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1. Introduction 

Aluminum became attractive only after the invention of Hall-Heroult electrolysis process in 

1886. In the earlier part of last century, the usage of aluminum products was restricted in 

decorative parts. After World War Ⅱ, a dramatic expansion of the aluminum casting 

industry occurred. Many new alloys were developed to comply with the engineering 

requirements. Among the commercial aluminum alloy castings, Al-Si alloy is the most 

commonly used and constitutes 85-90% of the total aluminum cast parts produced. Al-Si 

alloys containing silicon as the major alloying element offer excellent castability, good 

corrosion resistance and machinability. Small amounts of Cu, Mg, Mn, Zn and Ni are being 

added to achieve strengthening of Al-Si alloys.  

Al-Si alloys have been made for a long time by simply adding crushed silicon metal or a 

high-silicon aluminum base master alloy to molten aluminum in reduction cell or smelting 

furnace. In those processes pure silicon and aluminum are needed, and both metals are 

reduced from oxides in electrolytic cell. The idea of direct electrolytic reduction of silica 

dissolved in the cryolite bath in electrolytic cell has been developed at the end of nineteenth 

century.  The idea to produce alloys in electrolytic process is not new. For several years 

before Hall-process the Cowles process, by which Cu-Al alloys in range of 30-40% Al were 

directly reduced from a mixture of Al2O3 and CuO or Cu by electric arc at high temperature, 

was used [1]. 

1891 Menit firstly conducted the experiment to reduce the silica to silicon metal in Hall cell. 

In 1911 Frilley [2] achieved the production of Al-Si alloys containing less than 5% silicon by 

direct electrolytic reduction of alumina-silica and 5-96% silicon by aluminum-thermal 
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reduction in laboratory. Frilley also obtained Mn-Si, Cr-Si, Fe-Si, Cu-Si and Si-Ni in 

electrolytic cells. Moreover, he found that the silicon appearance in Al-Si alloy with less than 

10% Si was very fine and different from the existed alloy, but no attention had been paid on 

the change of structural characteristics of silicon due to limited usage of aluminum in 

industry at that time. Fridley’s discovery revealed that electrolytic process is a powerful 

potential measure to improve the quality of alloy.  

In the middle of last century a number of works had been reported to electrolyze Al-Si alloy 

in Hall cells, to which pure silica, quartzite containing more than 99% SiO2 [3], sand stone 

with about 90% SiO2 [4] glass scrap having 72% SiO2 [5]. bauxite with 11%SiO2 [6], sand and 

clay [7] were added. Recently the refractories from spent potlining were successfully 

introduced to alumina reduction cells to produce Al-Si alloys [8]. As well known, the purity 

of molten aluminum is of major concern in electrolytic reduction process. The impurity is 

considered as a negative factor, deteriorating operation conditions. Hence, the direct 

electrolytic reduction of silica in Hall cell is a difficult process. There are two severe 

problems related with silica added into molten cryolite, in which silica must be easily 

dissolved. One of them is how to compensate for alumina generated by the reaction of 

aluminum with the added silica for achieving a desired chemical composition of alloy. 

Other is that direct addition of silica or other silicates often results in the formation of the 

heavy ridges of silicate along the bottom of the cell, as a result the cell becomes inoperable, 

so limiting the size and placement of the ridge is a major concern in production. In 1970s C. 

J. McMinn and A.T. Tabereaux [9, 10] provided a procedure to strictly control the feed of 

alumina and silica into the cell, stabilizing the electrolytic process and successfully 

producing Al-Si alloys with up to 16%Si in Hall cell. However, they viewed this process to 

be economical when the price of silicon greatly increases. Production of Al-Si alloys in 

electrolytic reduction cell had not found industrial application. 

Since 1970s many works have been carried out on direct electrolytic production of Al-Si 

alloys(DEASA) in China [11]. Most Chinese bauxites contain high content of silica, titania 

and small amount of rare earth oxides. It is very difficult to extract the pure alumina from 

bauxite by the Bayer process [12]. In electrolytic process the charge is composed of bauxite, 

from which the iron oxide is removed, and alumina, using which to regulate the proportion 

of bauxite added into salt bath in terms of the desired chemical composition of Al-Si alloy. 

