the system. As substrate 

sugar beet molasses acquired from a sugar factory in south Germany were used. In Table 2 

the composition of molasses is presented. For the start-up of the system, the reactor was fed 

with 450 g of sucrose in a batch mode at pH 6.5 in order to enrich the biomass in H2-

producing microorganisms. Upon sucrose depletion continuous operation of the system was 

started. The pH was reduced to 5.5, a value that has been reported to be the optimum for 

continuous bio-hydrogen production (Mariakakis et al., 2011). The first phase of continuous 

operation aimed at the further selection of the biomass for hydrogen producing bacteria by 

application of high HRT and low OLR. The various experimental conditions tested during 

the continuous operation are presented in table 3. Their selection was based depending on 

the experimental progress as described in chapter 3.1. In many cases one of the two reactors 

had to be re-inoculated with seed sludge acquired by the other reactor. All phases had a 

minimum duration of 5 times the applied HRT. At phase DVII (table 3) Fe2+ at end-

concentration in reactor of 1000 mg/L was added. 
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Molasses 

CODtot [mg/kg] 782000   

Ntot [mg/kg] 18610 Maltose [mg/L] -- 

Ptot [mg/kg] 216 Acetate [mg/L] 1020 

TS [g/kg] 848 Propionate [mg/L] 175 

VS [%] 892 Butyrate [mg/L] 3062 

Sucrose [g/kg] 520 D-Glucose [mg/L] -- 

Lactose [mg/L] -- Lactate [mg/L] 13736 

Table 2. Composition of molasses  

2.3. Analytical methods 

The analyses of concern were determined according to the german standards (Deutsches 

Institut fuer Normung, 2002) and performed three times a week. These included; total 

solids (TS), volatile suspended solids (VSS), chemical oxygen demand (COD), a group 

parameter used for the detection of carbonaceous matter and nitrogen (in total and 

soluble form acquired after filtration through membrane with 0.45 μm pore diameter). 

Glucose, sucrose and lactic acid have been determined spectrophotometrically after 

enzymatic digestion by test kits according to the manufacturer’s instructions (R-

Biopharm). Gas Chromatography was used to analyze organic acids and alcohols. The 

sample was filtered through a 0.45 μm  pore diameter filter and acidified with a 96% 

H2SO4 solution. Organic acids, ethanol and butanol were detected by GC (Perkin Elmer) 

mounted with a fused silica capillary (Varian) and using a flame ionization detector. Both 

the injection and capillary temperatures were set at 280 °C. Biogas composition was 

determined once daily after up-grading for particulate matter and water vapor removal 

by a gas analyzer (ABB, AO2020), equipped with an infrared detector for CH4 and CO2 

and a thermal conductivity detector for H2. 

DNA extraction, 16S rDNA of eubacteria and clostridia PCR amplification, DGGE analysis 

and sequencing were performed as previously described (Mariakakis et al., 2011).  

3. Results and discussion 

3.1. Reactor operation  

In figure 2, the reactor operation parameters, gas production and hydrogen yield 

performance for the experimental phases DI to DIII are presented. 
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After the start-up of the reactor for a week, the HRT and OLR were reduced to 4 d and 11.6 

g sucrose / (L∙d) respectively. After about 15 d a continuous H2 production could be 

established (phase DI), which stabilized after approximately 30 d. The average soluble COD 

concentration in the reactor was app. 60 g/L and the average H2 yield 2.47 

mol H2/mol hexose. 

 

Figure 2. Operation parameters, gas production, hydrogen yield performance and production rate of 

relevant metabolites during phases DI to DIII. Arrows indicate the sampling dates for microbial 

population analyses 
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Table 3. Experimental phases, operating parameters and average concentrations and yields of 

produced gases and metabolites  
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On the 41st day of operation the OLR was increased from 11.6 g sucrose / (L∙d) to 24.7 g sucrose 

/ (L∙d) (phase DII), which caused an increase to the residual sucrose concentration in the 

reactor during the first days. The biomass was not able to metabolize the total amount of 

substrate. Over the total 35 d of operation of this phase H2 in the produced biogas gradually 

decreased and after 70 d no H2 was detected. The fact that biogas production was sustained, 

indicated biological activity, but not towards H2 production. In phase DIII the HRT was 

reduced to 2 d with the OLR retained unchanged. The concentration of soluble COD decreased 

gradually from 100 g/L to 60 g/L due to the higher dilution rate. Nevertheless, H2 production 

could not be restored and the reactor operation was terminated. 

After one month of operation the excess sludge from reactor a (R-a) was used to inoculate 

reactor b (R-b) (phases D1 to D7). In figure 3 the reactor operation parameters, gas production 

and hydrogen yield performance for the experimental phases D1 to D7 together with the data 

from phase DI for continuity and comparison reasons are presented. Biogas and hydrogen 

production started immediately upon seeding of the reactor at HRT of 3 d and OLR of 

11.6 g sucrose / (L∙d). Hydrogen production was stable, but the yield was lower than  

1 mol H2/mol hexose. The concentration of soluble COD did not exceed 45 g/L. Increase of the 

