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1. Introduction 

In the last few decades, the flow of biological discovery has swelled from a trickle into a 

torrent, driven by a number of new methodologies developed in plant tissue culture, 

recombinant DNA technology, monoclonal antibodies and micro chemical instrumentation 
[1] Biological research has been transformed from a collection of single discipline endeavors 

into an interactive science with bridges between numbers of traditional disciplines. This 

synergy has made biology the “sunrise field” of the new millennium. The whole gamut of 

new discoveries in biology and allied sciences can be grouped together under a single 

umbrella term of “Biotechnology”. 

Biotechnology has been defined as “any technique that uses living organisms, or substances 

from these organisms, to make or modify a product, to improve plants or animals, or to 

develop microorganisms for specific uses” [2]. No society has advanced without deploying 

appropriate technology in place to set the pace for addressing its major problems. Public 

investment in relevant technology, the application to industries and capturing of the benefit 

accrue to it is what sets developed nations apart. Previous reports have shown that there is 

no National economic growth without proper investment in a right technology which is 

applied in a Nation. Real solutions to priority on national problems like job creation and 

poverty alleviation is investment in appropriate technology. This is evident in countries that 

embraced and adopted biotechnology in past technological revolutions and are practicing 

on an unprecedented scale. Such countries like India, Cuba and South Africa. The 

application of biotechnology has greater opportunities for developing countries than 

previous technologies i.e. greater comparative advantages[3]. Agricultural biotechnology 

addresses issues such as the production of disease resistant, high yielding and very 
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profitable agricultural ventures in both plants and animals. The world population has 

grown tremendously over the past two thousand years. In 1999, the world population 

passed the six billion mark. Latest official current world population estimate, for mid-year 

2011, is estimated at 7 billion [4]. The population increase in developing countries constitutes 

97% of the global increase [5], and it is estimated that by 2050, 90% of the planet’s population 

will reside in the developing countries of the southern hemisphere. The challenge for the 

future, therefore, lies in global food security that necessitates a doubling of food production 

in the next 50 years to meet the needs of the population [6]. Most developing countries yet to 

fulfill their food production potentials; are especially vulnerable in terms of food security. 

Plant biotechnology plays a key role in complementing other factors necessary for the 

improvement of crop production such as the use of agrochemicals, irrigation, plant breeding 

and farm management to address food security. Plant biotechnology, has three broad fields 

of study. They include plant tissue culture, genetic engineering and plant molecular 

markers. These applications range from the simple to the sophisticated and in many cases 

have been appropriate for use in developing countries [2]. For example, biotechnology 

techniques such as plant tissue culture have been utilized appropriately for many 

agronomic and food crops to provide more food and planting materials for farmers. 

Micropropagation, popularly known for large-scale clonal propagation, is the first major 

and widely accepted practical application of plant biotechnology. It is described as the  in 

vitro initiation of plant culture, propagation, and rooting under controlled environmental 

conditions for ex vitro establishment in the soil. New contributions to in vitro techniques for 

plant propagation in the last decade have simplified micropropagation technology [7]. This 

covers a wide range of plants including Agronomic species, economic and forest trees. 

In Cassava (Manihot esceulenta) for example, Tissue culture has made possible the mass 

production of disease-free and uniform plants. The techniques thus bring farmers the great 

benefit of high- quality planting materials [8].Production of planting materials is 

indispensable in the overall structure of research for conservation of variety purity and 

supply of high yielding cassava cultivars to stem multipliers and producers[9]. The possibility 

of using screen house to maintain in vitro cultures and rapidly propagate important 

vegetative crops with less contamination at a reduced cost was investigated A[10]. In vitro 

propagation has been used to regenerate, establish and conserve both economic trees and 

forest species through organogenesis and somatic embryogenesis. For instance, 

Khayagrandifoliola is an important species native to West Africa [11]. Khaya wood, African 

mahoganyas it is commercially called is a high priced wood often used for furniture and 

construction purposes. With its threatened conservation status [12], micropropagation has 

been auseful tool for mass propagation of superior stock plants as well as genetic 

improvement and conservation. For the purpose of conservation and multiplication, a 

reliable plant regeneration protocol from matured seed embryo of Khayagrandifoliola was 

developed [13]. Another species of economic importance isPlukenetiaconophoraMull.Arg. 

(Family: Euphorbiaceae), formerly known as Tetracarpidium conophorum and popularly 

called African walnut. This tree speciesis a perennial climber of economic importance, an 

edible species and is used medicinally [14]. A prolific shoot multiplication system (protocol) 
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for Plukenetia conophora has been reported [15]. Furthermore, the need to conserve and 

regenerate recalcitrant species has led to the development of in vitro protocols for many 

recalcitrant species including vegetables. Telfaria Occidentalis(fluted pumpkin) is a tropical 

vegetable grown in West African and widely consumed in tropical regions mainly for its 

richness in protein [16]. Due to problems associated with the sex of the plant regarding 

reproduction, the female plant in preferred with respect to leaf and fruit production [17]. In 

vitro culture of T. occidentalis under different cytokinins and auxins combination was studied 
[18]. The commercial use of micropropagation is mainly limited to crops with high value and 

the commercial utility of this technique for the most important crop species is limited as a 

result of the large numbers needed annually to start up new farms in addition to high 

production costs. In order to overcome the problems of conventional micropropagation, 

protocols have been proposed using bioreactors and liquid medium [19]. Bioreactor system 

which incorporates a number of features in its design has been used to simplify operation 

and reduce production costs. Automation, using a bioreactor, is one of the most effective 

ways to reduce the costs of micropropagation [20]. 

The Temporary Immersion Bioreactors (TIBs) has been shown to reduce some problems 

usually encountered in permanent liquid cultures such as hyper-hydricity, poor quality of 

propagules, andnecessity of transplanting on a solid medium in the elongation and/or 

rooting stage. In comparison with conventional micropropagation on semisolid medium, 

TIBs provides a superior mass balance. Indeed in the latter comparison the proliferation rate 

is higher, labor efficiency is improved and, as a consequence, the cost is reduced [21].  

This chapter attempts to give an insight on how methods and applications of in vitro 

technology can serve as a catalyst for both agricultural and industrial development in an 

emerging economy. 

2. Methodology 

2.1. In vitro propagation of Cassava plantlet (Manihot esceulenta) 

This study aims at the possibility of using screen house to maintain in vitro cultures and 

rapidly propagate important vegetative crops with less contamination at a reduced cost.  

Two genotypes of cassava TMS 188/00106 and TMS 083/00125 were obtained from the 

Inte~na1ionaf Institute of Tropical Agriculture (IITA) while live different medium were 

prepared using medium [22] with minor adjustments. as follows:  

Treatment 1 (T1) Liquid only 

Treatment 2 (T2) - liquid with 50% normal agar (2 g/l).  

Treatment 3 (T3) - liquid media with filter paper embedded.  

