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1. Introduction 

Flow cytometry is a powerful technology that allows for the simultaneous analysis of 

multiple attributes of cells or particles in a liquid medium. The first cytometer used was 

built during World War II, when [1] developed an equipment where particles flowed 

through the system to diffuse light through a lens, producing electrical signals sensed by a 

photodetector. The instrument could detect objects in the order of ~ 0.5 μm in diameter, and 

is recognized as the first flow cytometer used for observation of biological cells [2]. This 

would be possible to identify aerosols, bacteria that would possibly biological warfare 

agents as well as check the efficiency of gas mask filters against particles. In 1950, the same 

principle was applied to the detection and enumeration of blood cells. As hematology and 

cellular immunology, two biological areas, that drove the development of flow cytometry 

[3]. Later, with improved equipment and methods, this technique was adapted to other 

areas of biology, including the plant kingdom [4]. Already in 1973 the German botanist 

Friedrich Otto Heller used the Impulszytophotometrie (pulse cytophotometry in German). 

This scientist did not imagine that it has launched a new field of scientific research, which 

would later be called flow cytometry in plants. 

In reference to [5] that developed a rapid and convenient method for the isolation of plant 

nuclei by cutting the same tissue in a lysis buffer consisting of a buffer to destroy the cellular 

and nuclear membranes of the cell allowing the release of DNA. Since then, this has been the 

main and most reliable method of isolating nuclear plant in flow cytometry. Any type of 

sample can be analyzed because its particles (cells, nuclei, chromosomes, cell organelles, or 

other cell subparticles) are suspended and vary between 0.2 μm and 50 μm in size. Solid 

tissues must be disaggregated and suspended before flow cytometry analysis. The 

suspended particles are then placed into a flow cytometry device. 

The studies on flow cytometry have used as base the plant tissue culture, including the 

regeneration of plants subjected to chromosome doubling, for detection of somaclonal 



 

Recent Advances in Plant in vitro Culture 110 

variation in material micropropagated in various subcultures, viability of pollen grains, cell 

cycles and the determination of ploidy. This chapter presents results obtained through flow 

cytometry on plant tissue culture.  

2. Preparation of material for analysis in flow cytometry 

There are several methods that can be used to prepare plant material and to estimate the 

DNA content by flow cytometry. The methodologies differ according to plant species, a 

laboratory, with the brand and model flow cytometer used. In Tissue Culture Lab in the 

DAG / UFLA the methodology used is described in Figure 1. 

 

Figure 1. Diagram of the methodology used to analyze the nuclear DNA content from plant tissue. 

Source: Adapted from [6]. 

The sample must be in the form of a suspension of single particles [7]f or being analyzed by 

flow cytometry. Analysis of DNA content by flow cytometry is based on the fluorescence 

intensity of nuclei stained with a fluorochrome specific to the DNA. There is problem 

related with low capacity of penetration of fluorochromes but this can be overcomed if the 

nuclei are released prior to staining. [7]. Secondary metabolites can interfere in cellular 

content and color of the fluorescent dye [8].  

There are several methodologies developed for the release of the nuclei of plant tissues. 

However, the methodology proposed in reference [9] can promote the release of the nucleus 

(Figure 1) and is frequently used for simplicity and speed. The differences observed between 

the methods are the composition of the lysis buffer for isolation of nuclei, the fluorochrome 

for nuclear staining of the suspension and reading the sample in the flow cytometer. 

Plant tissue samples are perforated, with the aid of a cutting blade, in a buffer solution for 

the extraction and isolation of nuclei. Subsequently, the suspension is filtered by a fine mesh 

nylon (20-100 μM pore diameter) [10]. This filtering is performed in order to remove all the 

material in the sample greater than the core, leaving in solution only those estimates and 

thereby obtaining the DNA content of more reliable. Furthermore, the presence of other 

components and soluble substances such as chloroplasts, mitochondria, phenolic 
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compounds, DNAse, RNAse etc., which are released in the cytosol may through this filter 

and compromise the quality of results. An alternative may be employed to remove such 

debris is the washing of the nuclei using centrifugation and resuspension, and to modify the 

components and / or pH of the buffer [11]. After filtering the samples are stained with a 

fluorochrome specific, then the analysis of samples in the flow cytometer. 