OLR at 24.7 g sucrose / (L∙d) lead to steep increase of the soluble COD and COD-sucrose 

concentration above 120 g/L and 60 g/L respectively and a decrease of the COD concentration 

of the metabolites. It seems that in the beginning the biomass concentration was not sufficient 

to metabolize the whole amount of sucrose, which on its turn accumulated in inhibitory levels 

as demonstrated by the cease of biogas and hydrogen production and the reduction of the 

COD-organic acids. It has been reported (Hafez et al., 2010) that glucose can become inhibiting 

for residual concentrations above 20 g/L. This problem could be overcome by the reduction of 

HRT to 1 d (phases D3 and on). H2 production was restored immediately and was maintained 

until the termination of the experiment due to time constraints. Biogas and hydrogen 

production exhibited fluctuations over time. These can be generally attributed to the 

experimental procedure followed, which affected the actual HRT and OLR. The dosing of 

water and substrate was stopped everyday for different periods each time, in order to be 

prepared as described in Materials and methods. Stronger fluctuations were related mostly to 

the failure of substrate dosing due to tube clogging. In all phases, except phases D4 and D6, 

the H2 yield was equal or lower than 1 mol H2/mol hexose (table 3). In phase D4 it reached  

1.53 mol H2/mol hexose for HRT of 1 d and OLR of 36.1 g sucrose / (L∙d) and in phase D6  

1.31 mol H2/mol hexose for for HRT of 0.5 d and OLR of 36.1 g sucrose / (L∙d). 

During the whole R-b operation, which together with the time period of phase DI reached 

180 d, no methane was detected. Methanogenesis could be inhibited through the thermal 

pre-treatment of the seed sludge and the selected operation parameters were sufficient for 

hindering the proliferation of the methanogens in the system. In our previous work for 

which no pre-treatment of the seed sludge was carried out methanogenesis could be only be 

inhibited for 120 d (Mariakakis et al., 2011). Sucrose in higher concentrations could be 

detected only in phases D2 and D7 resulting in average substrate degradations of 71.5% and 

83.1% respectively. In D2 sucrose accumulated in the beginning of the phase as results of the 

long HRT and the OLR of 24.7 g sucrose / (L∙d). At D7 sucrose could not be degraded due to 

the high OLR of 69.6 g sucrose / (L∙d) and the short HRT of 0.25 d. 
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The excess sludge from phase D3 of R-b was used to re-inoculate R-a (phases DV and DVI). 

In phase DVII the reactor was inoculated with excess sludge of phase D6. In Figure 4 the 

reactor operation parameters, gas production and hydrogen yield performance for these 

experimental phases together with the data from phase D3 for continuity and comparison 

reasons are presented.  

 

Figure 3. Operation parameters, gas production, hydrogen yield performance, HBu:HAc ratio and 

production rate of relevant metabolites during phases DI to D7. Arrows indicate the sampling dates for 

microbial population analyses 
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Figure 4. Operation parameters, gas production, hydrogen yield performance, HBu:HAc ratio and 

production rate of relevant metabolites during phases D3 to DVII. Arrows indicate the sampling dates 

for microbial population analyses 

Biogas and hydrogen production started also in these cases immediately after seeding of the 

reactor. Due to the OLR set at 47.1 g sucrose / (L∙d), the average soluble COD concentration  

reached 61 g/L. H2 production (phase DV) yieldied 0.43 mol H2/mol hexose. The decrease of 

the OLR to 36.1 g sucrose / (L∙d) and increase of HRT to 2 d in phase lead to further increase 

of the soluble COD to an average concentration of 98 g/L. Hydrogen yield was slightly 
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improved and reached 0.63 mol H2/mol hexose. Biogas and hydrogen production during 

phase DVII were instable mainly due to malfunctions of the substrate dosing. The hydrogen 

yield for addition of Fe2+ achieved was 1.68 mol H2 / mol hexose, which corresponds to an 

increase of approximately 28 % in comparison to phase D6. 

The addition of Fe2+ enhanced hydrogen production. From table 3 it can be seen that 

biomass production rate reached the highest value of 161 g/d comparable only with that of 

phase D7 that was acquired for double as much OLR. For comparison at phase D6, biomass 

production rate was only 94 g/d. It seems that this nutrient that is important for H2 

production as will be explained in chapter 3.2 was limiting for the biomass growth, since it 

was not included in high enough concentrations in the nutrient solution with which the 

molasses solution was supplemented.  

In Table 4 the hydrogen yield of other works in comparison to the best acquired by this 

work are presented. In most of the cases slightly better results were acquired by the other 

researchers. In a semi-scale reactor operated at HRT of 0.25 d and pH 4.5 hydrogen yield up 

to 1.86 mol H2/mol hexose was achieved (Ren et al., 2006). Lay et al. (2010) maximized the 

yield for HRT of 0.5 d and pH of 5.5 like in this work, but achieved a somewhat lower yield 

of 1.35 mol H2 / mol hexose, even though the reactor set-up was considerably smaller 

permitting for better control of operation. Aceves-Lara et al (2008) operated a 2 2 L CSTR at 

HRT of 0.25 d and pH of 5.5. The maximum yield acquired was 1.70 mol H2 / mol hexose for 

an OLR of 24.2 g COD / (L∙d). For OLR as high as 77.2 g COD / (L∙d) the acquired hydrogen 

yield was much higher than that of the current work (0.84 mol H2 / mol hexose) for the same 

HRT and OLR of 69.6 g sucrose/(L∙d), which is equivalent to 107 g COD / (L∙d) (Aceves-Lara 

et al., 2008). It is obvious that the process can be further optimized.  

