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1. Introduction

The HOT is a recently developed discrete unitary transform that uses the orthonormal
minimizers of the entropy-based Hirschman uncertainty measure [2]. This measure is
different from the energy-based Heisenberg uncertainty measure that is only suited for
continuous time signals. The Hirschman uncertainty measure uses entropy to quantify the
spread of discrete-time signals in time and frequency [3]. Since the HOT bases are among
the minimizers of the uncertainty measure, they have the novel property of being the most
compact in discrete time and frequency. The fact that the HOT basis sequences have many
zero-valued samples, and their resemblance to the DFT basis sequences, makes the HOT
computationally attractive. Furthermore, it has been shown recently that a thresholding
algorithm using the HOT yields superior frequency resolution of a pure tone in additive
white noise to a similar algorithm based on the DFT [4]. The main theorem in [2] describes

a method to generate an N = K2-point orthonormal HOT basis, where K is an integer. A

HOT basis sequence of length K2 is the most compact bases in the time-frequency plane. The
32-point HOT matrix is
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1 0 0 1 0 0 1 0 0
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0 0 1 0 0 e−j2π/3 0 0 e−j4π/3

1 0 0 e−j4π/3 0 0 e−j8π/3 0 0

0 1 0 0 e−j4π/3 0 0 e−j8π/3 0

0 0 1 0 0 e−j4π/3 0 0 e−j8π/3
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
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

(1)

Equation (1) indicates that the HOT of any sequence is related to the DFT of some polyphase
components of the signal. In fact, we called this property the “1 and 1/2 dimensionality”
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of the HOT in [3]. Consequently, for this chapter, we will use the terms HOT and DFT of

the polyphase components interchangeably. The K2-point HOT requires fewer computations

than the K2-point DFT. We used this computational efficiency of the HOT to implement

fast convolution algorithms [5]. When K is a power of 2 integer, then K2log2K (complex)
multiplications are needed to compute the HOT, which is half that is required when
computing the DFT. In this chapter, we use the computational efficiency of the HOT to
implement a fast block LMS adaptive filter. The fast block LMS adaptive filter was first
proposed [6] to reduce computational complexity. Our proposed HOT block LMS adaptive
filter requires less than half of the computations required in the corresponding DFT block
LMS adaptive filter. This significant complexity reduction could be important in many real
time applications.

The following notations are used throughout this chapter. Nonbold lowercase letters are
used for scalar quantities, bold lowercase is used for vectors, and bold uppercase is used
for matrices. Nonbold uppercase letters are used for integer quantities such as length or
dimensions. The lowercase letter k is reserved for the block index. The lowercase letter n

is reserved for the time index. The time and block indexes are put in brackets, whereas
subscripts are used to refer to elements of vectors and matrices. The uppercase letter N is
reserved for the filter length and the uppercase letter L is reserved for the block length. The
superscripts T and H denote vector or matrix transposition and Hermitian transposition,
respectively. The subscripts F and H are used to highlight the DFT and HOT domain
quantities, respectively. The N × N identity matrix is denoted by IN×N or I. The N × N

zero matrix is denoted by 0N×N . The linear and circular convolutions are denoted by ∗

and ⋆, respectively. Diag [v] denotes the diagonal matrix whose diagonal elements are the
elements of the vector v.

2. The relation between the HOT and DFT in a matrix from

The algorithm that we proposing is best analyzed if the relation between the HOT and DFT
is presented in matrix form. This matrix form is shown in Figure 1, where I0, I1,..., IK−1

are K × K2 matrices such that multiplication of a vector with Ii produces the ith polyphase
component of the vector. The matrix IK is formed from I0, I1,..., IK−1, i.e.,

IK =


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

I0

I1
...

IK−2

IK−1


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









. (2)

Since the rows of
{

Ii

}

are taken from the rows of the K2
×K2 identity matrix, multiplications

with such matrices does not impose any computational burden. For the special case K = 3,
we have

I0 =





1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0



 , (3)
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Figure 1. The Relation between HOT and DFTs of the polyphase components.