Treatment 4 (T4) - Media with normal agar (4 g/l).  

Treatment 5 (T5) - liquid media with filter paper projecting out.  

The pH was taken and dispensing was done at the rate of 3 ml before autoclaving. The sub 

culturing was done the following day. One hundred and twenty test tubes were used for 
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each variety with 12 test tubes per treatment. A complete set of 60 test tubes With 5 

treatments of 12 replicates was placed in the laboratory while the second set was placed in 

the screen house at the same day for TMS 188/00106; the same procedure was adopted the 

following day for TMS 083/00125. Data was recorded weekly for 5 weeks before sub 

culturing. The second generation was observed for only two weeks to ensure the 

sustainability of the observation made during the first generation. The observation on 

explants survival was scored on a scale of 0 - 3 as follows:  

0 - Dead  

1 - Alive but not growing  

2 - Growing slowly  

3 - Growing very well  

There were six parameters recorded during the investigation. These include survival (ate, 

shoot development, root growth. nodal increase, leave development and increases in height. 

Survival rate was observed for two weeks only white the other five parameters were scored 

continuously for the rest three weeks consecutively. Only the screen house explants were 

subculture after 5 weeks to ensure the sustainability of the findings. The subculture materials 

from the screen house explants' were also placed in both screen house and culture room 

(laboratory). The same set of observation was carried out on the responses of the explants to 

the culture medium and environment as in the first generation explants. The summary in 

Table 1 indicates that out of the six parameters studied, F-probability on survival is 

significantly different for all the media used. Observation shows no significant difference on 

the five treatment for shoot root node, , leaves and height development Although there were 

some effects on the survival of the explants, the laboratory plantlets grows better in liquid and 

liquid with filter paper embedded media than when placed in the screen house. This might be 

due to high temperature recorded at the time of placement (32° - 36°C compared to 22 - 25oC in 

the laboratory), which indicates an interaction between treatment and environment (Table 1).  

 

SIN  Survival  Shoot  Root  Node  Leaves  Helaht  

 SH  LAB  SH LAB  SH LAB  SH LAB  SH LAB  SH  LAB  

I  1.77  2.41 1.92 1.93  0.73 1.55  2.00 1.93  1.92 1.93  1.92  1.96  

11  1.67  1.44  1.56 1.42  1.67 1.33  1.86 1.63  1.67 1.46  1.61  1.33  

III  1.02  1.81  1.21 2.04  0.46 1.42  1.46 2.17  1.29 2.00  121  2.04  

IV  1.73  1.27  1.83 1.00  1.00 0.75  2.04 1.29  2.00 0.96  1.79  1.00  

V  1.73  1.27  1.88 1.13  1.63 1.04  2.13 1.29  1.79 1.13  1.92  1.17  

CV  42%   49%  89%  48%  51%  48%  

Lsd 0.38.4  0.4470  0.2987  0.4889  0.470  0.439  

Std 0.193  0.2266  0.5892  0.2479  0.2383  0.2228  

SH - Screen House. LAB - Culture room in the Laboratory.  

Table 1. Summary of environmental effect on the in vitro growth rate of cassava tissue culture.  

Obviously, the laboratory' supports the survival of explants in the liquid medium and liquid 

medium with embedded filter paper. On the other hand, survival is lowest in the screen 

house with liquid medium containing embedded filter paper. This suggests that before the 
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explants can be transferred to the screen house, there is need to ensure their survival in the 

laboratory. For T 2 (liquid with 50% normal agar), T4 (media with normal agar, 4 g/l) and T5 

(liquid media with filter paper projecting out), the survival was significantly higher in the 

screen house than in the laboratory. On the other hand TMS 083/00/25 survived better in the 

liquid media with embedded filter than TMS 188/00106. The survival rate of TMS 188100106 

was also better in liquid medium with 50% normal agar (2g/l), media with normal agar and 

liquid media with filter paper projecting out than TMS 083/00/25. This suggests that for long 

storage before sub culturing, laboratory may be ideal while for short time storage and 

immediate rapid mass propagation screen house may be adopted.  

Table 2 shows that TMS 188/00106 survived better in liquid media than TMS 083/00125. No 

significant different between the two genotypes in most of the media except on survival in 

liquid media only. Figure 1 Shows that screen house plantlet grow relatively uniform for all 

the five treatments while Figure 2 indicates that plantlets in T1 grew faster than others in the 

culture room.  

It can therefore be concluded that when the need arises, in vitro plantlets of cassava can be 

raised adequately in the screen house and even be raised faster than the laboratory as long 

as the temperature does not exceed 
 

SIN Survival Shoot Root Node Leaves Height 

 01 02 01 02 01 02 01 G2 01 02 01 G2 

I 2.37 1.51 2.25 1.34 1.29 0.77 2.29 1.39 2.29 1.30 2.21 1.46 

11 1.67 1.37 1.46 1.53 1.79 1.05 1.67 1.84 1.54 1.60 1.46 1.47 

III 1.13 1.71 1.21 2.04 0.71 1.17 1.25 2.38 1.13 1.17 1.29 1.96 

IV 1.54 1.46 1.33 1.50 1.00 0.75 1.79 1.54 1.54 1.42 1.42 1.38 

V 1.54 1.46 1.58 1.42 1.00 1.67 1.63 1.79 1.42 1.5 1.54 1.54 

CV 43% 50% 92% 48% 52% 51% 

Lsd 0.3898 0.4494 0.5889 0.4791 0.4684 0.4600 

Sed 0.1976 0.2278 0.2985 0.2429 0.2375 0.2332 

G1=Genotype1=TMS88100106. G2 = Genotype 2 = TMS 083/00125 

Table 2. Summary of genotypic effect on the in vitro growth rate of cassava tissue culture.  

 

Figure 1. Screen house performance of the 5 treatments of cassava tissue culture. T1 - Liquid only; T2� 

liquid with 50% normal agar (2 g/l); T3 - liquid media with filter paper embedded; T4 - media with 

normal agar (4 g/l); and T5 - liquid media with filter paper projecting out.  
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Figure 2. Laboratory performance of the 5 treatments of cassava tissue culture. T1 - Liquid only; T2 - 

liquid with 50"10 normal agar (2 gll); T3 . liquid media with filter paper embedded; T4 - media with 

normal agar (4 g/I); and T5 - liquid media with filter paper projecting out.  

2.2. In vitro propagation of an endangered medicinal timber species Khaya 

grandifoliola C. Dc. 

Considering the fact that this forest tree species seeds are recalcitrant in nature and 

producing adequate number of seedlings for any meaningful plantation establishment 

programme from seeds stored for long time is very difficult, this present work aims to 

describe a reliable plant regeneration protocol from matured seed embryo. 