 

Work 

OLR HRT pH VReactor Duration H2-Yield Degradation 

[g COD/

(L d)] 
[d]  [L] [d] 

[mol H2/ 

mol Hexose]
[%] 

Ren et al. (2006) 

6.32 0.44 

4.5 1480 

10 0.34 -- 

27.98 0.25 10 1.86 -- 

42 0.162 10 1.81 -- 

Lay et al. (2010) 

40 1 

5.5 4 

130 0.48 60.2 

80 0.5 130 1.35 64.3 

120 0.67 130 0.89 68.1 

Aceves-Lara 

(2008) 

24.2 0.25 

5.5 2 

17 1.70 100 

48.5 0.25 12 1.62 100 

77.2 0.25 18 1.26 98 

Own 

(D4) 50 (36.1) 1 

5.5 30 

20 1.51 99.4 

(D6) 50 (36.1) 0.5 21 1.31 97.2 

(DVII) 50 (36.1) 0.5 25 1.68 99.4 

Table 4. Operating parameters, efficiencies and hydrogen yields of works with molasses as substrate 

for fermentative hydrogen production 
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3.2. Microbial metabolism 

From Figures 2 to 4 and Table 3 it can be seen that the major metabolites for all tested 

parameters were lactic, acetic, and butyric acid together with ethanol. Propionic and 

hexanoic acid were produced in low quantities and only in same cases. Pentanoic acid and 

butanol were not detected at all. Acetate and butyrate are typical for H2 production by 

mixed acid fermentation of sucrose as already mentioned in introduction. Lactate can be 

produced by either lactic acid bacteria or by bacteria of the genus Clostridium via a pathway 

that does not promote H2 production (Hiligsmann et al., 2011). 

During phase DI lactate was produced in less quantity than acetate and butyrate with the 

later being produced in almost the same proportion indicating a mixed acid 

fermentation, even though the theoretical yield of 2.6 mol H2 / mol hexose was not 

reached (equation 4). The increase of the OLR in phases DII and DIII has lead to 

gradually increasing lactate production rate with simultaneous increase of acetate into a 

lesser extent and decrease of butyrate. The higher substrate availability forced the 

biomass to shift its metabolism from mixed acid fermentation to lactate fermentation. 

The fact that biogas production also declined is an indicator for homolactic fermentation 

by LAB, during which only lactate is produced (equation 9). In phases DV and DVI lactic 

acid production could not be solely due to homolactic fermentation, since biogas was 

produced. Higher lactic acid production than acetic and butyric acid production was 

observed in the phases for which HRT and OLR were equal or higher than 1 d and 24.7 

g sucrose / (L∙d) respectively. The exact mechanism of lactic acid production can be 

explained either by the co-existence of LAB (Hafez et al., 2009) or by the metabolic shift 

of the hydrogen producing clostridia (Minton & Clarke, 1989). In all cases though, high 

lactic acid production was combined to an increase of the OLR (Oh et al. 2004; Kim et al., 

2006; Oh et al., 2004; Hafez et al., 2009) and caused a diminution of hydrogen yield. The 

effect of lactic acid as a metabolite in hydrogen systems has not yet been clarified. It has 

been reported to be promoting to hydrogen production at low concentrations and 

inhibiting at high concentrations. In a work (Baghchehsaraee et al., 2009), an increase of 

the hydrogen yield combined with the complete degradation of the externally added 

lactic acid in concentrations up to 3 g/L was observed. In another work, Kim et al. (2012) 

also observed an increase of 22% in hydrogen yield when lactic acid up to 8 g/L was 

added to batch fermentors operated at pH of 4.5, and a reduction when the concentration 

was raised at 18 g/L. The corresponding undissociated form of the lactic acid, which is 

the potential inhibitor (van Ginkel & Logan, 2005) was 21 mmol/L and 45 mmol/L at pH 

4.5 according equation 15. In this work, the highest lactic acid concentration was 35 g/L 

(9 mmol/L undissociated lactic acid at pH 5.5) and was only reached temporarily in the 

beginning of phase D3 without any obvious long-term negative influence on the 

hydrogen process, like in phase DIII. It seems that lactic acid was not the inhibition 

factor, but another substance that was not monitored. 

 loga

A
pH pK

HA

−

= +  (15) 
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For phases DI to DIII and D1 to D3 during which OLR lower or equal to 24.7 

g sucrose / (L∙d) was applied, acetate and ethanol were produced in almost the same rates. A 

ratio of EtOH:HAc equal to 1:1 has also been proposed for clostridia as described by 

equation 1 for enteric bacteria, when hydrogen is evolved only through the conversion of 

Acetyl-CoA to pyruvate, yielding 2 mol H2 / mol hexose (Minton & Clarke, 1989). For higher 

loadings the observed ethanol production rate diminishes either due to a metabolic shift of 

the biomass or due to its consumption. Ethanol has also been detected in other hydrogen 

producing systems operated at pH 5.5 and various HRT and OLR (Gavala et al., 2006; 

Karadag & Puhakka, 2010a; Kim et al., 2006; Shen et al., 2009) as a product either of 

enterobacterial (Hallenbeck, 2005), clostridial hydrogen production (Akutsu et al., 2009; Lin 

& Lay, 2004), or heterolactic bacteria (Kandler, 1983). In the case of clostridia, it has been 

suggested that ethanol is produced during the late growth phase during which no hydrogen 

is produced, while H2 production is favored during the exponential growth phase, during 

which the organic acids are produced (Nath & Das, 2004), yielding at the end of a batch 

fermentation a ratio of 1:1. By the adjustment of short HRT in CSTR it is possible to maintain 

the bacterial population in the exponential growth phase. However, the adjustment has to 

be suitable so that the biomass concentration in the reactor can be also maintained in 

concentrations that are suitable for high substrate conversion rates.  