I1 =





0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0



 , (4)

I2 =





0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1



 . (5)

The K2-point HOT matrix is denoted by H. It satisfies the following:

HHH = KIK2
×K2 , (6)

H = HT . (7)

3. Convolution using the HOT

In this section, the “HOT convolution,” a relation between the HOT of two signals and their
circular convolution, is derived. Let u and w be two signals of length K2. The circular
convolution of the signals is y = w ⋆ u. In the DFT domain, the convolution is given by the
pointwise multiplication of the respective DFTs of the signals, i.e., yF(k) = wF(k)uF(k). A
similar relation in the HOT domain can be readily found through the relation between the
DFT and HOT. The DFT of u can be written as

Hirschman Optimal Transform Block LMS Adaptive Filter
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uF(k) =
K2

−1

∑
n=0

u(n) e−j 2π

K2 kn

=
K−1

∑
i=0

e−j 2π

K2 ki
K−1

∑
l=0

u(lK + i) e−j 2π

K kl . (8)

The signal u(lK + i), denoted by ui(l), is the ith polyphase component of u(n) with DFT
given by

uiF(k) =
K−1

∑
l=0

ui(l) e−j 2π

K kl . (9)

Therefore, the DFT of the signal u can be written in terms of the DFTs of the polyphase
components, or the HOT of u. The relation between the HOT and the DFTs of the polyphase
components is descried in Figure 1. Equation (8) may be written as

uF(k) =
K−1

∑
i=0

e−j 2π

K2 kiuiF(k). (10)

Define the diagonal matrix

Di,j(k) =















e−j 2π

K2 ki 0 · · · 0

0 e−j 2π

K2 k(i+1)
· · · 0

...
...

. . .
...

0 0 · · · e−j 2π

K2 kj















(11)

Then the DFT of the signal can be written in a matrix form

uF =
K−1

∑
i=0

D0,K2−1(i)











FK

FK
...

FK











ui. (12)

The above is the desired relation between the DFT and HOT. It should be noted that equation
(12) represents a radix-K FFT algorithm which is less efficient than the radix-2 FFT algorithm.
Therefore, HOT convolution is expected to be less efficient than DFT convolution. Now, we
can use equation (12) to transform yF = wF ⊗ uF into the HOT domain. The symbol ⊗

indicates pointwise matrix multiplication and, throughout this discussion, pointwise matrix
multiplication takes a higher precedence than conventional matrix multiplication. We have
that
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K−1

∑
i=0

D0,K2−1(i)
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...

FK
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yi =
K−1

∑
i=0

K−1

∑
j=0

D0,K2−1(i + j)


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FKwi

FKwi
...

FKwi




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

⊗


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

FKuj

FKuj

...
FKuj











. (13)

The above matrix equation can be separated into a system of K equations

K−1

∑
i=0

DrK,(r+1)K−1(i)FKyi =
K−1

∑
i=0

K−1

∑
j=0

DrK,(r+1)K−1(i + j) (FKwi)⊗
(

FKwj

)

, (14)

where r = 0, 1, . . . , K − 1. Since

DrK,(r+1)K−1(i) = e−j 2π

K riD0,K−1(i), (15)

the HOT of the output can be obtained by solving the following set of K matrix equations:

K−1

∑
i=0

e−j 2π

K riD0,K−1(i)FKyi =
K−1

∑
i=0

K−1

∑
j=0

e−j 2π

K r(i+j)D0,K−1(i + j) (FKwi)⊗
(

FKuj

)

. (16)

Since the DFT matrix is unitary, the solution of equation (16) can be expressed as

D0,K−1(s)FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(s−(i+j))D0,K−1(i + j) (FKwi)⊗
(

FKuj

)

, (17)

where

FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(i+j−s)D0,K−1(i + j − s) (FKwi)⊗
(

FKuj

)

. (18)

Moreover, as
K−1

∑
r=0

ej 2π

K r(i+j−s) = Kδ(i + j − s), (19)

where δ(n) denotes the periodic Kronecker delta of periodicity K, equation (18) can be
simplified to