3. Factors that affect the quality of the sample 

Several factors can affect the quality of the samples and consequently the reliability of 

estimates of DNA content obtained by flow cytometry. Extraction buffer, reference standard, 

fluorochrome, type of plant tissue used (chemical composition and the presence of 

anthocyanin, phenolic compounds that inhibit DNA staining), quality of the sample (plant 

age, presence of injuries, diseases ...), storage time of the plant tissue, care in preparation 

and sample analysis are among the factors involved [12]. Thus, an appropriate methodology 

is necessary for each species. 

3.1. Nuclear extraction buffer 

The extraction buffer is an appropriate solution that has the function to release the nuclei of 

intact cells, preserving and ensuring the stability and integrity of nuclei during the 

experiment, inhibiting the activity of nucleases, and providing optimal conditions for 

staining of DNA by stoichiometry [13]. Approximately 25 caps are, but only eight are 

commonly used in flow cytometry [14]. The six most commonly used buffers are shown in 

Table 1. 

 

Buffer Composition Standard 

Galbraith 45 mM MgCl2; 30 mM citrato de sódio; 20 mM MOPS; 0.1% (v/v) 

Triton X-100; pH 7.0 

[15] 

LB011 15 mM Tris; 2 mM Na2.EDTA; 0.5 mM espermina.4HCl; 80 mM KCl; 

20 mM NaCl; 0.1% (v/v) Triton X-100; pH 7.5 

[16] 

Otto’s Otto I: 100 mM ácido citric mono hidratado; 0.5% (v/v) Tween 20 

(pH approx. 2–3)  

Otto II: 400 mM Na2PO4.12H2O (pH approx. 8–9) 

[17], [18] 

Tris.MgCl2 200 mM Tris; 4 mM MgCl2.6H2O; 0.5% (v/v) Triton X- 100; pH 7.5 [19] 

Marie  50 mM glucose; 15 mM NaCl; 15 mM KCl; 5 mM Na2.EDTA; 50 mM 

citrate de sódio; 0.5% Tween 20, 50 mM HEPES (pH 7.2), 1% (m/v) 

polyvinylpyrrolidone-10 (PVP-10) 

[20] 

EDTA = ethylenediamine tetraacetic acid; HEPES = 4-2 ethanesulfonic Acid Hydroxyethyl-piperazine-1; MOPS = 3 - 

(N-morpholino) propanesulfonic; = Tris (hidroximetril) aminomethane and PVP = polyvinyl pyrrolidone. 

Table 1. Composition of extraction buffers commonly used in flow cytometry plant.  

The caps have in their composition organic buffering substances, non-ionic detergents and 

stabilizers of chromatin. The substances commonly used are buffers, MOPS, HEPES, and 
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TRIS, allowing the stabilization of pH 7-8 solutions, which is the pH range compatible to 

most of the fluorochromes used. 

The nonionic detergents are present in the buffer solutions with TRITON X-100 and Tween-

20, for cleaning of the cores and separation for avoiding that they add to each other or with 

possible debris present in the sample. 

Stabilizers used in the composition of the buffer are MgCl2, MgSO4 and spermine and 

chelating agents such as EDTA and sodium citrate. These components bind divalent cations 

which are cofactors endonuclease. The inorganic salts NaCl and KCl allow to achieve 

adequate ionic strength [21]. 

Cytosolic compounds that are released during the isolation of nuclei, interact with nuclear 

DNA and / or the fluorochrome, and affect the quality of the sample and cause 

stoichiometric errors [22, 23, 24, 25]. 

In the literature there are few reports that compare the efficiency of different buffers for 

nuclear extraction. There is a single buffer works optimally for all types or tissues and plant 

species, previous studies are needed to identify the most appropriate buffer for each species 

studied and contribute to a greater experimental precision [24]. 

3.2. Reference standards fluorochromes 

The reference standard is a DNA of species whose amount already previously known, and 

thus can be estimated by comparing the DNA content of any kind. There are a number of 

reference patterns with a wide range of DNA content allowing coverage of a wide range of 

genome. a species whose amount The use of these standards allows comparison of results 

obtained in different laboratories. 

Estimates of DNA content obtained by flow cytometry are always relative to a standard 

whose DNA content is already established. This pattern receives two reference designations 

internal standard, when extraction of the cores and the analysis of sample and standard are 

performed simultaneously, or when an external standard is performed separately. The 

internal standards are most recommended, especially in high-precision measurements, 

because the peaks of the standard used and the sample appear in the same histogram and 

are treated under identical conditions [26] thereby reducing possible errors due to 

oscillation of the device during the evaluation of the samples. However [27] reported that 

the simultaneous processing of the sample and the reference standard was not necessary to 

obtain reliable estimates of DNA. It is common to use only one reference standard in all 

analyzes of the same experiment, but this procedure carries the risk of error due to 

nonlinearity [28, 29]. 