Propionic acid was produced in phases D3 and D4. Sucrose fermentation to propionic acid is 

a sink for hydrogen and according to equation 6 for each mol of propionic acid produced 1 

mol of hydrogen is consumed. The derived hydrogen consumptions for phases D3 and D4 

correspond to 15% and 19% of the total produced hydrogen respectively.  

Hexanoic acid was mainly produced during phases DI, DII, DVI and D2. The HRT of all these 

phases was equal to or longer than 2 d. The production of hexanoic acid can only be explained 

by a possible secondary fermentation of C. kluyveri as described by equation 12 and 15. 

The addition of Fe2+ in phase DVII did not influence the production rates of acetic acid in 

comparison to phase D6. On the other hand, the production rate of lactic acid was significantly 

reduced from 1230 mmol/d to 329 mmol/d corresponding to approximately 72% and ethanol 

was not produced anymore. Parallel, the production rate of butyrate increased approximately 

by 27%. The overall bacterial metabolism was shifted to butyrate fermentation and biomass 

growth as described in 3.1. This is an indication that lactic acid and ethanol production in the 

phases with relative short HRT (<1 d) was mainly due to the clostridial metabolism. They 

contributed more than 2/3 to the total lactic acid production. Iron is very important to 

hydrogen production, which is produced when the simple reaction of Eq. 16 takes place. This 

reaction is catalyzed in clostridia by a dimetallic iron only [FeFe]-hydrogenase, which receives 

protons by the reduced form either of ferredoxin or of NADH (Vignais & Billoud, 2007). Under 

iron limitation the activity of hydrogenase is also limited (Valdez-Vazquez & Poggi-Varaldo, 

2009), pyruvate can not be degraded through the pathways leading to hydrogen, but 

fermentation is shifted towards lactic acid production (Minton & Clarke, 1989). 

  2 H+ + e- ↔ H2 (16) 
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3.3. Microbial population 

3.3.1. Species description and influence of HRT and OLR 

The sample times for the phylogenetic analysis and the affiliated dominant species present 

in each experimental phase are indicated in figures 2 to 4. In figures 5 and 6 the PCR-DGGE 

profiles of the Eubacteria and Clostridium species are presented. The investigation on 

eubacterial 16S rDNA (table 5) showed mostly lactic acid bacteria of the Phylum Firmicutes 

as closest relatives to the detected DGGE bands. The analysis of 16S rDNA for clostridia 

showed repeating DGGE patterns (figure 5). In many cases several single bands in one lane 

showed the same sequence and could be affiliated to one Clostridium species, though it was 

possible to allocate several bands to different clostridia species. Most of the bands could be 

affiliated to the species C. butyricum, C. tyrobutyricum and C. ljungdahlii (table 5). 

Carnobacterium sp. AT12 was the only Eubacterium species found in the seed sludge after the 

thermal pre-treatment and before start-up (table 6). It is a non-spore forming, facultative 

anaerobic and heterofermentative lactic acid bacterium (de Vos, 2009), which previously 

belonged to the genus of Lactobacillus (Dworkin et al., 2006). Even though this bacterium is 

no spore forming, it was able to survive the thermal pre-treatment. After the addition of 

substrate it was replaced by other species of LAB. The members of this genus are facultative 

anaerobic, mesophilic, non-spore forming, obligately saccharoclastic with complex 

nutritional requirements. Their optimum pH for growth is between 5.5 and 6.2, but they can 

also grow for pH lower than 5. L. fermentum is obligately heterofermantative. It degrades 

hexose to equimolar quantities of lactic acid, CO2 and acetate or ethanol via the 6-

phosphogluconate pathway.  

 

Figure 5. DGGE-profile of the Eubacterium species from each experimental phase. The numbers denote the 

bands that have been sequenced and successfully allocated. The sequencing results are presented in Table 5 
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L. delbrueckii subsp. bulgaricus on the other hand is obligately homofermentative and 

degrades hexose via the Embden-Meyerhoff pathway to lactic acid (de Vos, 2009). Through 

the phases DI to DII species of Lactobacillus established a stable community in the reactor. At 

phases DI and DII Olsenella species were also detected, while at phase DIII Sporolactobacillus 

has been identified (table 6). Species of the genus Sporolactibacillus are facultative anaerobic 

and obligately homofermentative. They can form spores, which are resistant to heating at 80 

°C for 10 min (de Vos, 2009). They can grow only on fermentable carbohydrates at pH 

greater than 4.5. Their optimum growth temperature is 30 °C (Dworkin et al., 2006). For 

Olsenella sp. oral taxon 809 there are no metabolic data available, since it has not been 

cultivated. In general the species genus Olsenella is non-spore forming, homofermentative 

and strictly anaerobic. The end-products of sucrose fermentation consist mainly of lactic 

acid and to a lesser extent of acetic acid (Olsen et al., 1991). The presence of these bacteria 

can explain the increasing production rate of lactate and acetate indicating an overall shift of 

the bacterial metabolism in the system to lactic acid fermentation and more specific to 

homolactic fermentation as derived by the decreasing biogas production. They compete 

with the hydrogen producing bacteria for substrate.  