Seeds of K. grandifoliola used were collected from the Genebank of National Center for 

Genetic Resources and Biotechnology (NACGRAB), Ibadan, Nigeria (07°23.048’N 

003°50.431’E). Ninety (90) seeds used for this experiment were washed with mild liquid 

detergent (Tween-20) under running tap water for 10 min. This is followed by surface 

sterilization in 70% ethanol for 5 min and 0.1% mercuric chloride for 10 min followed by 3 

rinses in sterile distilled water. The embryos were carefully excised with ease together with 

some endosperm attached and then cultured on basal medium supplemented with 3% w/v 

sucrose, 0.1 g inositol and gelled with 0.7% w/v agar at various concentration of cytokinins 

and auxin in a 17 ml test tube. The cytokinins used were benzylaminopurine (BAP) and 

kinetin (KIN), while naphthalene acetic acid (NAA) was the auxin used. All growth 

regulators were added before autoclaving. The pH was adjusted to 5.7 ± 0.2 and autoclaving 

was done at 121°C for 15 min. The cultures were incubated in a growth room at 26 ± 2°C 

under a 16 h photoperiod with cool-white fluorescent light. There were nine treatments, and 

ten explants were cultured per treatment and later arranged randomly on the shelves in the 

growth room. After four weeks, the cultures were evaluated for shoot length, root length, 

number of nodes and number of roots. The data taken were subjected to statistical analysis 

using SAS/PC version 9.1. The observed means of the characters were subjected to Least 

Significant Difference (LSD) to show the mean separation.  

Data in Table 3 revealed that different concentrations of the cytokinin BAP and the auxin 

NAA tested in this study had a significant effect on the regeneration of plantlets. The 

longest shoot length (7.4 mm) was exhibited for explants cultured on MS-medium 

supplemented with 0.075 mg/L (Kin) + 0.01 mg/L (NAA) and this value is 3 fold higher than 
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that found for embryo cultured on 0.10 mg/L (Kin) + 0.01 mg/L (NAA) whose average shoot 

length was 2.7 mm. These results showed that the most adequate culture medium for 

obtaining the longest aver-age root length (7.53cm) per culture after four weeks was MS-

medium supplemented with of BAP at 1.0 mg/L plus NAA at 0.1 mg/L, while the shortest 

root length (1.47 cm) was exhibited by MS-medium supplemented with 0.15 mg/L (BAP) + 

0.01 mg/L (NAA), this indicates that increasing the level of auxin (NAA) increases the length 

of roots and vice-versa. However, the highest number of nodes (4.0) was observed on 

plantlets cultured on MS-medium supplemented with 1.0 mg/L (KIN) + 0.01 mg/L (NAA). 

 

S/N Media 
Shoot 

length 

Root 

length 

Number 

of nodes 

Number 

of roots 

1 0.125 mg/l (BAP) + 0.01 mg/l (NAA) 4.20 1.53 3.00 1.00 

2 0.15 mg/l (BAP) + 0.01 mg/l (NAA) 4.67 1.47 2.00 1.00 

3 0.05 mg/l (KIN) + 0.01 mg/l (NAA) 3.7 4.53 2.00 1.00 

4 0.075 mg/l (KIN) + 0.01 mg/l (NAA) 7.4 4.20 3.00 1.00 

5 0.10 mg/l (KIN) + 0.01 mg/l (NAA) 2.7 4.03 2.00 3.00 

6 0.125 mg/l (KIN) + 0.01 mg/l (NAA) 4.92 5.53 3.00 1.00 

7 1 mg/l (BAP) + 0.1 mg/l (NAA) + 10 mg/l (adenine sulphate) 5.78 3.50 3.00 3.00 

8 1 mg/l (KIN) + 0.01mg/L (NAA) + 10 mg/l (adenine sulphate) 4.82 4.50 4.00 1.00 

9 1 mg/l (BAP) + 0.1 mg/l (NAA) 5.87 7.53 3.00 2.00 

LSD 0.14 0.13 0.00 0.00 

Table 3. Effect of plant growth regulators on shoot length, root length, number of nodes, and number 

of roots regeneration from embryo culture of K. grandifoliola. 

  

Figure 3. The growth stages of K. grandifoliola through embryo culture in vitro (two weeks after culture). 

These findings are in agreement with those reported earlier [23] on Cacti (Pelecyphora 

aselliformis) and Nealolydia lophophoroides; the work on Aloe barbebsi [24] and Turbinicapus laui 
[25] indicate that using a high concentration of BAP and NAA in different concentrations was 

a limiting factor for shoot formation and increases root formation. The result of this study 

showed that the optimum medium for regeneration of K. grandifoliola MS-medium 
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supplemented with 1.0 mg/L (BAP) + 0.1 mg/L (NAA) + 10 mg/L adenine sulphate because 

the values obtained for all the parameter measure was moderately high and optimum. The 

fact that the number of roots increased to 3 in medium 5 and 7 could be due to the increase 

in the concentration of NAA to 0.1 mg/L. It has been established that auxins like NAA 

increases the root formation in the presence of low cytokinins [26]. 

 

Figure 4. The effect of different levels of kinetin and BAP on the performance of K. grandifoliola. 

2.3. In vitro culture of Telfairia occidentalis under different cytokinins and auxin 

combinations 

The aim of this work was to investigate the in vitro regeneration potential of Telfairia 

occidentalis under different hormonal combination. The nodal cuttings collected from four 

weeks old seedlings raised in the screen house at NACGRAB were used as explant. The 

explants were surface-sterilized in 15% NaOCl + 2 drops of Tween 20 per 100 ml for 25 min. 

They were then cut with a sharp sterile knife into single node cuttings. Three or four 

explants from a seedling were cultured on the prepared medium to which either 

naphthalene acetic acid (NAA) or benzylaminopurine (BAP), indolebutyric acid (IBA), 

indole-3-acetic acid (IAA) and kinetin had been added. Different concentrations were 

investigated for each of the auxins and cytokinins. The basal medium used comprised of 

Murashige and Skoog macro and micro-elements, vitamins 3% sucrose, 10 mg/L ascorbic 

acid, 0.1 g/L myo-inositol, and 0.02 g/L cysteine. Cultures were incubated in the dark at 25 ± 

2oC for duration of six weeks for shooting and rooting induction. The number of roots and 

nodes were counted and recorded on the sixth week. 

Among all the growth hormones used, IBA (0.05 mg/L) + BAP (0.01 mg/L) combination gave 

the best result for both rooting and shooting while the highest number of nodes was 

observed in BAP (0.05 mg/L) + NAA (0.01 mg/L). The application of kinetin both in 

combination with NAA and alone resulted in premature senescence with lower number of 

nodes. This is in agreement to the findings of [27] who showed that kinetin is not a suitable 
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hormone for regeneration of Telfairia especially if it will be kept in vitro for a long time. 

However BAP (0.05 mg/L) + IAA (0.01 mg/L) combination resulted in lowest number of 

nodes and MS alone produced callus without regenerating into a plantlet. The result shows 

that in vitro growth of T. occidentalis is hormone specific. 