However, the choice and correct use of reference standards is a criterion that has been 

largely neglected [30]. 

The researcher Jaroslav Doležel from Laboratory of Molecular Cytogenetics and Cytometry, of 

the Czech Republic has set benchmarks with content from genomic DNA with different sizes.  
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Description DNA content (pg) References 

Raphanus sativus cv Saxas 1,11 [31] 

Solanum lycopersicum cv Stupické 1,96 [21] 

Glycine max 2,5  

Zea mays 5,72  

Pisum sativum cv Ctirad 9,09 [32] 

Secale cereale 16,19  

Vicia faba 26,90  

Allium cepa 34,89  

Table 2. Content of DNA of known standards are used. 

3.3. Fluorochromes 

The choice of fluorochrome is another important factor that affects the reliability of 

estimates of DNA content. The fluorochromes specifically bind to DNA and 

stoichiometrically in accordance with the intensity of fluorescence of the nucleus or the cell 

suspensions analyzed on flow is estimated for DNA content [6]. Fluorochromes used in 

coloring cores are shown in Table 3.  

 

Fluorochrome DNA binding mode 
Wave-length

Excitation Emission 

Propidium iodide Interleaving 525 (Blue-green) 605 (Red) 

Ethidium bromide Interleaving 535 (Blue-green) 602 (Red) 

SYBR Green Interleaving 488 (Blue) 522 (Green) 

DAPI Rich regions in AT 345 (UV) 460 (Blue) 

Hoechst 33258 Rich regions in AT 360 (UV) 460 (Blue) 

Chromomycin A3 Rich regions in GC 445 (Violet-blue) 520 (Green) 

Mithramycin Rich regions in GC 445 (Violet-blue) 575 (Green) 

Table 3. Fluorochromes used in flow cytometry to estimate the DNA content. 

There are two classes of fluorochromes the intercalating and specific. The propidium iodide, 

ethidium bromide and Sybr Green are intercalating fluorochrome, i.e., without preference of 

base pairs and are the most adequate to estimate the DNA content [33 cited by 34]. 

DAPI, Hoechst 33258, Chromomycin A3 and Mithramycin fluorochromes are specific. The 

Mithramycin, Chromomycin and the Olivomycins are fluorochromes which preferentially 

bind regions of DNA in GC-rich [35]. While the fluorochrome DAPI and Hoechst (33342 and 

33258) were also specific DNA binds to AT-rich regions [36]. Therefore, the use of these dyes 

can lead to many incorrect estimates of the values of DNA content, since it is not known in 

advance the ratio of AT GC in species to be estimated the DNA content. 
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The propidium iodide has the lowest coefficient of variation obtained in using the 

fluorochrome is most suitable for determining the amount of genomic DNA in plants [37, 

38, 39]. However, other authors reported propidium iodide and ethidium bromide are not 

dye specifically the DNA, they dye RNA too, but to not compromise the efficiency of the 

determination of content DNA can be used RNase [40].  

4. Care use of cytometry 

Below are listed some precautions that should be taken during the use of flow cytometry: 

1. Avoid filling the tank of saline to their maximum capacity. When a tank is filled with 

pressurized fluid is forced toward the air hose preventing adequate pressurisation of 

the enclosure. 

2. When working with propidium iodide, should be placed approximately 400 ml of 

hypochlorite in the sewage tank, which has a capacity of 4 liters, since the chlorine 

inactive molecules iodide. 

3. It should be cleaned daily after use of the cytometer, the following steps: with the 

"RUN" button, install the probe tubes containing 3 ml of 0.5% hypochlorite, left to run 

on HI for 1 minute with the arm 5 minutes to open and close the arm. Select the fluid 

control "STNDBY." Remove the tube and insert another tube containing 1 ml rince facs 

(which is a detergent that helps remove waste from dyes into the machine) and let it 

run for 2 minutes in HI, with the arm closed. Select the button again fluid control 

"STNDBY" Remove everything and place another tube containing 3 ml of distilled 

water and let it run one minute with the open arm in HI and 5 minutes with the arm 

closed. Select button "STANDBY" and then install a tube containing no more than 1 ml 

of distilled water in the probe, because it always returns to the saline and the tube 

makes the volume of the tube exceeds its maximum capacity if it has more than 1 ml of 

distilled water, and this can affect equipment performance. 

