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1. Introduction 

The term “cell culture” refers to the in vitro proliferation of cells and tissues and involves 

the use of either primary cells typically having a finite life span in culture or continuous cell 

lines that are abnormal and immortalized. In the last several decades, efforts have been 

mainly focused on the sub-culturing of established cell lines and on optimizing culture 

conditions, including selection of appropriate culture medium, in order to achieve rapid cell 

growth. The conventional CO2 incubator only provides minimum requirements for keeping 

cells alive in a culture environment; pH and temperature are held at 7.4 and 37°C, 

respectively, and sub-saturated humidity is maintained to avoid evaporative condensation 

of the culture medium. To avoid contamination of the culture medium from aerosol 

bacteria, the conventional clean bench removes particles from the working atmosphere by 

continuous displacement of ambient air that passes through a high-efficiency particle 

(HEPA) filter, whereas the medium exposed to ambient air quickly discharges dissolved 

CO2. In vivo, the pH of blood is strictly maintained at ~ pH 7.4 by means of physiological 

buffer systems, whereas the pH of culture medium mainly depends on a sodium 

bicarbonate/CO2 buffer, which is adjusted to a pH of 7.4 in an atmosphere of 5% CO2; the 

pKa is 6.1, and the buffering capacity at pH 7.4 is very weak. The pH and temperature are 

generally uniform in almost all organs, tissues, and cells in living mammals; however, the 

dissolved oxygen or oxygen partial pressure (PO2) in various organs and tissues is generally 

much lower than that in the ambient air (159 mmHg); it decreases to 100 mmHg and 25 

mmHg or less in arterial blood and in the periphery, respectively. Although oxygen is 

essential to produce ATP through the tricarboxylic acid cycle, it is quite toxic at high 

concentrations [1-3]. Tissues and cells in body fluids are protected from reactive oxygen 

species (ROS) by multiple physiological anti-oxidant systems, whereas those in artificial 

culture medium lack an extracellular protective system and are exposed to high levels of O2. 

Numerous studies have cited a variety of harmful effects of ROS, such as lipid and protein 
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peroxidation as well as membrane and DNA damage [4-8]. Although lower PO2 implies 

lower production of ROS, it also implies hypoxia that can damage various cellular functions 

[9, 10]. The recent advances in tissue engineering focus on clinical applications of cultured 

cells in regenerative medicine. When primary cells and stem cells are retrieved from human 

tissue, their original physicochemical environments and metabolic features are quite 

different from each other. Moreover, induction of differentiation stimulates changes in gene 

expression over a time course, which may affect cellular metabolism. The above-mentioned 

point of view suggests that ranges in cell viability, in terms of PO2 and tolerance for ROS 

(which need to be controlled for normal proliferation and prevention of malignant 

transformation), may be quite narrow for primary cells in comparison to cell lines. The 

stringent control of oxygen during bioprocessing is undoubtedly important; however, the 

exact influence of PO2 and ROS is not completely understood because past experimental 

data have been obtained by using conventional culture apparatuses or their improved 

models. Although the performance of apparatuses has already been proven by sub-

culturing of established cell lines, they have not been designed for stringent control of 

oxygen throughout the culture period. Every time the incubator door is opened, the O2 

environment is quickly lost and requires a long time to recover. To clarify the net influence 

of PO2 and ROS, it is essential to develop advanced equipment that can provide a stringent 

control of oxygen around the pericellular environment throughout the culture period. 