FKys =
K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s) (FKwi)⊗
(

FKuj

)

, (20)

where s = 0, 1, 2, . . . , K − 1. The pointwise matrix multiplication in equation equation (20)
can be converted into conventional matrix multiplication if we define Wi as the diagonal
matrix for FKwi. We have then that

Hirschman Optimal Transform Block LMS Adaptive Filter
http://dx.doi.org/10.5772/51394

5



FKys =
K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s)WiFKuj. (21)

Combining the above K equations into one matrix equation, the HOT convolution can be
written as
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W0 DWK−1 DWK−2 · · · DW2 DW1

W1 W0 WK−1 · · · DW3 DW2

W2 W1 W0 · · · DW4 DW3
...

...
...

. . .
...

...
WK−2 WK−3 WK−4 · · · W0 DWK−1

WK−1 WK−2 WK−3 · · · W1 W0
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




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





(22)

where

D =













1 0 · · · 0

0 e
−j 2π

K2 · · · 0
...

...
. . .

...

0 0 · · · e
−j 2π

K2 (K−1)













(23)

Notice that the square matrix in equation (22) is arranged in a block Toeplitz structure.

A better understanding of this result may be obtained by comparing equation (22) with the
K-point circular convolution
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w0 wK−1 wK−2 · · · w2 w1

w1 w0 wK−1 · · · w3 w2

w2 w1 w0 · · · w4 w3
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...
...

. . .
...

...
wK−2 wK−3 wK−4 · · · w0 wK−1

wK−1 wK−2 wK−3 · · · w1 w0
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




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

u0

u1

u2
...

uK−2

uK−1



















. (24)

The square matrix in equation (24) is also Toeplitz. However, equation (24) is a pure
time domain result, whereas equation (22) is a pure HOT domain relation, which may be
interpreted in terms of both the time domain and the DFT domain features. This fact can
be explained in terms of fact that the HOT basis is optimal in the sense of the entropic joint
time-frequency uncertainty measure Hp(u) = pH(u) + (1 − p)H(uF) for all 0 ≤ p ≤ 1.
Before moving on to the computational complexity analysis of HOT convolution, we make
the same observations about the term DFKwi appearing in equation (22). This term is the
complex conjugate of the DFT of the upside down flipped ith polyphase component of w.

It should be noted that equation (22) does not show explicitly the HOT of u(n) and w(n).
However, the DFT of the polyphase components that are shown explicitly in equation (22)
are related to the HOT of the corresponding signal as shown in Figure. 1. For example, the
0th polyphase component of the output is given by

Adaptive Filtering - Theories and Applications6



y0(k) = F−1
K I0wH(k)⊗ I0uH(k) + F−1

K D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k). (25)

Next, we examine the computational complexity of HOT convolution. To find the HOT of the
two signals w and u, 2K2log2K multiplications are required. Multiplication with the diagonal
matrix D requires K(K − 1) multiplications. Finally, the matrix multiplication requires K3

scalar multiplications. Therefore, the total number of multiplications required is 2K2log2K +
K3 + K2

− K. Thus, computation of the output y using the HOT requires K3 + 3K2log2K +
K3 + K2

− K multiplications, which is more than 6K2log2K + K2 as required by the DFT.
When it is required to calculate only one polyphase component of the output, only K2 +
2K2log2K + Klog2K multiplications are necessary. Asymptotically in K, we see that the HOT
could be three times more efficient than the DFT.