In the seed sludge three species of Clostridium could be identified. Only C. butyricum could 

be maintained in the system until the end of phase DIII (table 6). The rest of the initially 

present Clostridium species were replaced by others indicating a constant changing 

population, like in the case of (Huang et al., 2010). All of them are able to produce copious 

amounts of hydrogen gas by mixed acid fermentation with acetate and butyrate as their 

major end-products as already mentioned. Even though, hydrogen producing bacteria 

where identified during phases DI to DII, the deterioration of hydrogen production could 

not be hindered. The lactic acid bacteria could proliferate in the system.  

 

Figure 6. DGGE-profile of the Clostridium species from each experimental phase. The numbers denote the 

bands that have been sequenced and successfully allocated. The sequencing results are presented in table 5 
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Also in the case of phases DVI, D1 and D2 (tables 6 and 7) the symbiosis of lactic acid together 

with hydrogen producing bacteria could be observed resulting to high lactic acid production 

rates and medium to low hydrogen yields. In all cases, the employed HRT was equal or higher 

to 2 d. It seems that long HRT contribute to the dominance of lactic acid over hydrogen 

producing bacteria. In the case of phases D3 to D7, high production rates of lactic acid could 

still be observed, but they were lower than that of acetic and butyric acid, while medium to 

higher hydrogen yields could be achieved. The HRT applied was equal to or lower than 1 d. 

Under these conditions the hydrogen producing metabolism could dominate over the lactic 

acid metabolism. After phase D3 and on C. tyrobutyricum became one of the dominant 

Clostridium species. After phase D5 and on Sporolactobacillus could not be found any more in 

the system. It seems that HRT lower than 0.5 d does not support its growth. In the work of 

Fang (2002) who investigated hydrogen production by untreated secondary sludge at pH 5.5, 

loading rate of 25 g sucrose / (L ∙ d), HRT 0.25 d and temperature of 26 °C, 69.1% of the 

microbial clones were affiliated to Clostridium species and 13.5% to Sporolactobacillus racemicus, 

which was able to be retained in the system due to the granular sludge reactor configuration.  

Analogously, Olsenella disappeared from the system at phase D7 for HRT of 0.25 d. Lo et al 

(2008) could detect Olsenella and C. butyricum in a hydrogen producing reactor with xylose as 

substrate at HRT of 2 hours. They also used granular sludge. In another work (Castelló et al., 

2009), the acquired low hydrogen yield was justified by the presence of Olsenella along with 

Prevotella, Bulleidia, Mitsoukella and Selonomonas species, which consumed the substrate. In this 

work, C. tyrobutyricum became visible also through the eubacteria specific primers indicating a 

general proliferation of Clostridium species for vey short HRT that comes in agreement with 

the low doubling times of 30 min to 3 h that have been observed for most Clostridium species 

(Dworkin et al., 2006). Despite the dominance of hydrogen producing biomass over lactic acid 

bacteria, the hydrogen yield was relatively low due to the low sucrose degradation efficiency. 

The biomass concentration in the system was not sufficient to metabolize the whole amount of 

substrate. L. mucosae, an obligate heterolactic bacterium, could maintain itself in the system 

even for HRT as low as 0.25 d. These findings are in agreement with the observations of (Kim 

et al., 2012), who investigated hydrogen production by a lactate-type fermentation in a CSTR 

with working volume of 4 L, glucose as substrate and digester sludge as inoculum pre-treated 

with acid. For HRT of 1 d and OLR equal to 10 g / (L∙d) they affiliated 65% and 35% of the total 

bacterial population to Eubacterium and Clostridium species respectively. When the OLR was 

increased to 40 g / (L∙d) the proportion changed in favor to Eubacterium species to 72% and 28% 

respectively. For the same OLR but HRT equal to 0.5 d a balance between the two populations 

with 50% each was established.  

C. ljungdahlii could be detected in the system during the phases DIV, DVI, DVII and D1 to 

D7. More than 90% of its strains can produce H2 during heterotrophic growth on glucose or 

fructose, while sucrose can not be utilized (de Vos, 2009). It can also grow autotrophically on 

H2 and CO2 or CO. It forms spores only rarely. The regulation of the diverse pathways of 

homoacetogens is still not understood (Dworkin et al., 2006). For the first case, extracellular 

enzymes released to the bulk liquid by other microorganisms that are able to degrade 

sucrose to glucose and fructose are required. In a mixed acid fermentation as described by 
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Eq. 4, a ratio of HBu:HAc should have been obtained. In most of the cases this ratio is lower 

than one indicating that acetic acid is also produced through a pathway other than that of 

hydrogen production. It seems that C. ljungdahlii is consuming hydrogen. 