2. Delivery of human babies by assisted reproductive technology: 

Elementary regenerative medicine involving the transplantation of 

cultured embryos 

In the past 30 years, researchers have made significant progress in the field of clinical 

reproductive medicine through assisted reproductive technology (ART). In 1978, the first 

human baby was born through in vitro fertilization-embryo transfer. To date, more than a 

million children have already been born with the help of ART. Fertilization through intra-

cytoplasmic sperm injection (ICSI) [11] is becoming increasingly popular, and it now 

accounts for more than half of clinical ART cases worldwide. ART is the first example of 

large-scale clinical application of regenerative medicine to cultured human stem cells, which 

involves in vitro fertilization of gametes (primary stem cells) and subsequent culture of 

early embryos up to the blastocyst stage, followed by transfer into the uterus. Some recent 

cohort studies could not deny the possibility of birth defects in babies who were delivered 

as a consequence of ART [12-14], although ART is recognized as an elementary clinical 

regenerative medicine that makes use of native stem cells. We point out two major issues in 

this regard: one is quality control of the gametes, and the other is quality assurance of the 

culture environments. It is well known that human ejaculate contains a heterogeneous 

sperm population that possesses a variety of abnormalities. ICSI is a technique mainly used 

in male infertility, which occurs as a result of dysfunction of spermatogenesis and is 

accompanied by various functional deteriorations in the sperm. Nuclear damage to human 

sperm, in particular, DNA fragmentation as a consequence of double-strand breaks, has 

attracted attention. If a sperm with damaged DNA is incorporated into the embryonic 
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genome, it may lead to sperm-derived chromosomal aberrations [15], which may in turn 

result in higher miscarriage rates [16] and an increased risk of pregnancy loss [17]. The 

resultant aberrations can also be potentially inherited through the germ line by future 

generations [18-20]. Several studies have reported that the rate of DNA-damaged sperm 

increases in infertile men with poor semen quality, who are the primary candidates for ICSI 

[21]. Although the techniques in clinical ICSI are well established, the sperm is selected 

merely based on motility and gross morphology, as observed under a microscope, and there 

are no validated methods to address and assure sperm nuclear DNA integrity. 

There is a concern about higher malformations resulting from ICSI cycles, due to the 

possibility of iatrogenic transmission of genetic abnormalities to the offspring [14, 22, 23]. 

Studies comparing ART cycles and natural births suggest that infants conceived by IVF ⁄ 

ICSI techniques have three times a risk of a congenital heart defect [24] as well as a higher 

risk of autosomal and gonosomal aneuploidies [25]. It still remains unclear whether culture 

environments provided by conventional culture apparatus or their improved models have 

been responsible for the results of various cohort analyses. In general, we have to consider 

the heterogeneity of the cell population at the start of culture as well as some transformation 

during the culture. The lumen of the fallopian tube, where the oocyte fertilizes with the 

sperm, shows very low PO2 [26], contrary to the endometrium at the implantation phase, 

which shows thickening with increased blood flow; thus, the implanting blastocyst is 

exposed to higher PO2. During this one-week trip in the oviduct, the embryo undergoes 

early development in a PO2 gradient. To determine optimal physicochemical environment 

for primary and stem cells, including the embryo, one has to pay attention to complicated 

cross-interactions between the atmosphere, especially PO2, and the composition of culture 

medium: ATP production is influenced by peri- and intra-cellular PO2 as well as energy 

sources in the medium. Even if PO2 is kept low during cell culture, the handling of cells in a 

clean bench is critical, while temperature, PO2, and pH of the medium are dramatically 

changed. Tolerances to such parameters varies quite differently among cell types. For 

example, some neuronal cells have a low threshold for oxygen toxicity, and exposure of 

these cells to ambient air in a clean bench induces apoptosis [3]. Such cells have to be treated 

in an enclosed space filled with low-oxygen gas mixtures. In contrast, some cells can readily 

induce apoptosis under low PO2 conditions [9]. It is well-known that long-term subculture 

of cell lines induces some genetic transformations. Some researchers [27-31] have proposed 

that this phenotypic variability might originate from epigenetic alterations, and the 

methylation profiles of stem cell lines are fundamentally changed during subculture, thus 

complicating their use in basic and clinical research. Several reports have also discussed the 

epigenetics of early development [32] and the genetic and epigenetic features of children 

delivered through ICSI [33]. Kohoda et al. suggested that ICSI induces transcriptome 

perturbation [34]. To ensure the reliability of clinical embryo cultures, or in general terms, 

clinical cell cultures, as a premise for human implantation, we have to recognize the 

complicated cross-interactions of gas phase with composition of the culture medium, cell 

features, and their heterogeneity with regard to genetic and epigenetic regulation. 