4. Development of the basic algorithm

In the block adaptive filter, the adaptation proceeds block-by-block with the weight update
equation

w(k + 1) = w(k) +
µ

L

L−1

∑
i=0

u(kL + i)e(kL + i), (26)

where d(n) and y(n) are the desired and output signals, respectively, u(n) is the tap-input
vector, L is the block length or the filter length, and e(n) = d(n) − y(n) is the filter error.
The DFT is commonly used to efficiently calculate the output of the filter and the sum in
the update equation. Since the HOT is more efficient than the DFT when it is only required
to calculate one polyphase component of the output, the block LMS algorithm equation (26)
is modified such that only one polyphase component of the error in the kth block is used to
update the filter weights. For reasons that will become clear later, the filter length L is chosen
such that L = K2/2. With this modification, equation (26) becomes

w(k + 1) = w(k) +
2µ

K

K/2−1

∑
i=0

u(kL + iK + j)e(kL + iK + j). (27)

Since the DFT is most efficient when the length of the filter is equal to the block length [7], this
will be assumed in equation (27). The parameter j determines which polyphase component
of the error signal is being used in the adaptation. This parameter can be changed from
block to block. If j = 0, the output can be computed using the HOT as in equation (25). A
second convolution is needed to compute the sum in equation (27). This sum contains only
one polyphase component of the error. If this vector is up-sampled by K, the sum is just
a convolution between the input vector and the up-sampled error vector. Although all the
polyphase components are needed in the sum, the convolution can be computed by the HOT
with the same computational complexity as the first convolution since only one polyphase
component of the error vector is non-zero.

Hirschman Optimal Transform Block LMS Adaptive Filter
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The block adaptive filter that implements the above algorithm is called the HOT block LMS
adaptive filter and is shown in Figure 2. The complete steps of this new, efficient, adaptive
algorithm are summarized below:

(a) Append the weight vector with K2/2 zeros (the resulting vector is now K2 points long as
required in the HOT definition) and find its HOT.

(b) Compute the HOT of the input vector

[

u
(

(k − 1) K2

2

)

· · · u
(

k K2

2

)

u
(

k K2

2 + 1
)

· · · u
(

(k + 1) K2

2 − 1
) ]T

. (28)

Note that this vector contains the input samples for the current and previous blocks.

(c) Use the inverse HOT and equation (22) to calculate the jth polyphase component of
the circular convolution. The jth polyphase component of the output can be found by
discarding the first half of the jth polyphase component of the circular convolution.

(d) Calculate the jth polyphase component of the error, insert a block of K/2 zeros,
up-sample by K, then calculate its HOT.

(e) Circularly flip the vector in (b) and then compute its HOT.

(f) Compute the sum in the update equation using equation (22). This sum is the first half
of the elements of the circular convolution between the vectors in parts (e) and (d).

5. Computational complexity analysis

In this section, we analyze the computational cost of the algorithm and compare it to
that of the DFT block adaptive algorithm. Parts (a), (b), and (e) require 3K2 log2 K
multiplications. Part (c) requires K log2 K + K2. Part (d) requires K log2 K multiplications,
and part (f) requires K2 + K2 log2 K multiplications. The total number of multiplications is
thus 4K2 log2 K + 2K log2 K + 2K2. The corresponding DFT block adaptive algorithm requires
10K2 log2 K + 2K2 multiplications — asymptotically more than twice as many. Therefore, by
using only one polyphase component for the adaptation in a block, the computational cost
can be reduced by a factor of 2.5. While this complexity reduction comes at the cost of not
using all available information, the proposed algorithm provides better estimates than the
LMS filter. The reduction of the computational complexity in this algorithm comes from
using the polyphase components of the input signal to calculate one polyphase component
of the output via the HOT.

It is worth mentioning that the fast exact LMS (FELMS) adaptive algorithm [8] also reduces
the computational complexity by finding the output by processing the polyphase components
of the input. However, the computational complexity reduction of the FELMS algorithm is
less than that found in the DFT and HOT block adaptive algorithms because the FELMS
algorithm is designed to have exact mathematical equivalence to, and hence the same
convergence properties as, the conventional LMS algorithm. Comparing the HOT block LMS
algorithm with the block LMS algorithms described in Chapter 3, the HOT filter performs
computationally better.

The multiplication counts for both the DFT block and HOT block LMS algorithms are plotted
in Figure 3. The HOT block LMS adaptive filter is always more efficient than the DFT block

Adaptive Filtering - Theories and Applications8



Figure 2. HOT block LMS adaptive filter.