 

Band No. Affiliation Similarity
Accession 

Number 

1 Lactobacillus mucosae strain TB-H32 97 AB425938 

2 Carnobacterium sp. AT12 91 DQ027062 

3 Lactobacillus mucosae strain FSL-04 1 87 JN092131 

4 
Lactobacillus delbrueckii 

subsp. bulgaricus strain CH3 
85 JN675227 

16; 18; 19; 20; 

22 
Olsenella sp. oral taxon 809 84-95 GU470903 

5 Lactobacillus fermentum strain -O rkz-4 90 JN836490 

6 Lactobacillus delbrueckii subsp. bulgaricus 2038 98 CP000156 

7 Carnobacterium sp. AT12 93 DQ027062 

8 Lactobacillus casei strain GIMC8:TVS-72 91 JF728260 

9 
Uncultured Burkholderiales bacterium clone 

CA38 
96 EF434370 

10; 21 Sporolactobacillus sp. MB-051 90; 91 AB548940 

11 Lactobacillus mucosae strain LAB87 95 EF120376 

12 Clostridium tyrobutyricum 5S 88 L08062 

13 Lactobacillus mucosae strain SF1031 94 FN400925 

14 Marine bacterium strain SJ-BF7 84 AM260710 

17 Clostridium tyrobutyricum strain SCTB132 94 JN650297 

23; 29; 32 Clostridium butyricum strain CB TO-A 94-100 AB687551 

24; 39; 43; 44; 

45; 50; 51; 52 

Clostridium ljungdahlii 

type strain DSM13528T 
87-100 FR733688 

25; 26; 28; 30; 

31; 40; 41; 42; 

46; 47 

Clostridium tyrobutyricum 

strain SCTB130 
80-100 JN650295 

27 Clostridium sp. 2NR375.1 96 JQ248567 

33 Clostridium peptidivorans strain TMC4 100 FJ155851 

34 Clostridium intestinale 97 AY781385 

35 Clostridium disporicum strain NML 05A027 100 DQ855943 

36;37 Clostridium tyrobutyricum strain S1 94; 100 JN241679 

38 Clostridium ljungdahlii DSM 13528 89 CP001666 

48; 49 Clostridium butyricum strain T-08B 97; 95 FR734082 

53 Clostridium tyrobutyricum strain SCTB125 61 JN650290 

Table 5. Affiliation of the DGGE bands to bacterial species after sequencing of the 16S rDNA gene 
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3.3.2. Effect of Fe2+ addition 

The addition of Fe2+ at phase DVII had an influence on the bacterial population in 

comparison to the seed sludge (phase D6). L. casei, Sporolactobacillus from the LAB and 

C. butyricum became also dominant, while Olsenella was not any more detected.  The 

presence of an extra lactic acid bacterium species though, contradicts the observed reduction 

of lactic acid production rate. The most probable explanation is that given in 5.3. The 

clostridial metabolism was shifted from lactic acid production, which is triggered under 

limitation of Fe2+ (Dürre, 2005), to butyrate. Nevertheless, LAB could still influence the 

system as the production of lactic acid in phase DVII indicates, also for HRT as short as 0.5 

d, not like in the case of Kim et al. (2006), who discovered only one lactic acid bacterium 

(Bacillus racemilacticus) and only during the phase with OLR = 60 g COD / (L ∙ d), while for 

higher or lower OLR no such species was found, although lactate has been produced in all 

cases, indicating that lactate in the system was a product of Clostridium species metabolism, 

which dominated the system. 

In an investigation (Karadag & Puhakka, 2010b) about the influence of Fe2+ concentration 

in the range of 0.5 mg/L to 100 mg/L on a CSTR system fed with glucose and operated at 

HRT of 0.208 d, OLR of 43.2 g glucose /(L∙d) and pH 5 an increase of 71% in hydrogen 

yield for Fe2+ concentration of 50 mg/L was achieved, followed by a fermentation shift 

from ethanol type to butyric acid type like in this work. In two other works (Wang & 

Wan, 2008) and (Lee et al., 2001) investigating the influence of Fe2+ concentration in batch 

experiments with vials, optimum concentrations of 350 mg/L and 352.8 mg/L were 

detected respectively. It seems that there is potential for the optimization of the quantity 

added to the system. 

3.3.3. Symbioses in fermentative hydrogen production systems 

There are only a few works that have investigated the bacterial population and the influence 

of HRT and OLR on hydrogen producing systems by molasses. Ren et al. (2007) studied the 

influence of pH on the microbial population structure of bio-hydrogen production by 

molasses in a 2.5 L CSTR seeded with sewage solids and operated at HRT of 0.25 d, OLR 

between 7 g COD / (L∙d) and 30 g COD / (L∙d) and at temperature of 35 °C. At pH between 

5.5 and 6 mixed ethanol-butyrate fermentation was observed. In this work no ethanol could 

be detected for HRT of 0.25 d. In the reactor a co-existence of clostridia and LAB was 

observed like in this work. The bacterial population was dominated by C. pasteurianum, 

Lactococcus sp., Desulfovibrio ferrireducens together with uncultured species of Actinobacterium 

and Bacteroidetes. Chu et al. (2011) on the other hand, did not observe such a co-existence. 