Numerous reports have emphasized that reducing PO2 during in vitro cultures increases the 

proportion of blastocyst formation in mice [35-37], hamsters [38], sheep [39], and cattle [40]. 
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Other studies found no clear effect in mice [41]. As mentioned above, PO2 and ROS might be 

essential parameters at least in early embryogenesis [42]. The discrepancies in the results of 

the above-mentioned studies may be partially explained by differences in culture hardware 

as well as culture methods: for example, oxygen tension in droplets of medium under oil 

will be 1ess than those without an oil overlay [43]. Adding EDTA to culture medium 

increased the proportions of mouse [41, 44] and cattle [40] embryos that developed to 

blastocysts. Chelating transition metals such as zinc, iron, and copper may prevent chemical 

reactions that generate harmful oxygen radicals [45]. Because oviductal oxygen tension is less 

than atmospheric levels [26], mammalian embryos may be protected from oxidative stress in 

vivo in part by a relatively low oxygen tension in the oviduct [46]. The influence of low PO2 

and hypoxic culture conditions on some cellular functions has also been studied in somatic 

cells. When BeWo cells, an in vitro model of human trophoblasts, were cultured in 2% O2, 

reverse-transcriptase polymerase chain reaction (RT-PCR) indicated increased transcription of 

the organic cation transporter (OCTN2) gene compared to that observed under 20% O2 [47]. 

Hirao et al. ([48] observed that MC3T3-E1 cells and calvariae from 4-day-old mice cultured in 

5% or 20% O2 conditions showed osteoblastic differentiation and subsequent transformation to 

osteocytes, which was promoted by low PO2. The importance of a lower PO2 environment was 

a cited factor; however, excessively low PO2 are also important to consider for cellular growth, 

differentiation, gene expression, phenotype manipulation, epigenetics, and moreover, for 

survival. We consider it essential to determine the narrow range between hyperoxia and 

hypoxia, but not to overestimate the benefit of lower PO2. 

3. Individual cell culture systems in a disposable capsule with controlled 

atmosphere 

As will be described later (Figs. 7 and 8), established cell lines that adapt to 5.0% CO2-air 

often tolerate prolonged changes in pH and PO2. In contrast, clinical cultures of primary and 

stem cells used for human transplantation demands rigorous duplication of in vivo 

environments because it is of prime importance for maintaining normality or to minimize 

phenotypic changes within the cells. We have previously established an individual cell 

culture system that emphasizes the precise control of oxygen concentration and quick 

recovery from disturbances (Figs. 1 and 2) [49]. As shown in Fig. 1, the culture bath has an 

aluminum block with 16 wells for heat storage, and the block and inner space are kept at 

37.0 °C by a temperature sensor. The apparatus is first used as a multivariate screening 

system for the simultaneous determination of the narrow range between hyperoxia and 

hypoxia and for designing the optimal formula corresponding to the gas phase. This system 

can provide up to 16 types of different premixed gases into each capsule individually. The 

commonly used infrared CO2 sensor and the Galvanic current O2 sensor devices have 

sufficient sensitivity and undergo scheduled calibrations to maintain accuracy assurance. 

When a small amount of gas is infused for fine control of the gas phase, static diffusion 

causes an inhomogeneous gas concentration in the chamber, and the display values are often 

similar to those around the sensors. We therefore used pre-mixed gases and a small capsule for 

precise control of O2 concentration. Pure O2, CO2, and N2 gases were mixed according to their 

weight base molar ratios and compressed in the gas canister.. The following gases were used 
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for cell culture experiments: 2.0% O2, 5.0% CO2, and 93% N2 as an example of hypoxic culture. 

For purging the capsule, 5.0% CO2 and 95% N2 were used. The gas compositions were 

measured using gas chromatography, according to the pre-shipment review. 

 
Sixteen small capsules for individual cultures were placed in a well of an aluminum dry block. 