LMS adaptive filter and the asymptotic ratio between their computational cost is almost
reached at small filter lengths. The computational complexity of the HOT filter can be further
improved by relating the HOT of the circularly flipped vector in step (e) to the HOT of the
vector in step (b). Another possibility to reduce the computational cost of the HOT block
algorithm is by removing the gradient constraint in the filter weight update equation as has
been done in the unconstrained DFT block LMS algorithm [9].

6. Convergence analysis in the time domain

In this section, we analyze the convergence of the HOT block LMS algorithm in the time
domain. We assume throughout that the step size is small. The HOT block LMS filter
minimizes the cost

Hirschman Optimal Transform Block LMS Adaptive Filter
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Figure 3. Multiplication counts for both the DFT block and HOT block LMS algorithms.

ξ̂ =
2

K

K
2 −1

∑
i=0

∣

∣

∣
e(kL + iK + j)

∣

∣

∣

2
, (29)

which is the average of the squared errors in the jth polyphase error component. From
statistical LMS theory [10], the block LMS algorithm can be analyzed using the stochastic
difference equation [10]

ǫT(k + 1) =
(

I − µΛ

)

ǫT(k) +φ(k), (30)

where

φ(k) = −

µ

L
V

H
L−1

∑
i=0

u(kL + i) eo(kL + i) (31)

is the driving force of for the block LMS algorithm [10]. we found that the HOT block LMS
algorithm has the following driving force

Adaptive Filtering - Theories and Applications10



φHOT(k) = −
2µ

K
V

H

K
2 −1

∑
i=0

u(kL + iK + j) eo(kL + iK + j). (32)

It is easily shown that

EφHOT(k) = 0, (33)

EφHOT(k)φ
H
HOT(k) =

2µ2 JminΛ

K
. (34)

The mean square of the lth component of equation (34) is given by

E |ǫl(k)|
2 =

2µ Jmin
K

2 − µλl
+ (1 − µλl)

2k

(

|ǫl(0)|
2 −

2µ Jmin
K

2 − µλl

)

, (35)

where λl is the lth eigenvalue of the input autocorrelation matrix. Therefore, the average
time constant of the HOT block LMS algorithm is given by

τ =
L2

2µ ∑
L
l=1 λl

. (36)

The misadjustment can be calculated directly and is given by

M =
∑

L
l=1 λl E |ǫl(∞)|2

Jmin
. (37)

Using equation (30), one may find E|ǫl(∞)|2 and substitute the result into equation (37). The
misadjustment of the HOT block LMS filter is then given by

M =
µ

K

L

∑
l=1

λl . (38)

Thus, the average time constant of the HOT block LMS filter is the same as that of the DFT
block LMS filter 1. However, the HOT block LMS filter has K times higher misadjustment
than the DFT block LMS algorithm 2.

The HOT and DFT block LMS algorithms were simulated using white noise inputs. The
desired signal was generated using the linear model d(n) = wo(n) ∗ u(n) + eo(n), where
eo(n) is the measurement white gaussian noise with variance 10−4 and Wo(z) = 1+ 0.5z−1 −

1 The average time constant of the DFT block LMS filter is [10] τ = L2/2µ ∑
L
l=1 λl .

2 The misadjustment of the DFT block LMS algorithm is [10] M = µ

K2 ∑
L
l=1 λl .
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0.25z−2 + 0.03z−3 + 0.1z−4 + 0.002z−5
− 0.01z−6 + 0.007z−7. The learning curves are shown

in Figure 4 with the learning curve of the conventional LMS algorithm. The step sizes of all
algorithms were chosen to be the same. The higher mean square error of the HOT algorithm,
compared to the DFT algorithm, shows the trade-off for complexity reduction by more than
half. As expected the HOT and DFT block LMS algorithms converge at the same rate.
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Figure 4. Learning curves of the DFT and HOT block LMS algorithms with the conventional LMS filter.