They affiliated most clones found in a suspended sludge system treating fermented 

molasses with HRT raging from 0.33 d to 0.083 d to C. butyricum, Megasphaera sp. and 

Corynebacterium glutamicum. In the case of defined substrate, Kim et al. (2006) obtained the 

optimum hydrogen yield when a LAB (Bacillus racemilacticus) together with Clostridium 

species were dominant in the system.  
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The dominance of the lactic acid bacteria Sporolactobacillus, Olsenella, along with hydrogen 

producing C. tyrobutyricum, C. butyricum and Clostridium sp strain S6 was observed in a 

Continuously Stirred Tank Reactor (CSTR) at pH 5.5 and HRT of 1 d yielding 

1.24 mol H2/mol hexose (Wongtanet et al., 2007). The bacterial population examination 

confirmed in this case a symbiosis between the lactic acid and hydrogen producing bacteria, 

too. In another work (Ohnishi et al., 2010), in which kitchen waste containing lactate was 

used as substrate, lactic acid removal was also observed along with carbohydrate 

degradation during hydrogen production in an Anaerobic Sequencing Batch Reactor. The 

phylogenetic analysis affiliated the dominant bacteria to the genera of Lactobacillus, 

Selonomonas, Veillonella and Megasphaera, which belong to the phylum of Firmicutes, to 

Prevotella genus of the phylum of Bacteroidetes and to Atopobium and Bifidobacterium of the 

Actinobacteria phylum. Hydrogen production has been attributed, due to the absence of 

Clostridium species, to Megasphaera by simultaneous utilization of the carbohydrates and the 

lactate contained in the initial feed and produced by the LAB Lactobacillus present in the 

system and which in return as aerotolerant bacterium consumed residual oxygen for 

establishing a suitable milieu for the anaerobe Megasphaera and supplying it with lactate for 

hydrogen production. 

 

Affiliation 
Phase 

Seed Seed DI DII DVI DVII 

Eubacterium species 

Carnobacterium sp. AT12 o  

Lactobacillus fermentum o  

Lactobacillus delbrueckii 

subsp. Bulgaricus 
 o o o   

Uncultured Burkholderiales 

bacterium clone CA38 
 o     

Lactobacillus mucosae o o 

Lactobacillus casei o 

Sporolactobacillus sp. MB-051 o o o 

Olsenella sp. oral taxon 809 o o  

Clostridium species 

Clostridium butyricum + + + + + + 

Clostridium peptidivorans +  

Clostridium disporicum +  

Clostridium sp. 2NR375.1 + +  

Clostridium intestinale +  

Clostridium tyrobutyricum + + + 

Clostridium ljungdahlii +/- +/- 

Table 6. Allocation of the microbial species to the seed sludge and the operation phases DI to DVIIIe. 

Microbial population has been simplified to species level. Symbols: “o” no hydrogen production or 

consumption. “+/-“ some strains can produce hydrogen. “+” hydrogen production and “-“ hydrogen 

consumption 
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In an other investigation (Hung et al., 2011b), it was also suggested that the facultative 

anaerobes of Streptococcus sp. and Klebsiella sp. found in the granular sludge of hydrogen 

producing fermentors seeded with untreated sewage sludge, maintained the strict anaerobic 

conditions required by the Clostridium species for hydrogen production. In the work of Kim et 

al. (2009), a CSTR seeded with thermally pre-treated sludge at 95 °C for 15 min was operaterd 

at OLR of 50 g COD / (L∙d), HRT of 0.5 d, pH regulated at 5.3 and temperature at 35 °C. In this 

case also, a symbiosis of hydrogen producing clostridia with the lactic acid bacteria L. 

delbruecki and Lactococcus lactis was observed. Such an enhancing symbiosis can not be 

excluded that also takes place in the system of this work, so that the residual dissolved oxygen 

of the water added into the system could be removed. More over, the possibility of a 

secondary fermentation by C. tyrobutyricum present in most of the experimental phases and 

facilitated by the production of lactate by the LAB as described in our previous work 

(Mariakakis et al., 2011) and later demonstrated (Wu et al., 2012) has to be considered, too.  

In any case, this symbiosis reduces the available substrate for hydrogen production. 

Furhtermore, in this work, it was not beneficial to hydrogen production in the phases with 

long HRTs, but deteriorated or even completely inhibited it. Lactobacilli possess the potential 

of inhibiting other microorganisms by different mechanisms. Their fermentation products 

consist mainly of lactic and acetic acid, which reduce the pH which on its side reduce their 

dissociation degree. In the presence of oxygen many species such as L. lactis and L. bulgaricus 

can produce H2O2, which is bacteriocidal for gram negative and bacteriostatic for gram 

positive bacteria (de Vos, 2009). They can produce bacteriocins, proteinaceous substances with 

bactericidal effect on microorganisms closely related to the producer. Most probable each 

Lactobacillus species has strains that can produce bacteriocins. Among the organisms that have 

been found in the present work L. casei and L. fermentum can produce bacteriocins that are 

inhibiting other lactobacilli (Dworkin et al., 2006). Nevertheless, it was demonstrated that 

bacteriocins can hinder non-closely related microorganisms, too. For instance, an inhibition 

effect of L. lactis on C. tyrobutyricum due to the excretion of the bacteriocin nisin Z was detected 

(Rilla, 2003) and of L. paracasei on C. acetobutylicum and C. butyricum (Noike, 2002). It can not be 

excluded that the lactobacilli present on this work exert a similar effect on the clostridia 

species. There are also some bacteriocin-like substances produced by lactobacilli, such as 

bulgarican produced by L. delbrueckii subsp. bulgaricus that can inhibit a wide range of non 

related pathogenic gram negative bacteria. L. delbrueckii, L. fermentum and L. casei are also 

capable of producing bacteriophages that can cause cell lysis (Dworkin et al., 2006). L. casei, L. 

fermentum and L. bulgaricus have been also identified in this work, so an edverse effect can not 

be excluded as in several other works has been suggested. It has been proposed that L. 

ferintoshensis and L. paracasei present along with Clostridium sp. and Coprothermobacter sp. in 

untreated digester sludge negatively influenced hydrogen production (Kawagoshi et al., 2005). 