Figure 1. Individual cell culture apparatus 

 

A bench top was covered with an acrylic chamber to prevent leakage of 5.0% CO2-air. Photograph A shows the system 

equipped with a built-in microscope, personal computer, monitor, and printer. Photograph B shows the apparatus for 

general handling of cultures without microscopic observation. A minimal volume of internal space is preferable for 

precision control of the gas phase. 

Figure 2. 5.0% CO2-air circulation clean bench 
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The degree of cleanliness of air was defined by a “cleanliness class”, which is specified by 

the number of particles of a size 0.5 μm or over in one cubic feet of air. For instance, a 

cleanliness class of 100 is interpreted as less than 100 particles in one cubic feet of air. The 

simultaneous measurements of particle size and number were performed using a light-

scattering particle counter. The intake air stream was first passed through a high-intensity 

laser beam. As a result, the particles in the sample caused light scattering, and their numbers 

and intensities were detected. Room air often shows a cleanliness class of 106–105, and the 

aim of a conventional clean bench is to provide a low-dust environment below a cleanliness 

class of 102. The cell handling is, however, performed in ambient air, allowing temperature 

decrease, dissolution of O2, and pH change by removal of CO2. We newly developed the 

5.0% CO2-air circulation clean benches with or without a built-in microscope (Fig. 2). The 

bench top was covered with an acrylic chamber to prevent leakage of the ambient 

atmosphere, with the set-up resembling an infant incubator. Pure CO2 was infused with the 

aid of a gas sensor control to maintain 5.0% CO2-air. The bench top and the ambient 

temperature were kept at 37°C and 30°C–34°C by temperature control (Fig. 2). In addition, a 

small chamber was set on the bench top, so that if cells could not tolerate 5.0% CO2-air for 

more than a few minutes, they were isolated in the chamber, and the humidified culture gas 

was supplied. If the bench top was contaminated with some infectious material such as 

body fluid, it was merely wiped off. In the newly developed system, a cover shield was 

placed on the bench top, and a disposable clear film was set and discarded at each operation 

(Fig. 3). Although the conventional clean bench filtered fresh air only once, the newly 

developed system circulated the enclosed 5.0% CO2-air through a HEPA filter every 24 sec. 

Before starting the filtration process, the cleanliness class was found to be 105; however, a 

cleanliness class of 1 was readily achieved by repeated filtration within 5 min (Fig. 4). 

Furthermore, particles within the size range of 0.3 μm–0.5 μm were reduced to less than 100 

within 5 min. 

 

In the newly developed system, a bench top was shielded with a clear film for infection control. 

Figure 3. Disposable cover film on bench top 
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Measurements were performed at five time points on a bench. Values are represented as mean ± standard error. 

Figure 4. Change in cleanliness class after starting filters 

The conventional CO2 incubator has a structural problem when it comes to achieving a 

stable hypoxic environment. As summarized in Table 1, whenever the door is opened, a 

large amount of ambient air intrudes, and the reduced CO2 can be readily recovered by 

infusion of pure gas; however, it took more than 30 min to exclude O2 by flushing with N2. 

Thus, we developed a disposable small capsule to control the gas phase, especially for 

hypoxic tissue culture (Fig. 5). A 500-ml plastic capsule containing 220 ml of the gas buffer 

solution (20 mM H, 25 mM NaHCO3, and 0.05% Phenol Red) was used as the CO2 incubator. 

First, it was equilibrated by ventilation of the pre-mixed culture gas (10 ml/min) for at least 

overnight. Following gas equilibration, the pH was adjusted to 7.4 ± 0.05, and the O2 

concentration was measured using a Galvanic current O2 sensor. Coexistence of a large 

amount of gas buffer solution, which serves the same function as the culture medium in 

terms of gas equilibration, stabilizes the physicochemical environment by functioning as a 

heat storage and gas pool. Inflow of air when the cap is opened should be excluded as soon 

as possible. To achieve this, the anoxic purging gas (5.0% CO2 and 95% N2) was flushed (500 

ml/min) just after closing the cap. As a consequence, the oxygen level returned to 2.0% 

within 4 min, after which the gas supply was changed automatically to culture gas, which was 

infused (10 ml/min) continuously to maintain positive pressure (Fig. 6). If the gas purging 

process was omitted, it took 120 min until recovery, despite the inner space volume being only 