4. The tube should remain in distilled water to prevent probe salt deposits are formed in 

the sample injection tube 

5. It should be cleaned monthly. This procedure is performed on the entire fluid system and 

once a month, or more often as needed. It should be removed from the reservoir 

containing saline solution and then install a different container with 1-2 liters of 0.5% 

sodium hypochlorite, flush for 30 minutes, while in the probe set 3 ml of hypochlorite 

solution at the same concentration . After this period must be installed to another 

container containing 1 to 2 liters of distilled water and left to run for 30 minutes, while the 

probe install a tube containing 3 ml of distilled water at the same concentration. During 

this procedure, iodide should never pass through the filter of saline, as you may damage 

it, so the hose to the filter should be disconnected during this process. Following the 

procedure returns the brine tank to the right place and connect the hose from the filter. 

6. If the equipment becomes more than a week without being used, the salt tank must be 

replaced by distilled water and left to run for about 10 minutes to remove any salt of the 

capillary tubes of the equipment, because the salt form crystals which can clog the 

entire system. 
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7. Never replace the air tube into the sample if the button "HI" is on, the tubes should 

always be replaced with the "STNDBY" button and you must not allow the sample to be 

sucked through the probe, thus preventing air from fluid system. 

8. All bubbles are displayed in the hoses from the tank and filter salt must be removed 

before the reading of the samples, because it makes the reading very slow. If you 

suspect bubbles within the system must press the "PRIME", because it injects a blast of 

air across the system and then complete with saline, removing bubbles. This procedure 

should be repeated 5 times to really solve the problem. 

9. Should perform preventive maintenance on a flow cytometer, once a year by 

specialized professionals. 

5. How to troubleshoot an analysis of flow cytometry 

Paul Kron of Integrative Biology University of Guelph 10 list of solutions to problems have a 

histogram of quality estimates DNA content trusted. These solutions are listed below and 

have some adjustments based on the experiences gained at work in the Laboratory of Tissue 

Culture UFLA. 

5.1. Verify that the flow cytometer is running well and is configured correctly 

A quality control test should be performed daily and periodic maintenance by a 

technician from the manufacturer. These precautions ensure the proper functioning of the 

device. 

Verify that the parameters were set by someone who is qualified to do so. Depending on 

the application we can use fluorescence intensity (height) or integrated fluorescence 

(area), linear or logarithmic scale and is vital to know the parameter most suitable for 

your dye. 

5.2. Use good quality plant tissues 

For most samples sheets are used, which should be healthy, young and cool. Sheet that 

shows any sign of senescence should be avoided; leaf collected at the end of the growing 

season often does not work. Avoid using wilted leaves. 

For some species the leaves can be stored in refrigerator for 1 to 5 days after collection, 

since it kept in sealed plastic bag with some moist cotton. Do not leave the sample in 

direct contact with ice, or excessive moisture. It is also possible to store dried tissue, 

making use of desiccants substances. More tests are needed in this area to define protocols 

desiccation. 

5.3. Use the appropriate tissue 

If the swatch does not work, it is possible to test embryos, shoots, roots, flower petals, fruit 

or other healthy tissue. However, for certain species may occur the endopolyploidy, i.e. the 
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degree of ploidy may vary between tissues, several peaks appearing in the histogram. In this 

case must be used whenever the first peak to DNA content. 

In case of use of seeds is necessary to attend the endosperm and embryo differ in ploidy, 

and the seeds may be hybrids [41]. 

5.4. Use the correct buffer 

The choice of buffer can have a huge impact on the quality of data. This choice can influence 

the relative fluorescence, and the quality peak [11]. 

It is necessary to test not only buffers, but also the consistency of results. It is possible that a 

buffer can lead to production of very clean samples with low CV, but in highly variable 

repetition of the measures of fluorescence [42]. 

The pH of the buffer must be between pH 7-8. 

5.5. Ajuste the quantity of tissue and / or excessive cutting the sample 

Excess sample is cut on a common problem and can overload the buffer, reducing their 

ability to maintain the correct pH range, dark coloration and large amounts of precipitation 

are not good signs. Keep samples on ice during cutting may help. It is possible to improve 

the quality of the sample cut by at least increase the amount of buffer, or by reducing the 

amount of tissue in the sample. 

It is important to worry about getting good quality at the peaks (low CV), not number of 

cores. One should not impair the quality of the sample in search of "10.000 colors." This 

approach is often misapplied, and is more usual in analyzes of cell cycle. The core guide 

1300 is the best for many applications [42]. A clean sample of 500 events per peak will 

probably tell you more than 10.000 events with peaks of large particles and high CV 

histogram very jagged. 