2.4. In vitro micro-propagation of Plukenetia conophora Mull.Arg 

This study describes a reliable and prolific shoot multiplication system (protocol) for 

Plukenetia conophora. Excised embryos and nodal cuttings from growing seedlings served as 

the major explants used for the study. Matured fruits were collected from the field gene 

bank of NACGRAB, Ibadan.  

2.4.1. Dis-infection of explants 

Nodal cuttings: The nodal segments were obtained from the stems of actively growing 

seedlings, washed with liquid detergent under running tap water and disinfected using 

standard disinfection procedures before culturing. For embryos, cotyledons obtained from 

the nuts were reduced into small size, washed with liquid detergent under running tap 

water and then disinfected appropriately. 

2.4.2. Culture conditions 

The culture media consisted of MS basal medium supplemented with vitamins, myo-

inositol, sucrose, casein hydroxylate and growth regulators. The pH of the medium was 

adjusted before autoclaving. All the cultures were kept at 24±2 0C under cool light 

fluorescent lamp for a photoperiod of 16 hours. 

2.4.3. Shoot induction from matured embryos 

Matured excised embryos were cultured on shoot induction medium supplemented with 

different concentrations of KIN (0.0 – 0.50) mg/l with NAA /0.05 mg and BAP (0.0 – 0.50) 

mg/l with NAA 0.05mg,whileexcised nodal segment from actively growing stem were 

cultured for direct organogenesis on MS medium supplemented with 0.0-0.45mg/l 

BAP/0.05mg NAA and 0.0-0.45mg/l KIN/0.05mg NAA for shoot proliferation. 

The studies showed that the excised embryos regenerated in vitro after12 weeks of culture 

had a healthy appearance. In vitro regeneration was achieved on MS basal medium without 

growth regulators. On MS basal media fortified with growth regulators, the best mean result 

of shoot length was recorded on medium supplemented with 0.3mg KIN and 0.01mg NAA. 

The medium augemented with 0.3mg KIN and 0.05mg NAA gives the longest root length. 

These concentrations induced a higher percentage of explants with shoots and shoot 

number per explant than the hormone-free treatment. Therefore, the introduction of growth 

regulators led to the increase in shoot length and number of nodes. However, an increase in 

the concentrations of NAA from 0.01mg to 0.05 mg resulted in a decline in the number of 

shoots formed and an increase in the root length (Table 6). 
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In the in vitro regeneration of nodal cuttings, nodal culture on MS basal (the hormone-free 

treatment) showed no significant growth until supplemented with cytokinin, hence the need 

for supplementing the MS basal medium with cytokinin. MS medium containing 0.30mg 

BAP and 0.05mg NAA gave the best mean shoot length, number of shoots, and node 

number. An increase in the concentration of BAP above 0.30mg/l led to a decline in shoot 

length. The addition of Casein hydroxylate improved the shoot response as observed in the 

difference in growth response of nodal cuttings on MS containing 0.2mg/l BAP and casein 

hydroxylate and 0.2mg/l BAP without casein hydroxylate as there were differences in their 

shoot response. 

 

Media                                                     Shoot  length (cm)     Root length (cm)     No. of nodes 

MS only                                                               4.97±0.03                 3.90±0.05            2.00±0.00 

MS + 0.30mg KIN + 0.01mg NAA                   3.10±0.00                 2.00±0.24            3.00±0.00 

MS + 0.30mg KIN + 0.05mg NAA                   2.00±0.00                 5.50±0.24            2.00±0.00 

MS + 0.40mg BAP + 0.01mg NAA                   2.00±0.00                  5.50±0.24           2.00±0.00 

Mean result ±standard error. 

Table 4. Effect of KIN, BAP and NAA on in vitro regeneration of Plukenetia conophora embryos after 12 

weeks. 

    Media                                                  Shoot length (cm)     No. of shoots       No. of nodes 

MS only                                                                             No significant growth 

MS + 0.20mg BAP  (no casein hydroxylate)      0.57±0.03                1.00±0.00          1.00±0.00 

MS + 0.20mg BAP + 0.05mg NAA                      0.70±0.08                1.00±0.00          1.00±0.00 

MS + 0.30mg BAP + 0.05mg NAA                      2.13±0.05                2.00±0.00          2.00±0.00 

MS + 0.35mg BAP + 0.05mg NAA                      1.10±0.05                2.00±0.00          2.00±0.00 

MS + 0.40mg BAP + 0.05mg NAA                      0.83±0.07                1.50±0.29          1.67±0.27 

MS + 0.45mg BAP + 0.05mg NAA                      0.63±0.13                1.30±0.27          1.25±0.25 

MS + 0.30mg KIN + 0.05mg NAA                      0.53±0.02                1.00 ±0.00         1.00 ±0.00 

Table 5. Effect of BAP, KIN and NAA on in vitro regeneration of Plukenetia conophora nodal explants. 

3. The Potential of Temporary Immersion Bioreactors (TIBs) in scaling up 

crop production, to meet agricultural demand in developing countries 

Temporary Immersion Bioreactor system (TIBs) is a relatively recent micropropagation 

procedure that employs the use of automated gadgets to control rapid multiplication of 

plant cultures under adequate conditions. TIBs provide a more precise control of the 

adequate conditions (gaseous exchange, illumination etc.) required by plants for growth, 

development and survival than the conventional culture vessels. This bioreactor system 

incorporates a number of features specifically designed to simplify its operation and reduce 

production costs. 

TIBs consist of three main phases: Multiplication, Elongation and rooting phase. Plantlets 

propagated in TIBs have better performance than those propagated by conventional 
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methods of micropropagation. This is as a result of a better handling of the in vitro 

atmosphere and the nutrition. The system also provides a rapid and efficient plant 

propagation system for many agricultural and forestry species, utilizing liquid media to 

avoid intensive manual handling. In addition to diminishing production costs regarding 

labour force, Temporary Immersion Bioreactors save energy, augment micropropagation 

productivity and efficiency. 

3.1. Use of bioreactor technology? 

Bioreactors provide a rapid and efficient plant propagation system for many agricultural 

and forestry species, utilizing liquid media to avoid intensive manual handling. Several 

authors have reported the use of bioreactors for plants propagation [28],[29]. To reduce the 

intensive labour requirement along with the production cost during plant propagation by 

tissue culture technique, there is an immense need of developing scale-up systems and 

automation [30]. This method for large scale production of plants is promising at industrial 

level. Employing bioreactors with liquid medium for micropropagation is advantageous 

due to the ease of scaling-up [31]. Large-scale plant propagation using bioreactor can also be 

beneficial in terms of year round production of the propagules of useful plants resulting in 

comparatively less labour cost and time [32]. The major advantages of using bioreactor 

culture system for micropropagation of economically important plants includes the 

potential for scaling-up in lesser time limit; Reduction in the production cost as well as an 

automated control of physical and chemical environments during growth phase of the plant 

cultures.  