280 ml (Fig. 6). This fact suggested that the void volume of the culture capsule should be 

minimized as much as possible, and coexistence of the gas buffer enhance the stability of the 

gas phase in the culture environment. In this system, gas control through a CO2 sensor was not 

necessary, and we also did not need to consider the improper gas control caused by sensor 
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deterioration. Gas equilibration of each capsule was roughly estimated by checking the color 

of phenol red in the gas buffer (Fig. 5), and the precision control of the culture environment 

was monitored by measuring the temperature and pH of the gas buffer. Although 

simultaneous culturing of multiple tissues is usually possible in a single CO2 incubator, the 

present method allows the culturing of individual tissues in disposable capsules. The system 

also has additional advantages in that it allows easy and error-free identification of dishes and 

avoids disturbances in culture conditions when the door of the unit is opened. 

 
A maximum of five culture dishes (6.0 cm in diameter) can be placed on the tray of the stainless stand. The gas buffer 

is placed at the bottom. Two tubes protruding from the cap are inlets and outlets for gas. In-line gas filters (pore size, 

0.22 μm) are placed at the inlets and outlets. 

Figure 5. Use of disposable capsules for individual cultures with precise control of oxygen 

concentration and quick recovery from disturbances in culture conditions 

 
: purge with 5.0% CO2 and 95% N2; ------ : without purging, supply of culture gas only 

Figure 6. Effect of gas purging on O2 concentration recovery in capsule 
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Period of open door (sec) 0 10 20 30 
CO2 (%) 

Time require for recovery (min)

5.0% 

-

5.4% 

2

5.4% 

2

5.3% 

2 
O2 (%) 

Time require for recovery (min)

2.1% 

-

13.7% 

30

18.4 

34

18.2% 

35 

The door of a conventional incubator (chamber volume: 30 L) was opened for 10, 20, and 30 sec, and the values on the 

display unit of the built-in device were observed. The durations required for the recovery were recorded. 

Table 1. Time requirement for recovery of gas phase after door opening 

The most common cultureware or vessels are sterile, disposable, and specially treated with 

polystyrene plastic. The cultureware includes petri dishes, multiwell plates, microtiter 

plates, roller bottles, and screw-cap flasks. All cultureware is equipped with lids or caps to 

prevent contamination from aerosol bacteria, and these culture vessels are designed to stack. 

Handling of culture media in conventional or in 5.0% CO2-air circulation clean benches 

caused dissolution of oxygen in the media. After the lid was mounted on the culture dish or 

the cap of the flask was loosely closed, ambient air or 5.0% CO2-air remained in the inner 

space of the cultureware. We placed an O2 sensor on the lid of a culture dish (90 mm 

diameter, 10 mm height) or on the body of a culture flask (250 ml) to measure the ventilation 

velocity between the outer and inner spaces of the cultureware. As shown in Fig. 7, when 

the lid is held in the normal position and placed in the culture gas containing 2.0% O2, it 

took more than 40 min for equilibration, despite the inner space volume being only about 60 

ml. When the lid was held over the spacers (2 mm and 7 mm in height), the time for 

equilibration was again shortened to 20 min. If the cells demand a faster velocity of 

ventilation, a lid made out of gas-permeable materials should be used, or cultureware 

without lids should be used. A flask with a screw cap has a larger void volume than that of 

a dish, and, hence, more reliable results were obtained using a flask. The cap of the flask was 

opened in ambient air and closed loosely. When the flask was placed in the culture-gas 

environment, the ventilation velocity was found to be extremely low, and it took more than 