7. Convergence analysis in the HOT domain

Let u(n) be the input to the adaptive filter and

ŵ(k) =
[

w0(k) w1(k) · · · w K2

2 −1
(k)

]T

(39)

be the tap-weight vector of the adaptive filter, where k is the block index. Define the extended
tap-weight vector

w(k) =
[

ŵT(k) 0 0 · · · 0
]T

(40)

Adaptive Filtering - Theories and Applications12



and the tap-input vector

u(k) =
[

u

(

(k − 1) K2

2

)

· · · u

(

k
K2

2

)

u

(

k
K2

2 + 1
)

· · · u

(

(k + 1) K2

2 − 1
) ]T

. (41)

Denote the HOT transforms of u(k) and w(k) by uH(k) = Hu(k) and wH(k) = Hw(k),
respectively, where H is the HOT matrix. The 0th polyphase component of the circular
convolution of u(k) and w(k) is given by

FKy0(k) = FKw0(k)⊗ FKu0(k) + D
K−1

∑
i=1

FKwK−i(k)⊗ FKui(k). (42)

Using FKui(k) = IiHu(k) = IiuH(k), equation (42) can be written in terms of the HOT of
u(k) and w(k). The result is given by

FKy0(k) = I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k). (43)

The 0th polyphase component of the linear convolution of ŵ(k) and u(n), the output of the
adaptive filter in the kth block, is given by the last K/2 elements of y0(k). Let the desired
signal be d(n) and define the extended 0th polyphase component of the desired signal in the
kth block as

d0(k) =

[

0 K

2

d̂0(k)

]

. (44)

The extended 0th polyphase component of error signal in the kth block is given by

e0(k) =

[

0 K

2

ê0(k)

]

=

[

0 K

2

d̂0(k)

]

−

[

0 K

2 ×
K

2
0 K

2 ×
K

2

0 K

2 ×
K

2
I K

2 ×
K

2

]

F−1
K

×

[

I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k)

]

. (45)

Multiplying equation (45) by the DFT matrix yields

FKe0(k) = FK

[

0 K

2

d̂0(k)

]

− FK

[

0 K

2 ×
K

2
0 K

2 ×
K

2

0 K

2 ×
K

2
I K

2 ×
K

2

]

F−1
K

×

[

I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k)

]

. (46)
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Define u
c
H
(k) = Hu

c(k), where u
c(k) is the circularly shifted version of u(k). The adaptive

filter update equation in the kth block is given by

wH(k + 1) = wH(k) + µ H

[

I K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

]

H
−1φH(k), (47)

where φH(k) is found from



















I0φH(k)
I1φH(k)
I2φH(k)

...
IK−2φH(k)
IK−1φH(k)



















=



















FKe0(k)
FKe0(k)
FKe0(k)

...
FKe0(k)
FKe0(k)



















⊗



















I0u
c
H
(k)

I1u
c
H
(k)

I2u
c
H
(k)

...
IK−2u

c
H
(k)

IK−1u
c
H
(k)



















, (48)

as

φH(k) = I
−1
K



















FKe0(k)
FKe0(k)
FKe0(k)

...
FKe0(k)
FKe0(k)



















⊗



















I0u
c
H
(k)

I1u
c
H
(k)

I2u
c
H
(k)

...
IK−2u

c
H
(k)

IK−1u
c
H
(k)



















. (49)

Finally, the HOT block LMS filter in the HOT domain can be written as

wH(k + 1) = wH(k)

+ µ H

[

I K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

]

H
−1

I
−1
K



















FKe0(k)
FKe0(k)
FKe0(k)

...
IK−1e0(k)
IK−1e0(k)



















⊗



















I0u
c
H
(k)

I1u
c
H
(k)

I2u
c
H
(k)

...
IK−2u

c
H
(k)

IK−1u
c
H
(k)



















. (50)