5.6. Adjust the conditions of time and coloration. 

After 2 hours of sample preparation buffer, the cores may begin to degrade. Ideally, the 

sample should be read in a short time after staining with 10 minutes to 2 hours, as the 

extreme limits. 

During the stages of sample preparation, staining and reading is essential to keep them on 

ice and then the color should keep them in the dark, not to lose fluorescence until the 

moment you put them on the cytometer. 

5.7. Try centrifugation 

An alternative to improve the quality of the histograms is cut into a sample buffer, 

centrifuged (slow speed for 05-10 min), remove the supernatant and suspended again the 

pellet in 0.5 ml buffer, then filter and staining. This can clean up some samples. 
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5.8. Try a different pattern 

Histogram bad when you are on a second species such as an internal standard, there may be 

interference between the two species of plants used (for example, by the effect of secondary 

metabolites) [24]. 

5.9. Make a gate in their samples 

Even when the peaks are small and there is debris (dirt), the peaks can be measured with 

appropriate software making Gates. However, the removal of debris through the gate can 

affect how the curve fitting software analyzes of the histograms. Moreover, by making a 

very large suppression of scattering nuclei generates peak with a CV that both subjective 

and possibly artificially low, so methods of gate should be clearly described in any 

publication. 

The samples with large amounts of debris over the cores must be considered suspect 

because the debris may be interfering in the coloring. Gate histograms in such poor quality 

must be made only when all other options fail. 

Some other things to consider: 

 Some tissue types may require special approaches. For example, pollen cores can be 

difficult to extract, as well as cutting methods and may be required for a review, see 

[43]. 

 Not all flow cytometers are equal. Some may produce better results than others, 

depending on factors such as size of the nuclei. If you have the opportunity to try more 

than one machine, the results can be enlightening. 

6. Applications of plant flow cytometry 

6.1. Tissue culture  

Flow cytometry and microsatellite analyses were used to evaluate the trueness-to-type of 

somatic embryogenesis-regenerated plants from six important Spanish grapevine (Vitis 

vinifera L.) cultivars. Tetraploid plants were regenerated through somatic embryogenesis 

from all of the cultivars tested with the exception of ‘Merenzao’. In addition, an octoploid 

plant was obtained in the cv. ‘Albarin˜o’, and two mixoploids in ‘Torronte´s’. The most 

probable origin of these ploidy variations is somaclonal variation. The cv. ‘Brancellao’ 

presented significantly more polyploids (28.57%) than any other cultivar, but it must be 

noted that 50% of the adult field-grown ‘Brancellao’ mother plants analysed were 

mixoploid. Hence, it is probable that these polyploids originated either from somaclonal 

variation or by separation of genotypically different cell layers through somatic 

embryogenesis. Microsatellite analysis of somatic embryogenesis-regenerated plants 

showed true-totype varietal genotypes for all plants except six ‘Torronte´s’ plants, which 

showed a mutant allele (231) instead of the normal one (237) at the locusVVMD5. There was 
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not a clear relationship between the occurrence of the observed mutant regenerated plants 

and the callus induction media composition, the developmental stage of the inflorescences, 

the type of explant used for starting the cultures or the type of germination (precocious in 

differentiation medium or normal in germination medium) in any of the cultivars tested, 

except ‘Torronte´s’ [44]. 

In addition, flow cytometry was used in breeding programmes to determine ploidy status 

after colchicine treatment of banana plants.  

In reference [45] objective was to assess the colchicine and amiprophos-methyl (APM) 

concentration and exposure period in the chromosome duplication of banana plants 

diploids. Banana stem tips were used from the following genotypes: breed diploids (1304-04 

[Malaccensis x Madang (Musa acuminata spp. Banksii)] and 8694-15 [0337-02 (Calcutta x 

Galeo) x SH32-63]). Colchicine was used at concentrations of 0 (control treatment), 1.25, 2.5 

and 5.0 mM, while APM was used at 0 (control treatment), 40 and 80 μM, in solution under 

agitation (20 rpm), for 24 and 48 h periods. With the use of APM, 66.67% tetraploid plants 

were obtained in the 1304-04 genotype using 40 μM for 24 h and 18.18% in 80 μM for 48 h, 

while in the 8694-15 genotype using 40 and 80 μM colchicine for 48 h, 27.27 and 21.43% 

tetraploid plants were observed, respectively. For colchicine, in the 1304-04 genotype, only 

the 1.25 mM treatment for 48 h presented 25% tetraploid plants and in the 8694-15 genotype, 

the 5.0 mM concentration for 48 h produced 50% tetraploid plants. APM for 24 h enabled the 

tetraploid plant of the 1304-04 genotype to be obtained, while colchicine for 48 h resulted in 

tetraploid plants in the 8694-15 genotype. 