20 h to attain equilibration (Fig. 8-A). Moreover, the same duration was required for gas 

leakage, which served as a reversal process (Fig. 8-B). We examined purging of ambient air 

with anoxic gas in the same manner as described in Fig. 6. A needle was inserted in the cap 

as a gas injection port, and the flask was capped loosely (Fig. 8). The flushing (500 ml/min) 

of anoxic gas obviously accelerated the ventilation, and the oxygen level returned to 2.0% 

within 4 min (Fig. 8-C). This result suggested that the conventional use of a flask with a 

loose cap, which is subsequently placed in the CO2 incubator, is unfavorable for primary 

and stem cells, which were intolerant to prolonged changes in pH and PO2. An air-tight 

plastic vessel often suffers from gas leakage through the sealant of wide open-mouthed 

containers as well as due to the gas permeability of materials. After the cap was closed, the 

gas phase was recovered by flushing (Fig. 6), and a minimum amount of culture gas (10 

ml/min) was supplied constantly (Fig. 9-A) or intermittently (Fig. 9-B) in order to maintain 

positive pressure. The constant supply of culture gas held PO2 steady, whereas the 

intermittent supply caused narrow, wave-like changes due to gas leakage, although their 

margins of fluctuation were not so much different from each other. The intermittent supply 

saved gas consumption. The computer-assisted programmable system allowed greater 
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flexibility to evaluate optimum environmental settings. Fig. 10 shows a time-course model 

of switching of the gas phase with intermittent gas supply. 

 

Figure 7. Effect of gap between lid and culture dish on ventilation velocity 

 
The photograph in the figure shows the experimental set-up of the injection port. 

Figure 8. Ventilation velocity of loose cap flask and effects of purging with anoxic gas 
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The intermittent method constituted a repetitive cycle of a 10-min gas supply followed by a 50-min pause. 

Figure 9. Time-course changes in O2 concentration during constant and intermittent gas supply 

 

Culture gas was changed from 2.0% O2 to 5.0% O2 in mid-course, and then changed back to 2.0% O2. 

Figure 10. A model of computer-assisted programmable intermittent gas supply 

The 16 capsules placed in the culture bath (Figs. 1 and 5) were used as a multivariate 

assessment system to determine the optimal formula corresponding to the narrow range 

between hyperoxia and hypoxia. Fig. 11 presents the model usage to optimize the 
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combination of three parameters, namely the four premixed gases with 0% to 6.0% O2 and 

the dosage of two constituents. For example, the capsule at the right edge/bottom line the 

combination of the constituent α, dose 4 and the constituent β, dose 5/6.0% O2. The formula 

of widely used media (for example, RPMI and MEM) has been established more than half of 

a century ago; at that time, the multifaceted pharmacological actions and the concept of 

genotoxicity of some constituents had not yet been established. Amino acids are often added 

as supplements in the media, some of which serve as the most abundant neurotransmitters 

in the brain. Amino acids are responsible for almost all rapid signaling between neurons. 

For example, glutamate is used as a nitrogen source to promote the syntheses of proteins 

and nucleic acids, and it is the major excitatory neurotransmitter that is distributed in all 

regions of the brain ([50]. Inadequate dosing causes glutamate-induced excitotoxicity ([51]. 

Extracellular ATP ([52], while the decomposed species, adenosine [53], is responsible for 

calcium channel regulation. It is very important to evaluate whether target cells are 

pharmacologically sensitive to some of the constituents as well as to impurities and their 

degraded agents. Moreover, it is important to note that the term “sensitive” includes 

genotoxicity. 

 

The apparatus can provide a maximum of 16 premixed gases in each capsule, and the combination of a few parameters 

can be determined simultaneously. 

Figure 11. Multivariate assessment of environmental settings 

4. Conclusion 

To date faster proliferation has often been associated with the optimum culture 

environment, we have to investigate minutely whether this enhanced proliferation is not 

caused by genetic transformation or malignant changes or not. The present review dealt 

with “cell handling and culture under controlled oxygen concentration”. The precision 

control of oxygen to determine the narrow range between hyperoxia and hypoxia is likely to 

play an important role in ensuring the safety of cell cultures, especially for primary and 

stem cells. 
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