Note that bauxite tested is easily to be dissolved into molten electrolyte compared to the 

commercial bauxites. It would be an important factor to successfully produce Al-Si alloys in 

alumina reduction cells. At the end of last century several thousand tons of DEASA ingots 

containing Si content from 6% to 12% have been used in foundries to produce car parts such 

as engineering block and head, wheel and piston [12- 14]. Table 1 lists the chemical 

compositions of some DEASA ingots, which contain higher level of impurities such as Na, 

Sr, Ti and rare earth elements compared to commercial alloys. Undoubtedly it is related 

with bauxite composition.   .  

Since 1980s author has focused attention on the microstructure of DEASA and its 

mechanical properties [15]. It has been found that the microstructure and fracture surface of 
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DEASA ingots are very fine and similar to impurity-modified Al-Si alloy. Hence this 

phenomenon is characterized as self-modification due to no impurity- modifier added. The 

further research indicated that self-modification is attributed to the eutectic undercooling 

during solidification of DEASA. To answer the question why self-modified microstructure 

occurs and how it links with the electrolytic process, we must discuss some events related 

with electrolysis process. This chapter restricts the consideration into the structural 

characteristics of alloys and its original, which is related with electrolytic process. The 

details of electrolysis process can be referred to References [11,12 ]. 

 

Alloy*  Si Cu Mg Mn Ni Zn Fe Cr Ti Na RE Sr 

EZL101 top 7.9 <0.01 — 0.01 <0.01 0.01 0.25. <0.01 0.33 — 0.002 0.001 

No1 bottom 8.2 <0.01 — 0.01 0.01 0.01 0.24 <0.01 0.35 — 0.002 0.001 

EZL101 No2 7.3 <0.01 0.36 0.01 0.02 <0.01 0.11 — 0.11 <0.0001 — 0.001 

ESi 9** No1 9.5 <0.02 0.010 0.060 0.15 0.03 0.65 0.02 0.48 0.0045 0.038 0.0034 

 No2 9.2 <0.02 0.02 0.005 0.12 0.02 0.44 0.18 0.66 0.014 0.037 0.0026 

EZL102  12.2 <0.01 0.15 0.005 — <0.01 0.50 — 0.12 — — — 

ZL108  11.60 1.95 0.65 0.62 0.30 — 0.25 — 0.20 0.0020 — 0.000 

EZL109  12.1 <0.01 0.91 0.01 0.81 <0.01 0.25 — 0.09 0.0023 — 0.000 

ZL101 (A356) 6.7 — 0.39 0.01 0.005 — 0.06 0.016 0.12 — 0.0005 0.002 

E is abbreviation for electrolysis. ZL represents “cast aluminum alloy” in Chinese: 

 * Alloy designations are to Chinese specification.  

** Alloy mark representing an electrolytic Al-9% Si-0.5%Ti alloy. 

Table 1. Chemical analysis of DEASAs ingot   wt% 

2. Behavior of alloy melt in electrolytic process   

The electrolysis cell runs at around 950°Cwith a voltage drop of 4.5-5.5 V across each 

cell[11]. The bauxite, from which iron oxide is removed, contains SiO2, TiO2, Fe2O3, Na2O, 

CaO and rare earth oxides (RExOy) ,besides the Al2O3. During electrolysis process those 

compounds are reduced to Al, Si, Ti, Fe, Na, Ca and RE, respectively, which in atomic form 

continuously remove from electrolyte to the carbon bottom of the pot, forming a 

homogeneous Al-Si alloy melt with several impurities, as shown in Tab.1. Then the melt is 

siphoned out of the reduction cell at 24h intervals and held in a 10 ton insulated metal-mixer 

for homogenizing the composition, then poured into ingot mould with dimension of 100×60