The same was suggested for Sporolactobacillus sp. that was present in an anaerobic sequencing 

batch reactor seeded with heat pre-treated sludge and operated at pH 5.0 using sweet 

sorghum syrup as substrate at OLR of 25 g sugar/(L∙d) (Saraphirom & Reungsang, 2011). They 

justified it by their ability to produce bacteriocins as Noike et al. (2002) suggested. None of 

these substances has been monitored, so a possible accumulation in concentrations that are 

inhibiting to the clostridia can only be determined by a general parameter as the COD. 
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Affiliation 
Phase 

D1 D2 D3 D4 D5 D6 D7 

Eubacterium species 

Marine bacterium SJ-BF7 o   

Olsenella sp. oral taxon 809 o o o o o  

Lactobacillus mucosae o o o o o o 

Sporolactobacillus sp. MB-051 o o o   

Clostridium tyrobutyricum  + 

Clostridium species

Clostridium ljungdahlii +/- +/- +/- +/- +/- +/- +/- 

Clostridium butyricum +   

Clostridium tyrobutyricum + + + + + 

Table 7. Allocation of the microbial species to the seed sludge and the operation phases D1 to D7. Microbial 

population has been simplified to species level. Symbols: “o” no hydrogen production or consumption. “+/-“ 

some strains can produce hydrogen. “+” hydrogen production and “-“ hydrogen consumption 

In most cases, heat treatment of the seed sludge was applied, but it was not sufficient to 

inhibit the growth of lactic acid bacteria, although they can not form spores and it has been 

demonstrated in vials that heat treatment between 50 °C and 90 °C is sufficient (Noike et al., 

2002). For instance, L. delbrueckii and L. fermentum were able to be identified at batch 

experiments producing hydrogen seeded with activated sludge and digester sludge 

thermally pre-treated at 65 °C for 30 min (Baghchehsaraee et al., 2010; Hafez et al., 2010). It 

seems that with increasing inoculum quantity, thermal treatment becomes less effective and 

it can not hinder the co-dominance and activity of lactic acid bacteria.  

4. Conclusion 

Hydrogen production by molasses could be successfully carried out in large lab-scale 

reactors for a period longer than 180 d and under variable combinations of OLR and HRT. 

The maximum H2 yield obtained was 1.53 mol H2/mol hexose for HRt of 1 d and OLR of 

36.1 g sucrose/(L∙d). Improvement of the hydrogen production yield of 28%was achieved 

by the addition of Fe2+ to an end concentration of 1000 mg/L. In figure 7 the acquired 

hydrogen yields of all phases as a function of the operation parameters HRT and OLR, 

along with a suitable range of combination of these parameters, as determined in the 

current work, are presented. Combinations resulting to COD concentrations higher than 

50 g/L (phase D3), was showed to be inhibitory to H2 production. Reason was not the 

undissociated form of acids, but most probably the production and accumulation of 

bacteriocidal or bacteriostatic substances, excreted by the LAB. The second line indicates 

the combination for which the process becomes unfavorable in terms of substrate 

utilization efficiency and hence can not be considered as cost effective. The applied seed 

sludge pre-treatment and reactor start-up methods were successful in enriching the 

biomass in hydrogen producing microorganisms and killing methanogenic 

microorganisms that are detrimental to H2 production. Nevertheless, H2 production has 
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been carried out parallel to lactic acid metabolism, which was driven either by the 

presence of LAB, or by the hydrogen producing clostridia due to iron Fe2+ limitation. A 

co-existence of clostridium species with lactic acid bacteria seems to be unavoidable, even 

for extensive pre-treatment of the seed sludge. Lactic acid bacteria influence the system 

primarily by consuming the substrate available for hydrogen production. The co-existence 

of clostridia and LAB though, seems to become beneficial to hydrogen production at 

HRTs in the range of 0.5 d to 1 d by supplying certain clostridia genera that are capable of 

performing secondary fermentation with substrate and/or by removing the residual 

dissolved oxygen from the system and hence establishing an appropriate milieu for the 

growth of clostridia. For the successful technical implementation of hydrogen production, 

for which process control is complex and oxygen in trace concentrations is to be expected, 

this symbiosis may be regarded as pre-requisite. The exact extent, to which the LAB 

contribution is beneficial and not adverse, requires the quantification of the biomass for 

the allocation of the metabolic products to specific microbial species and the monitoring 

of the concentrations of possible inhibiting substances.  

 

Figure 7. Suitable range of OLR-HRT combination for fermentative hydrogen production by molasses 

at pH 5.5 
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