Further, the efficiency of production of doubled haploid plants in canola (Brassica napus L.) 

breeding programmes is reduced when large numbers of haploid and infertile plants 

survive until flowering. Cytometry was used to assess ploidy status and predict subsequent 

fertility of microspore-derived plantlets from three canola genotypes, with or without 

colchicine treatment of microspore suspensions. Young leaf tissue was sampled from 

microspore-derived plantlets within 1 week of transfer to soil, and processed immediately 

by flow cytometry. The process was repeated on the same plants 3–5 weeks later. Of the 519 

plants transferred to soil, 57.2% were consistently haploid at both sample times, 33.5% were 

consistently diploid at both sample times, and the remainder (9.2%) were uncertain or 

inconsistent in ploidy status across sampling times. Of the 518 plants that survived to 

flowering, 32.4% were diploid at both times of sampling and fertile (set seed) and 46.3% 

were haploid at both sampling times and infertile. Another 10.8% were haploid at both 

sampling times and fertile, but had low pollen viability and seed set, and some were triploid 

or of uncertain ploidy level. Colchicine treatment of microspore suspensions significantly 

increased the proportion of diploid plants from 9.7 to 69.7%, with significant variation 

among genotypes. Evidence from simple sequence repeat marker loci indicated that diploid 

and fertile plants from the control treatment (no colchicine) were derived from 

spontaneously doubled haploid gametes, rather than unreduced gametes or somatic tissue. 

Flow cytometry at the first sample time was very efficient in detecting diploid plants of 

which 94.2% were subsequently fertile [46].  
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We conducted a study of the cell cycle of coconut palm tissues cultured in vitro in order to 

regulate regeneration. Cell nuclei were isolated from various types of coconut palm tissues 

with and without in vitro culture. After the nuclei were stained with propidium iodide, 

relative fluorescence intensity was estimated by flow cytometry. Characterization of the cell 

cycle reinforced the hypothesis of a block in the G0/G1 and G1/S phases of the coconut cells. 

A time-course study carried out on immature leaves revealed that this block takes place 

gradually, following the introduction of the material in vitro. Synchronization of in vitro-

cultured leaves cells using 60 μM aphidicholin revealed an increase in the number of nuclei 

in the S phase after 108 h of treatment. The significance of these results is discussed in 

relation to the ability of coconut tissue cultured in vitro to divide [52]. 

6.2. Other applications 

Cytometry can be used to assess the degree of polysomaty and endoreduplication [48], 

reproduction pathways [49], and cell cycle [47]. In reference [50] detected mixoploidy 

(variable amounts of DNA in tissue) and aneuploidy (variations in a small number of 

chromosomes) by flow cytometry [51]. 

Several protocols for measuring DNA have been developed, including bivariate analysis 

related to cytokeratin/DNA analysis/DNA analysis of BrdU and a synthetic nucleoside 

similar to thymine. These protocols are used to study the cell cycle and to obtain 

multiparametric measurements of cellular DNA content; they were developed in tandem 

with commercial software for analyzing the cell cycle [47].  

7. Final considerations 

Although flow cytometry significantly impacts several fields of plant research, various 

methodological challenges must be overcome before its potential can be fully realized. 

The research group in UFLA’s Department of Agriculture consistently attempts to use 

methodologies for analyzing nuclear DNA content in plants, which removes some technical 

constraints. We emphasize the importance of research, particularly in disseminating 

knowledge on best practices, such as standardization type, fluorochrome selection, data 

presentation, and quality outcome measures. 

Author details 

Moacir Pasqual, Leila Aparecida Salles Pio,  

Ana Catarina Lima Oliveira and Joyce Dória Rodrigues Soares 

Federal University of Lavras (UFLA), Department of Agriculture, Lavras, MG, Brazil 

8. References 

[1] Gucker FT. et al. photoelectric counter for colloidal particles. Am. J. Chem. 69:2422–

2431. 1947. 



 

Recent Advances in Plant in vitro Culture 120 

[2] Shapiro HM. The Evolution of Cytometers. Cytometry Part A, v.58A, p.13–20. 2004.  

[3] Campos JMS. Obtenção de híbridos hexaplóides e análise genômica de Pennisetum sp. 

por citometria de fluxo. 115p. PhD thesis. Federal University of Lavras. 2007.  