×600mm3 and weight of 10kg, without any impurity-addition or treatment.  Hence, there are 

four factors i.e. homogeneous melt, superheating, impurity and electric field (current 

density and anode potential), influencing the structure of DEASA melt and its 

crystallographic characteristics and properties in solid state. 
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In many years a lot of studies have been done on the structure of liquid metals, including 

Al-Si alloy. The liquid metals can be considered as a system composed of ions and electrons, 

which are moving through the disordered liquid [16-18]. Below we discuss how 

superheating and electric field change the structure of Al-Si melt and its crystallization 

2.1. Effect of superheating on the crystallographic characteristics of Al-Si alloys 

As well known melt superheating is a powerful factor influencing the microstructure and 

properties of commercial Al-Si alloys. The effect of superheating is associated with the 

temperature, holding time and cooling rate during solidification [19-24]. In 1990s many 

researchers [21,25] investigated the regularity of variety of viscosity and density of family of 

Al-Si alloy in liquid state with temperature, revealing that as temperature exceeding about 

1000°C, these physical properties dramatically change. Therefore, they suggested that for 

the near eutectic Al-Si alloy containing 10-14% Si there is a critical temperature in range of 

1050-1150°C, as shown in Fig.1, above which the silicon grains and other heterogeneous 

substances such as iron-rich particles are dissolved in melt, resulting in a homogeneous 

melt, which will change the crystallographic characteristics of alloy. This event has been 

proved by recent studies. At the beginning of this century X.F. Bian et al studied Al-13%Si 

alloy melt heated in the temperature range of 625-1250°C using high temperature X-ray 

diffractometer [22] and reported that when increasing the temperature to 875°C a sudden 

change of the atomic density and the coordination number of the Al-13%Si alloy melt 

occurs, demonstrating that the liquid structure has changed, which is caused by dissolving 

of Si-Si clusters into aluminum melt. In other study  it has been found that at the 

temperature of about 1050°C the electrical resistivity of hypereutectic Al-16%Si alloy melt 

steeply changed and hereditary effect of different original structure can be eliminated after 

remelting, indicating that the change of liquid structure happened at temperature of 

1050°C[26]. Hence Al-Si alloy melt at high temperature consists of two ion groups: Al-Si and 

Si-Si groups, which appear to consolidate the short-range order and the electrons are 

moving through the disordered melt [27-29]. Based on the experimental results P.J.Li [23] 

considered that in homogeneous Al-Si alloy melt the size of Si-Si and Al-Si micro- 

heterogeneous clusters range is from 10 to 100Ǻ.  M. Singh reported that in Al-Si alloys 

either hypoeutectic or hypereutectic silicon is present as silicon cluster essentially with the 

size of about 50-70 Ǻ [27].  Moreover, as increasing the temperature, the size and number of 

ion groups simultaneously decrease.  

P.C. Popel et al [21, 23] studied the influence of superheating on the crystallographic 

characteristics of alloys and revealed that superheating Al-Si alloy shifts its eutectic reaction 

toward higher level of silicon accompanying with the appearance of Al-dendrite. As 

temperature is higher than 780°C, eutectic silicon becomes finer with the fine α-Al dendrite. 

When heating temperature is in range of 900-1000°C, the size of silicon flake is less than 

7µm. It is interesting that heating at temperature higher than 1000°C the modified silicon 

appears in eutectic alloy. The heating at 1000°C is capable of eliminating the occurrence of 

primary silicon and refining α-Al dendrite in Al-17%Si alloy. But when superheating 

hypereutectic Al-20%Si alloys at 950°C the primary silicon particles become finer [24, 30] . 

The higher the temperature, the finer the silicon grain. It would be expected that a higher 
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superheating temperature is required for hypereutectic Al-Si alloys having higher silicon 

content to achieve a complete eutectic structure. It is worthy of note that if the holding time 

is insufficient to dissolve all the silicon particles present in original alloy, even the 

superheating at 1200°C does not significantly change the crystallographic characteristics of 

alloy, and the modified structure does not appear [31]. 