Next, we investigate the convergence properties of equation (50). we assume the following
linear statistical model for the desired signal:

d(n) = w
o(n) ∗ u(n) + e

o(n), (51)
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where wo is the impulse response of the Wiener optimal filter and eo(n) is the irreducible
estimation error, which is white noise and statistically independent of the adaptive filter
input. The above equation can be written in the HOT domain form

[

0 K
2

d̂0(k)

]

=

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F
−1
K

×

[

I0w
o
H(k)⊗ I0uH(k) + D

K−1

∑
i=1

IK−iw
o
H(k)⊗ IiuH(k) + FKe

o
0(k)

]

. (52)

This form will be useful to obtain the stochastic difference equation that describes the
convergence of the adaptive algorithm. Using the above equation to replace the desired
signal in equation (46), we have

FKe0(k) = FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F
−1
K

×

[

I0ǫH(k)⊗ I0uH(k) + D

K−1

∑
i=1

IK−iǫH(k)⊗ IiuH(k) + FKe
o
0(k)

]

, (53)

where ǫH(k) is the error in the estimation of the adaptive filter weight vector, i.e., ǫH(k) =
wo

H − wH(k). The ith block in equation (50) is given by

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FKe0(k). (54)

Substituting equation (53) into equation (54) yields

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F
−1
K ×

[

Diag [I0uH(k)] I0ǫH(k) + D

K−1

∑
i=1

Diag [IK−iuH(k)] IiǫH(k) + FKe
o(k)

]

. (55)

Upon defining

Ti,j = Diag [Iiu
c
H(k)] LKDiag

[

IjuH(k)
]

, (56)

where
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LK = FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F
−1
K , (57)

the ith block of equation (50) can be written as

FKe
o(k)⊗ Iiu

c
H(k) =

[

Ti,0 Ti,K−1 Ti,K−2 · · · Ti,1

]















I0ǫH(k)
DI1ǫH(k)
DI2ǫH(k)

...
DIK−1ǫH(k)















+Diag [Iiu
c
H(k)] LKe

o(k). (58)

Using the fact that

Diag [v]R Diag [u] =
(

vu
T
)

⊗ R, (59)

equation (56) can be written as

Ti,j =
(

Iiu
c
H(k)

(

IjuH(k)
)T )

⊗ LK . (60)

Define

UK2 = H

[

I K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

]

H
−1. (61)

Then

wH(k + 1) = wH(k)

+ µ UK2 I
−1
K T















I0ǫH(k)
DI1ǫH(k)
DI2ǫH(k)

...
DIK−1ǫH(k)















+ µ UK2 I
−1
K















Diag
[

I0u
c
H(k)

]

Diag
[

I1u
c
H(k)

]

Diag
[

I2u
c
H(k)

]

...
Diag

[

IK−1u
c
H(k)

]















LKe
o(k). (62)

The matrix T can be written as

T =
(

1K×K × LK

)

⊗













I0u
c
H(k) [I0uH(k)]T I0u

c
H(k) [IK−1uH(k)]T · · · I0u

c
H(k) [I1uH(k)]T

I1u
c
H(k) [I0uH(k)]T I1u

c
H(k) [IK−1uH(k)]T · · · I1u

c
H(k) [I1uH(k)]T

...
...

. . .
...

IK−1u
c
H(k) [I0uH(k)]T IK−1u

c
H(k) [IK−1uH(k)]T · · · IK−1u

c
H(k) [I1uH(k)]T













,
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where × denotes the Kronecker product and 1K×K is the K × K matrix with all element being
equal to one. The matrix T can be written as

T =















I0u
c
H
(k)

I1u
c
H
(k)

...
IK−2u

c
H
(k)

IK−1u
c
H
(k)





























I0uH(k)
IK−1uH(k)

...
I2uH(k)
I1uH(k)















T

⊗

(

1K×K × LK

)

=
(

IKu
c
H
(k)uT

H(k)Ic
K

T
)

⊗

(

1K×K × LK

)

,

where

I
c
K
=











I0

IK−1
...