[4] Doležel J. Applications of flow cytometry for the study of plant genomes. Journal of 

Applied Genetics, v.38, p.285–302. 1997. 

[5] Galbraith DW et al. Rapid flow cytometric analysis of the cell cycle in intact plant 

tissues. Science, v.220, p.1049–1051. 1983. 

[6] Loureiro JCM et al. Comparison of four nuclear isolation buffers for plant DNA flow 

cytometry. Annals of Botany 2006b; 98 679–689. 

[7] Doležel J. Flowcytometric analysis of nuclear DNA content in higher plants. 

Hytochemical Analysis 1991; 2(4) 143-154. 

[8] Robinson JP. Introduction to flow cytometry. Flow cytometry talks. USA: Purdue 

University Cytometry Laboratory. http://www.cyto.purdue.edu/flowcyt/ 

educate/pptslide.html. 2006 (accessed 26 Juny 2011). 

[9] Galbraith DW et al. Rapid flow cytometric analysis of the cell cycle in intact plant 

tissues. Science 1993; 220 1049–1051. 

[10] Ochatt SJ. Flow Cytometry in Plant Breeding. Cytometry Part A 2008; 73 581-598. 

[11] Loureiro J et al. Two new nuclear isolation buffers for plant DNA flow cytometry: a test 

with 37 species. Annals of Botany; 2007 100 875–888. 

[12] Timbó ALO. Determinação de protocolo para duplicação cromossômica e identificação 

do nível de ploidia utilizando citometria de fluxo em Brachiaria spp. PhD thesis. 

Federal University of Lavras; 2010. 

[13] Loureiro JCM, Santos C. Aplicação da citometria de fluxo ao estudo do genoma vegetal. 

Boletim de Biotecnologia 2004; 77 18-29. 

[14] Wan Y et al. Ploidy levels of plants regenerated from mixed ploidy maize callus 

cultures. In Vitro Cellular and Developmental Biology 1992; 28(2) 87-89. 

[15] Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E: Rapid 

flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983; 4601(220) 

1049-1051. 

[16] Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow 

cytometry. Biologia Plantarum 1989; 31 113–120. 

[17] Otto FJ: DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA 

in methods in cell biology. In Methods in cell biology. Edited by Crissman HA, 

Darzynkiewicz Z . New York: Academic Press,1990;105-110. 

[18] Doležel J, Gohde W. Sex determination in dioecious plants Melandrium album and M. 

rubrum using high-resolution flow cytometry. Cytometry 1995; 19 103–106. 

[19] Pfosser, M. et al. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in 

wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 1995; 21(4) 

387-393.  

[20] Marie D, Brown SC. A cytometric exercise in plant DNA histograms, with 2c values for 

seventy species. Biology of the Cell 1993; 78:41-51. 

[21] Doležel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size. 

Annals of Botany 2005; 95(1) 99-110. 



 
Flow Cytometry Applied in Tissue Culture 121 

[22] Noirot M. et al. Nucleus– cytosol interactions—A source of stoichiometric error in flow 

cytometric estimation of nuclear DNA content in plants. Annals of Botany 2000; 86 309–

316. 

[23] Pinto G et al. Analysis of the genetic stability of Eucalyptus globulus Labill. somatic 

embryos by flow cytometry. Theoretical and Applied Genetics 2004; 109 580–587. 

[24] Loureiro JCM et al. Flow cytometric and microscopic analysis of the effect of tannic acid 

on plant nuclei and estimation of DNA content. Annals of Botany 2006a; 98 515–527. 

[25] Walker D, Monino I, Correal E; Genome size in Bituminaria bituminosa (L.) C.H. Stirton 

(Fabaceae) populations: separation of ‘true’ differences from environmental effects on 

DNA determination. Environmental and Experimental Botany 2006; 55 258–265. 

[26] Doležel J, Greilhuber J. Nuclear Genome Size: Are We Getting Closer? Cytometry Part 

A 2010; 77 635-642. 

[27] Price HJ, Hodnett G, Johnston JS. Sunflower (Helianthus annuus) leaves contain 

compounds that reduce nuclear propidium iodide fluorescence. Annals of Botany 2000; 

86 929–934. 

[28] Gregory TR. Animal genome size database. http://www.genomesize.com. (accessed 18 

December 2009). 

[29] Bennett MD, Leitch IJ. Plant DNA C-values database (release 4.0, October 2005). 

http://data.kew.org/cvalues/. (accessed 02 July 2011). 