3.2. Importance of TIBs technology to agricultural development in emerging 

countries 

Modern biotechnology has put the micropropagation industry on the verge of exciting new 

breakthroughs. It offers improvements in virtually every area of crop production and 

utilization, with potential benefits to agriculture, the food industry, consumers and the 

environment. As the world's population continues to grow, it is anticipated that there could 

be many mouths to feed in the next few decades. The advances made possible through 

micropropagation (TIBs) will be essential to meet global food needs by increasing the yield, 

quality and quantity of crops available to farmers. TIBs offer further benefits in form of non-

food crops. Through mass propagation of specific economic species, it will be possible to 

arrest desertification, soil erosion in affected areas and also increase industrial crop 

production as renewable sources of medicines, industrial chemicals, fuels etc. They offer 

potential benefits to the commercial farmers, industries, public, research scientists and 

students. The potential benefits of TIBs are summarized below. 

 Mass propagation of agronomic food crops to enhance food security. (i.e All year round 

production and supply of planting materials to farmers). 

 Scaling up of the production of specific crops for industrial use (A step towards 

commercialization) e.g pineapple juice. 
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 Mass propagation of economic tree species (e.g Eucalyptus spp., Adzadiracta indica, 

Accacia sp) for addressing environmental problems like desertification and erosion. 

 Job creation. 

 Inspire collaborations among institutions on specific economic and ecological projects. 

3.3. The use of TIBs in the mass propagation of Plant Genetic Resources (Using 

Pineapple, plantain, sugarcane and Eucalyptus sp as a case study) 

The objectives of this work were: 

 To produce high planting density of crops through an efficient and rapid production 

system to meet conservation and large scale farming production demands. 

 To produce homogenous plantlets for research and development purposes. 

Four major stages are recommended for effective mass propagation of plant cultures using 

temporary immersion systems, these include: 

3.3.1. Stage 1: Collection and Establishment of the mother explants on agar gel medium. 

The establishment of truly aseptic cultures usually involves the following sequential steps: 

Step 1. Pre-propagation step or selection and pre-treatment of suitable plants. 

The mother plants are selected and screened before transporting to the green house 

environment. The health status of the donor mother plant and of the plants multiplied from it 

are among the most critical factors, which determine the success of a tissue culture operation. 

Hence, indexing of the mother plants for freedom from viral, bacterial, and fungal diseases is 

a normal procedure before undertaking propagation in large-scale plant propagation through 

tissue culture [33]. This step is crucial as it tends to reduce the microbial load present at the 

time of collection and which may hinder or interfere with the in vitro processes.  

Step 2. Initiation of explants - surface sterilization, establishment of mother explants. 

This involves the sequential disinfection of the mother plant under aseptic conditions, 

culture initiation and establishment on a suitable growth media. The process requires 

excision of tiny plant pieces and their surface sterilization with chemicals such as ethyl 

alcohol, sodium hypochlorite and repeated washing with sterile distilled water before and 

after treatment with chemicals. The appropriate growth media for each crop was prepared. 

The pH was adjusted to 5.7 ± 0.2 before autoclaving at 121°C for 15 min and culture 

initiation was carried out under the laminar flow hood.  

The initiated cultures were then transferred to the growth room and incubated at 26 ± 2°C 

under a 16 h photoperiod with cool-white fluorescent light. 

Step 3. Subculture of explants on agar gelled media for multiplication and proliferation. 

This involves the subculture of established explants on agar gelled media with a specific 

auxin/cytokinins combination to induce proliferation. In this step, explants were cultured on 
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the appropriate media for multiplication of shoots. The primary goal was to achieve 

propagation without losing the genetic stability. Repeated culture of axillary and 

adventitious shoots, cutting with nodes, somatic embryos and other organs from Stage I led 

to multiplication of propagules in large numbers. The propagules produced at this stage 

were further used for multiplication by their repeated culture. 

3.3.2. Stage 2: Zero shelving of plants to liquid medium. 

Sometimes it is necessary to subculture the in vitro derived shoots onto different media for 

elongation and rooting for ex vitro transfer. However, if cultures must be mass propagated 

in Temporary Immersion System, they must be allowed to pass through the zero phase 

upon establishment and when they have gained a proliferation capacity/potential on the 

agar gelled multiplication media. This is usually done in order to prepare the explants for 

proper adaptation, survival and desired in vitro response in the next phase which utilizes 

only liquid medium.  

3.3.3. Stage 3: Introduction and cultivation of ex-palnts into Temporary Immersion 

Bioreactors. 

This Phase refers to Plant cell/tissue growth and development in liquid medium under the 

control of Temporary immersion systems. It utilizes the advantages of liquid medium 

coupled with automated control of culture conditions to rapidly multiply explants thereby 

increasing exponentially the multiplication coefficient of the explants. Only healthy in vitro 

derived shoots that successfully passed through the zero shelving were introduced in TIBs 

set up. For the set up at NACGRAB, a total of 6 temporal immersions by pneumatic driven 

medium transfer were made daily. The immersion frequency was 3 minutes at 3 hours 

interval with a pre-immersion and post immersion period of 10 minutes respectively. This 

stage involves 3 major phases (Figure 5a, b & c).  

In vitro response of plantlets in each of the 3 phases of TIBs is highly dependent on certain 

factors including hormonal combination, duration of each feeding cycle and the overall 

timing/duration to which it is subjected to. eg. higher cytokinins (BAP) concentration to 

auxins in the multiplication media, Gibberillic acid (GA3) for elongation and auxins (IAA, 

NAA and IBA) for rooting.  

i. Multiplication phase- Plantlets were cultured on MS liquid medium void of agar with the 

appropriate di-hormonal combination depending on the plant species. Pineapple and 

plantain were transferred to MS liquid medium + 4.0mg/l –BAP and 1.8mg/l –NAA, 

while Eucalyptus and sugarcane were transferred to MS liquid medium + 0.5mg/l-BAP 

and 0.1mg/l –NAA, for a period of 8 -12 weeks respectively. 

ii. Elongation phase- This phase aims at developing proliferating buds into plantlets that are 

lengthy, strong and robust enough to stand acclimatization and withstand adverse 

conditions during ex vitro transfer. To achieve this, Plantlets were cultured in MS liquid 

medium void of agar with 1.0g/l of Gibberellic acid. After 21 days, plantlets were 

removed and placed in a rooting medium. 
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iii. Rooting and harvest- In order to induce rooting, elongated plantlets were cultured in a 

liquid MS media containing Auxin treatments of (A) 0.5mg/l- IBA, (B) 1.0mg/l-IBA (C) 

0.5mg/l- NAA (D)1.0mg/l –NAA (E) A combination of 0.5 mg/l NAA and 0.5 mg/l IBA 

and (F) A combination of 1.0mg/l- IBA+ and 1.0mg/l-NAA for 4 weeks respectively. All 

media had equal volume in the same culture vessel. At the end of 4 weeks, plantlets 

were harvested by an initial disinfection of the mouth of culture bottle with 1% sodium 

hypochlorite. Bottle was opened, plantlets carefully collected.  