I1











. (63)

Finally, the error in the estimation of the adaptive filter is given by

ǫH(k + 1) =

(

I − µUK2 I
−1
K

(

IKu
c
H
(k)uT

H(k)Ic
K

T
)

⊗

(

1K×K × LK

)

I
D
K

)

ǫH(k)

−µUK2 I
−1
K















Diag[I0u
c
H
(k)]

Diag[I1u
c
H
(k)]

...
Diag[IK−2u

c
H
(k)]

Diag[IK−1u
c
H
(k)]















LKe
o(k), (64)

where

I
D
K =



















I0

DI1

DI2
...

DIK−2

DIK−1



















. (65)

Therefore, the adaptive block HOT filter convergence is governed by the matrix

Ψ = H

[

I K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

0 K2

2 ×
K2

2

]

H
−1

I
−1
K

(

IKEu
c
H
(k)uT

H(k)IcT
K

)

⊗

(

1K×K × LK

)

I
D
K . (66)
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The structure of Ψ is now analyzed. Using the relation between the HOT and the DFT
transforms, we can write

IKu
c
H
=















FKu
c
0

FKu
c
1

...
FKu

c
K−2

FKu
c
K−1















. (67)

It can be easily shown that

FKu
c
i
=

{

F
H
K

ui if i = 0,

D
∗
F

H
K

uK−i if i 6= 0.
(68)

Then we have

IKu
c
K
=















F
H
K

u0

D
∗
F

H
K

uK−1
...

D
∗
F

H
K

u2

D
∗
F

H
K

u1















(69)

and

IKu
c
H
(k)uT

H(k)IcT
K

=















F
H
K

u0

D
∗
F

H
K

uK−1
...

D
∗
F

H
K

u2

D
∗
F

H
K

u1





























FKu0

FKuK−1
...

FKu2

FKu1















T

. (70)

Taking the expectation of equation (70) yields

IKEu
c
H
(k)uT

H(k)IcT
K

=













F
H
K

Eu0u
T
0 FK F

H
K

Eu0u
T
K−1FK . . . F

H
K

Eu0u
T
1 FK

D
∗
F

H
K

EuK−1u
T
0 FK D

∗
F

H
K

EuK−1u
T
K−1FK . . . D

∗
F

H
K

EuK−1u
T
1 FK

...
...

. . .
...

D
∗
F

H
K

Eu1u
T
0 FK D

∗
F

H
K

Eu1u
T
K−1FK . . . D

∗
F

H
K

Eu1u
T
1 FK













.

Each block in the above equation is an autocorrelation matrix that is asymptotically
diagonalized by the DFT matrix. Each block will be also pointwise multiplied by LK .
Three-dimensional representations of LK for K = 16 and K = 32 are shown in Figures 5 and
6, respectively. The diagonal elements of LK are much higher than the off diagonal elements.
Therefore, pointwise multiplying each block in the previous equation with LK makes it more
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diagonal. If each block is perfectly diagonal, then IK

(

IKEu
c
H
(k)uT

H
(k)IcT

K

)

⊗ (1K×K × LK)I
D
K

will be block diagonal. Asymptotically the HOT block LMS adaptive filter transforms the K2

modes into K decoupled sets of modes.

Figure 5. Three-dimensional representation of L16.

Figure 6. Three-dimensional representation of L32.
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8. Conclusions

The “HOT convolution,” a relation between the HOT of two signals and their circular
convolution was derived. The result was used to develop a fast block LMS adaptive filter
called the HOT block LMS adaptive filter. The HOT block LMS adaptive filter assumes that
the filter and block lengths are the same. This filter requires slightly less than half of the
multiplications that are required for the DFT block LMS adaptive filter. The reduction in
the computational complexity of the HOT block LMS comes from using only one polyphase
component of the filter error used to update the filter weights. Convergence analysis of the
HOT block LMS algorithm showed that the average time constant is the same as that of the
DFT block LMS algorithm and that the misadjustment is K times greater than that of the DFT
block LMS algorithm. The HOT block LMS adaptive filter transforms the K2 modes into K
decoupled sets of modes.
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