[30] Doležel J. et al.. Plant genome size estimation by flow cytometry: Inter-laboratory 

comparison. Annals of Botany 1998; 82 17-26. 

[31] Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow 

cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 1992; 85 

625–631. 

[32] Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow 

cytometry. Biologia Plantarum 1989; 31(2) 113-120.  

[33] Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow 

cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 1992; 

85(4) 625-631 

[34] Buitendijk JH, Boon EJ, Ramanna MS. Nuclear DNA content in twelve species of 

Alstroemeria L. and some of their hybrids. Annals of Botany 1997; 79 343-353. 

[35] Van Dyke WW, Dervan PB. Chromomycin, mithramycin and olivomycin binding sites 

on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-

EDTA)iron(II). Biochemistry 1983; 22 2373–2377. 

[36] Portugal J, Waring M. Assignment of DNA binding sites for dapi and bisbenzimide 

(hoeschst 33258). Comparative footprinting study. Biochimea Biophysica Acta 1988; 949 

158-168. 

[37] Michaelson MJ, Price HJ, Ellison JR, Johnston JS. Comparison of plant DNA contents 

determined by Feulgen Microspectrophotometry and Laser Flow Cytometry. American 

Journal of Botany 1991; 78 183-188.  

[38] Yanpaisan W, King NJ, Doran PM. Flow cytometry of plant cells with applications in 

large-scale bioprocessing. Biotechnology Advanced 1999; 17 23–27. 



 

Recent Advances in Plant in vitro Culture 122 

[39] Johnston JS. et al. Reference standards for determination of DNA content of plant 

nuclei. American Journal of Botany 1999; 86 609–613. 

[40] Price HJ, Johnston JS. Influence of light on DNA content of Helinathus annuus Linnaeus. 

Proceedings of the National Academy of Sciences of the USA 1996; 93 11264-11267. 

[41] Sliwinska E, Zielinska E, Jedrzejczyk I. Are seeds suitable for flow cytometric estimation 

of plant genome size? Cytometry Part A 2005; 64 72–79. 

[42] Greilhuber J, Temsch E, Loureiro J. Nuclear DNA content measurement. Edited by 

Doležel J, J Greilhuber J, Suda J, Flow Cytometry with Plant Cells: Analysis of Genes, 

Chromosomes and Genomes. Weinheim: Wiley-VCH, 2007; 67-101. 

[43] Suda J, Kron P, Husband BC, Trávnícek P. Flow cytometry and ploidy: applications in 

plant systematics, ecology and evolutionary biology. Edited by Doležel J, J Greilhuber J, 

Suda J, Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and 

Genomes. Weinheim: Wiley-VCH, 2007; 67-101. 

[44] Prado MJ, Rodriguez E, Rey L, Gonzalez MV, Santos C, Rey M. Detection of somaclonal 

variants in somatic embryogenesis regenerated plants of Vitis vinifera by flow cytometry 

and microsatellite markers. Plant Cell Tissue and Organ Culture 2010; 103 49–59. 

[45] Rodrigues FA, Soares JDR, Santos RRS, Pasqual M, Silva SOS. Colchicine and 

amiprophos-methyl (APM) in polyploidy induction in banana plant. African Journal of 

Biotechnology 2011; 10(62) 13476-13481. 

[46] Takahita J, Cousin JA, Nelson MN, Cowling WA. Improvement in efficiency of 

microspore culture to produce doubled haploid canola (Brassica napus L.) by flow 

cytometry. Plant Cell Tissue and Organ Culture 2011; 104 51–59. 

[47] Sandoval A, Hocker V, Verdeil JL. Flow cytometric analysis of the cell cycle in different 

coconut palm (Cocos nucifera L.) tissues cultured in vitro. Plant Cell Reports 2003; 22 

25–31. 

[48] Barow M, Meister A. Lack of correlation between AT frequency and genome size in 

higher plants and the effect of nonrandomness of base sequences on dye binding. 

Cytometry 2003; 47 1–7. 

[49] Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using 

mature seeds of monocot and dicots. The Plant Journal 2000; 21 97–108. 

[50] Doležel J. Applications of flow cytometry for the study of plant genomes. Journal of 

Applied Genetics 1997, 38 285–302. 

[51] Roux N. et al. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell 

Reports 2003; 21 483–490. 

[52] Nunez R. DNA Measurement and Cell Cycle Analysis by Flow Cytometry. Current 

Issues in Molecular Biology 2001; 3(3) 67-70. 