 

Source: Lyam et al., 2012. 

Figure 5. (a) Multiplication (proliferation in clusters), (b) Elongation ( Stem growth elongation), (c) 

Rooting (well developed root system) of pineapple 

The timing to achieve the desired goal at each phase varies depending on the individual 

species ability to respond to each phase accordingly. The common feature to all the phases is 

the use of liquid media (void of agar) to aid nutrient uptake and automation. Transfer of 

plantlets from one step to the next is carried out aseptically under the laminar flow hood. 

(a) (b)

(c)
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Clumps of shoots derived were separated after rooting and not before as this usually cause 

tissue wounding and stimulate the exudation of phenolic compound which interferes with 

the physicochemical factors that trigger root formation. In this way, multiplied plantlets 

were elongated and rooted to produce complete plants and harvested. Harvest is carried out 

by an initial disinfection of the mouth of culture bottle with 1% Sodium hypochlorite. Bottle 

was opened and plantlets carefully collected. 

3.3.4. Stage 4: Acclimatization and Ex vitro transfer 

This is the final stage of the tissue culture operation including the use of bioreactor after 

which the micro propagated plantlets are ready for transfer to the greenhouse. Steps are 

taken to grow individual plantlets capable of carrying out photosynthesis. Collected 

plantlets were sorted and prepared for acclimatization based on their sizes and rooting 

capacity. In vitro micro propagated plants are weaned and hardened. The hardening of the 

bioreactor propagated plantlets is done gradually from high to low humidity and from low 

light intensity to high intensity conditions. Rooted plants were washed with tap water and 

acclimatized ex vitro on a medium composed of Coconut fibre, Top Soil and Stone dust 

mixed in the ratio 7:2:1 which can be left in shade for 3 to 6 days where diffused natural 

light conditions them to the new environment. The plants were transferred to an 

appropriate substrate for gradual hardening Figure 15 -20.  

 

 

Figure 6. Potted and acclimatized plants in the screen house at NACGRAB.  

These stages are universally applicable in large-scale multiplication of plants. The individual 

plant species, varieties and clones require specific modification of the growth media, 

weaning and hardening conditions. A rule of the thumb is to propagate plants under 

conditions as natural or similar to those in which the plants will be ultimately grown ex-

vitro. Micropropagated plants must be subjected to an adequate duration of time required 

for their proper hardening.  
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Figure 7. TIBs set up at the NACGRAB, Ibadan, Nigeria  

3.4. Challenges of temporary immersion bioreactor systems 

The use of liquid cultures in bioreactor for plant propagation imposes several problems such 

as leakage of endogenous growth factors, the need for an initial high concentration of the 

inoculum, lack of protocols and production procedures, increased hyperhydricity and 

malformation, foam development, shearing and oxidative stress, release of growth 

inhibiting compounds by the cultures and contamination. Unfortunately culture 

contamination which is a major problem in conventional commercial micropropagation is 

even more acute in bioreactors [34]. In conventional micropropagation, discarding a small 

number of the contaminated vessels is an acceptable loss; in bioreactors, even a single 

contaminated unit is a huge loss. However, despite these difficulties, a number of 

commercial laboratories have developed effective procedures to control contamination in 

bioreactors. Highlighted below are some of the challenges [35], [36], [37]. 

3.4.1. Inadequate protocols and production procedures 

Protocols for proliferation on semi solid media are not always efficient when used in 

bioreactors. However, as no one protocol is utilized for all species, it becomes quite difficult 

to achieve success at a goal. Development of protocol for scaling up cultures in bioreactors 

entails extensive research and development in all phases of TIBs (multiplication, elongation 

and rooting). It is possible to record success at one phase and not overcome the challenges at 

the next phase. For the efficient scaling up of cultures in temporary immersion bioreactors 

for commercialization, protocol for multiplication, elongation and rooting must be 

developed. 
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3.4.2. Increased hyperhydricity and malformation 

The major disadvantage encountered when plants are cultured in liquid media is the 

problem of shoot malformation. Plants tend to accumulate excess of water in their tissue 

resulting to anomalous morphogenesis, a phenomenon known as Hyperhydricity. The 

plants that develop in liquid media are fragile, have a glassy appearance, with succulent 

leaves or shoots and a poor root system [38]. Hyperhydricity in micropropagation has been 

reported in previous studies [39], [40]. 

3.4.3. Problems of foaming, shear and oxidative stress 

Growth and proliferation of the biomass in bioreactors depends on airflow supply for the 

aeration and mixing, and for the prevention of the plant biomass sedimentation. In many 

plants cultivated in bioreactors, continuous aeration, mixing, and circulation cause shearing 

damage, cell wall breakdown, and accumulation of cell debris, which is made up mainly of 

polysaccharides.  

The problem of foaming and shear damage of tissues including their potential solutions in 

bioreactors has been reported [41], [40]. 

3.4.4. Release of growth inhibiting compounds by the cultures 

This is also known as the in vitro Phenolic browning or oxidation. The presence of phenolic 

compounds which cause death of explants has been another important problem of 

micropropagation especially in woody perennials, in addition to various bacterial and 

fungal infection. Some of these exudates appear as a reaction to injury and/or infection. In 

tissue culture they appear after tissue excision and are many times aggravated by growth 

media constituents [42]. The release of growth inhibiting compounds by in vitro cultures has 

been reported [43], [44] 

Some of the solutions to this problem as suggested are as follows: 

 Addition of activated charcoal (0.2-3.0% w/v) to the medium ,  

 Addition of polymeric polyvinylpyrrolidone (PVP) or polyvinylpolypyrrolidone 

(PVPP) to the medium. These absorb phenols through hydrogen bonding. 

 Additions of anti-oxidants or reducing agents like citric and ascorbic acids, thiourea 

glutathione and L-cysteine in the medium or before surface sterilization. These reduce 

the redox potential of explants and stop the oxidation reactions (Marks and Simpson, 

1990) [45]. 

 Addition of diethyl-dithiocarbonate (DIECA) (2g.l-1) in the rinses after surface 

sterilization and as droplets at the time of micro grafting. 

 Addition of amino acids like glutamine, arginine and asparagine to the media. 

 Reduction of salt concentration in the growth media. Others may include: 

 Frequent subcultures onto fresh media. 

 Use of liquid medium for easier and quicker dilution of toxic products. 
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 Reduction of wounded tissues to decrease exudation. 

 Soaking of explants in water before culturing to reduce browning. 

 Incubation of fresh cultures in darkness for the first few days of culture.  

The suggestions above have provided solution to phenolic oxidation in micropropagation 

and are widely employed in most laboratories across the globe. 

3.4.5. Microbial contamination 

After three decades of research and development in plant tissue culture, microbial 

contamination by yeasts, fungi, bacteria, viruses, mites and thrips are still the major problem 

that has hampered the establishment of truly aseptic plants and their successful Micro -

propagation in bioreactors. The influence of bacteria on shoot growth can range from total 

inhibition to no apparent effect. The contaminating bacteria and fungi may be endophytic or 

epiphytic, pathogenic or saprophytic [46]. Another type of hazard for plant tissue and cell 

cultures is caused by ‘latent’ bacteria and viruses that do not produce any symptoms on the 

plant or any visible growth on the medium for long periods of time in vitro even after 

several subculture cycles; microbial contamination in culture has been reported [47]. 

3.4.6. Control of contamination 

Prevention of contamination in bioreactors requires a proper handling of the plant material, 

equipment and cultures during transfers and production. Only the surface sterilized 

explants, multiplied in small vessels and indexed for freedom from diseases are used to 

initiate cultures in bioreactors. If the bioreactor is small, it is sterilized in an autoclavable 

plastic bag, sealed with a cotton wool plug, and opened only under the laminar flow 

cabinet. Despite the precautions taken in initiating cultures, bioreactors can become 

contaminated from the environment or from latent microbes in the culture. The 

contamination can be controlled with one or a combination of anti-microbial compounds, 

acidification of the media, and micro-filtration of the medium [48]. While most of the fungal 

and bacterial diseases are eliminated during surface sterilization and culture, viruses and 

viroids survive through successive multiplication if the mother plant is infected [49].  

Author details 

S.E. Aladele, A.U. Okere, E. Jamaldinne, P.T. Lyam and O. Fajimi 

Biotechnology Unit, National Centre for Genetic Resources and Biotechnology (NACGRAB), Moor 

Plantation, Ibadan, Oyo State, Nigeria 

A. Adegeye 

Department of Forest Resources Management, University of Ibadan, Ibadan, Oyo State, Nigeria 

C.M. Zayas 

Genetic and Biotechnology Department, National Institute for Sugarcane Research, Boyeros, Havana 

City, Cuba 



The Science of Plant Tissue Culture  
as a Catalyst for Agricultural and Industrial Development in an Emerging Economy 59 

4. References 

[1] Crouch, J. H., Vuylsteke, D. and Ortiz, R. (1998). Perspectives on the application of 

biotechnology to assist the genetic enhancement of plantain and banana (Musa spp). 

Electronic Journal of Biotechnology (1):6-10. 

[2] Kelly, V., Adesina, A.A., Gordon, A., 2003. Expanding access to agricultural inputs in 

Africa: a review of recent market development experience. Food Policy (3): 379–404. 

[3] Bodulovic, G. (2005). Is the European attitude to GM products suffocating African 

development? Functional Plant Biology.(32): 1069–1075. 

[4] Rosenberg (2012) http://geography.about.com/bio/Matt-Rosenberg-268.htm 

[5] Swaminathan, M.S. (1995). Population, environment and food security. Issues in 

Agriculture, No 7. CGIAR, Washington DC. 

[6] James C. (1997). Progressing public-private sector partnership in International 

Agriculture Research and Development. In: ISAAA Briefs No 4, p. 1-32.  

[7] Lyam P.T.,Musa M. L., Jamaleddine, Z.O., Okere, A.U., Carlos A. and Odofin, W.T. 

(2012). The potentials of Temporary immersion bioreactor TIBS in meeting crop 

production demand in Nigeria. Journal of biology and life science ISSN 2157 -6076 Vol. 3:1. 

[8] Dalmacio I. F. (1992). Biotechnology for sustainable Agriculture National Institute of 

Biotechnology and Applied Microbiology, University of the Philippines.Dalziel, J. M. 

1937. The useful plants of West Tropical Africa. Whitefriars Press, London, 612 pp. 

[9] Acheapong E. (1982). Multiplication and Conservation of Cocoyam (Xarthosoma 

sajiltifoljum) germplasm by application of tissue culture methods Ph.D Thesis. 

University of Burmingham, UK. 

[10] Aladele S. E. and Kuta D. (2008). Environmental and genotypic effects on the rowth rate 

of in vitro cassava plantlet (Manihot esceulenta) African Journal of Biotechnology Vol. 7 

(4), pp. 381-385. 

[11] Gbile Z.O.(1998). Collection, Conservation and Utilization of medicinal plants. In 

Robert PA, & Janice EA (eds.). Conservation of Plant Genes III: Conservation and 

Utilization of African Plants. Missouri Botanical Gardens Press. pp. 163-174. 

[12] IUCN (2006). IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. 

[13] Okere, A. U. and Adegeye, A. (2011). In vitro propagation of an endangered medicinal 

timber species Khaya grandifoliola C. Dc. African Journal of Biotechnology Vol. 10(17), pp. 

3335-3339, 

[14] Dalziel J.M. (1937) The useful plants of West Tropical Africa. Whitefriars press,London. 612pp. 

[15] Fajimi O. and Fashola T. R. (2010). In vitro micro-propagation of Plukenetia conophora 

Mull.Arg. Journal of South Pacific Agriculture. 14(1&2):1-5 

[16] Fagbemi T.N.F., Eleyinmi A.F., Atum H. N., Akpambang O. (2005) Nutritional 

composition of fermented fluted pumpkin (Telfairiaoccidentalis) seeds for production 

of “ogiriugu”. IFT Annual Meeting, July 15-20 – New Orleans, Louisana. 

[17] Akoroda M. O. (1990). Ethno botany of TelfariaOccidtendalicAmong Igbos of Nigeria. 

Econ. Bot. 44 (1): 29-39. 



 
Recent Advances in Plant in vitro Culture 60 

[18] Sanusi I. S., Odofin W. T,, Aladele S. E, , Olayode M. N., Gamra E. O., Fajimi O. (2008) 

In vitro culture of Telferia occidentalis under different cytokinins and auxin 

combination. African journal of biotechnology. 7 (14):2407-2408 

[19] Teisson, C. and Alvard, D. (1995). A new concept of plant in vitro cultivation in liquid 

medium: Temporary Immersion. In: Current Issues in Plant Molecular and Cellular 

Biology.Terzi, M., Cella, R. and Falavigna, A. (Editors). Kluwer Academic Publisher pp 

105-109. 

[20] Levin, R., Stav, R., Alper, Y. and Watad, A. A. (1998). A technique for repeated non-

axenic subculture of plant tissues in a bioreactor on liquid medium containing sucrose. 

Plant Tissue Culture Biotechnology. (3):41–45. 

[21] Escalona, M., Lorenzo, J.C., Gonzales, B.L., Daquinta, M., Borroto, C.G., Gozales, J.I. and 

Desjardine, Y. (1999). Pineapple (Ananascomosus L. Merr.) micropropagation in 

temporary immersion system. Plant Cell Report. (18): 743–748. 

[22] Murashige T, Skoog F. (1962). A revised medium for rapid growth and bioassays with 

tobacco tissue culture. Physiol. Plant, 15: 473-497.  

[23] Bustamante M. A., Heras M. G. (1990). Tissue culture of Cacti species. XXIIIrd 

International Horticultural Congress, Firenze (Italy) Aug-27-sept-1, 1990 contributed 

paper (oral) No. 1344 p. 163. 

[24] Feng-F, Li-Hong B, Lu-Qing F, Xie-Jian Y, Fen F, Li HB, Lu QF, Xie J. Y. (2000). Tissue 

culture of Aloe spp. J. Southwest Agric. Univ. 22(2): 157-159. 

[25] Mata-Rosas M, Monroy-de-la-Rosa MA,Goldammer KM, Chavez-Avilla VM, Monroy-

de-la-Rosa M. A. (2001). Micropropagation of Tubinicapuslauiglass et Foster, an endemic 

and endangered species. In vitro Cell. Dev. Biol. Plant, 37(3): 400-404. 

[26] Youssef E. M. S. (1994). Effect of cytokinins and reported cub cultures on in vitro 

micropropagation potentiality of Acacia salicinaLindll. Tissue culture Lab.; TimberTrees 

Res. Dept., Inst., Agric. Res. Cen., Giza, (1): 30-43. 

[27] Balogun M. O., Ajibade, S. R, Ogunbodede B. A. (2002). Micropropagation of fluted 

pumpkin by enhanced axillary shoot formation. Niger. J. Hort. Sci. 6: 85-88. 

[28] Escalona, M., Samson, G., Borroto, C. and Desjardins, Y. (2003). Physiology of Effects of 

Temporary Immersion Bioreactors on Micropropagated Pineapple Plantlets. In Vitro Cell 

Developmental Biology of Plant. (39): 651-656. 

[29] Etienne, H., Dechamp, E., Etienne, B. D. and Bertrand, B. (2006). Bioreactors in coffee 

micropropagation. Brazilian Journal of Plant Physiology. (18): 2-3.  

[30] Aitken-Christie, J. (1991). Automation In: Micropropagation, Debergh, P.C., 

Zimmerman, R. H. (Editors). Kluwer Academic Publishers. Dordrecht, Netherland. pp. 

342-354. 

[31] Preil, W. (1991). Application of bioreactors in plant propagation. In: Micropropagation: 

Technology and application.Debergh, P.C. and Zimmerman, R.H (Editors.), Kluwer 

Academic Publishers, Dordrecht,The Netherlands. Pp. 425–455. 

[32] Preil, W., Florek, P., Wix, U. and Beck, A. (1988). Towards mass propagation by use of 

bioreactors. ActaHorticulturae. (226):99–106. 



The Science of Plant Tissue Culture  
as a Catalyst for Agricultural and Industrial Development in an Emerging Economy 61 

[33] Schmidt, J. Wilhem E. and Savangikar,V.A. (2002). Disease detection and elimination. 

In: Low cost options for tissue culture technology in developing countries. Proceedings of 

a Technical Meeting, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. 

Pg 55-61. 

[34] Leifert, C., and Waites, W. M. (1998). Bacterial growth in plant tissue culture. Journal of 

Applied Bacteriology, (72):460–466. 

[35] Leifert, C. and Waites, W.M. (1990). Contaminants of plan tissue culture. Internl. Assoc. 

Plant Tiss. Cult. Newsl. (60): 2-13. 

[36] Leifert, C. and Woodward, S. (1998). Laboratory contamination management: the 

equirement for microbiological quality assurance. Plant Cell Tiss. Org. Cult, (52): 83-88. 

[37] Leifert, C. (2000). Quality Assurance Systems for Plant Cell and Tissue Culture: The 

problem of Latent Persistance of Bacterial Pathogens and Agrobacterium Transformed 

vector systems. In. Proceedings of the International Symposium, methods and markers for 

quality assurance in micropropagation. A.C. Cassells et al. (Eds.) Acta. Horticulturae. 

(560):Pp. 530. 

[38] Etienne, H., Lartaud, M., Michaux-Ferrie`re, N., Carron, M.P., Berthouly, M. and 

Teisson, C. (1997). Improvement of somatic embryogenesis in Heveabrasiliensis (Mu¨ ll. 

Arg.) using the temporary immersion technique. In Vitro Cellular and Developmental 

Biology of Plant. (33): 81–87. 

[39] Etienne, H., Dechamp, E., Etienne, B. D. and Bertrand, B. (2006). Bioreactors in coffee 

micropropagation. Brazilian Journal of Plant Physiology. (18): 2-3.  

[40] Ziv, M., Ronen, G. and Raviv, M. (1998). Proliferation of meristematic clusters in 

disposable presterlized plastic bioreactors for large scale micropropagation of plants. In 

vitro Cell Developmental Biology of Plant. (34): 152-158. 

[41] Scragg, A. H. (1992). Large-scale plant cell culture: methods, applications and products. 

Current Opinion Biotechnology. 3:105–109. 

[42] Seneviratne, P. and Wijesekara, G.A.S (1996). The problem of phenolic exudates in in 

vitro cultures of mature Heveabrasiliensis. Journal of Plantation Crops, 24(1):54-62. 

[43] Fowler, M. R. (2000). Plant cell culture, laboratory techniques. In: Encyclopedia of cell 

technology, Spier, R.E (Editor), Wiley, New York. Pp. 994–1004. 

[44] Pierik, R.L.M. (1987). In Vitro Culture of Higher Plants. Kluwer Academic Pulishers, 

Dordrecht, pp. 25-33. http://dx.doi.org/10.1007/978-94-009-3621-8. 

[45] Marks, T.R. and Simpson, S.E. (1990). Reduced phenolic oxidation at culture initiation in 

vitro following the exposure of field grown stock plants to darkness or low level 

irradiation. Journal of horticultural science. (65):103-111. 

[46] Deberge, P.C and Maene, L.J. (1981). A scheme for commercial propagation of 

ornamental plants by tissue culture. ScientiaHorticulturae., 14: 335-345. 

[47] Debergh, P. C. and Read, P.E. (1991). Micropropagation. In: Micropropagation Technology 

and Application. Debergh, P.C, and Zimmerman, R.H. (Editors). Kluwer Academic 

Pulishers,Dordrecht, pp. 1-13. http://dx.doi.org/10.1016/0304-4238(81)90047-9 



 
Recent Advances in Plant in vitro Culture 62 

[48] Schmidt, J. Wilhem E. and Savangikar,V.A.(2002).Disease detection and elimination. In: 

Low cost options for tissue culture technology in developing countries. Proceedings of a 

Technical Meeting, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. 

Pg 55-61. 

[49] Sessitsch, A., Reiter, B., Pfeifer, U. and Wilhelm, E. (2002). Cultivation-independent 

population analysis of bacterial endophytes in three potato varieties based on 

eubacterial and Actinomyces-specific PCR of 16rRNA genes. FEMS Microb. Ecol., 39: 23-

32. http://dx.doi.org/10.1111/j.1574-6941.2002.tb00903.x 