 

Figure 1. The dome of decay of metastable colloidal microheterogenity in Al-Si melts [21,23] 

For hypoeutectic alloys as temperature rises to 950°C the dendrite arm spacing(DAS) steeply 

decreased and the dislocation density in α-Al dendrite increased. Moreover, the eutectic 

silicon tended to a fine fibrous structure [32]. 

Overheating significantly increases the content of silicon, magnesium and iron in α-Al-

dendrite in hypoeutectic alloy [33]. As overheating Al-8%Si alloy at temperature of 950°C for 

10min silicon and magnesium content solved in α-Al-dendrite increases to 1.9% and 0.3%, 

respectively, much higher than their solubility in Al-matrix at room temperature. 

Undoubtedly, overheating is one of the factors strengthening the mechanical properties of 

alloys.  

Superheating also prompts the morphological variety in iron-bearing compound in alloys 

[34]. As heating Al-7%Si-Mg alloy at temperature higher than 800°C, AlSiFe compound 

appeared in Chinese script form instead of coarse needle-like shape, increasing the impact 

strength of alloy. It is apparent that superheating is a powerful mean greatly affecting the 

feature of microstructure in Al-Si alloys. 

It is worth noting that the overheating effects on the change in structure significantly 

depends upon the cooling rate in freezing in alloy [23, 35]. For hypereutectic Al-17%Si alloy 

even heated at temperature in the range of 1000-1050°C the primary silicon grows faceted in 

sand castings, where the freezing rate is less than 10°C/sec. By contrast the formation of 
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more equiaxed, nearly globular silicon crystal can be observed if the melt is quenched with 

the cooling rate of higher than 100°C/sec.  

The reason why superheating leads to a change in crystallographic characteristics of alloys is 

associated with the undercooling generated by a variety of structure in molten alloy, where 

the size and number of Si-Si clusters acting as a nuclei of eutectic silicon in solidification of 

alloy greatly affect the crystallization of alloy[36]. Higher superheating decreases Si-Si 

cluster in size and amount, depressing the liquid-to-solid transition temperature, as a result 

a deep undercooling ocurs. A.Y.Gubinko[37] reported that superheating an Al-Si alloy melt 

to 100°C above its liquidus temperature offers an undercooling twice as great as for a melt 

superheated 35°C. The higher the superheating temperature, the greater the undercooling in 

freeze of alloy. Note that temperature in electrolysis cell is about 950°C lower than the 

critical temperature, above which structure of melt transits from microheterogeneous to 

homogeneous state (Fig.1) and DEASA is intrinsically homogeneous due to its reduction 

from oxides. Hence, it would be thought that the overheating in reduction cell does not 

affect the structure of melt, but holding DEASA melt in metal-mixer for long time causes the 

structural transition from homogeneous to heterogeneous state in some degree.   

2.2. Role of electric field in the crystallization of Al-Si alloys 

Over the past decades a lot of studies relating with the effect of electric field on the structure 

and properties of Al-alloys have been carried out [38-42].  Electric field either continuous 

current or pulse electric discharge deeply affects crystallographic character of alloy and its 

properties. In this chapter we will only focus our attention on the effect of direct current, 

which is related with electrolysis process. 

By introducing the direct current into molten Al-10%Si alloy at 740°C for treating time of 

50min, H.Li et al studied the effect of different current density on the structure and 

mechanical properties of alloy [43]. It was found that the electric field causes a 

morphological transition of eutectic silicon from flake to fibrous shape, accompanying with 

the reduction of second α-Al dendrite space. As increasing the electric current density to 

30A/dm2 silicon phase grows modified and finally primary Al-dendrite appears in near-

nodular shape. As a result the elongation of alloy was raised by 100% and its tensile strength 

was improved by 15%. It is interesting that an increase in current density leads a rise in 

undercooling in freezing of alloy as shown in Fig.2. When increasing current density to 

100A/dm2 a deep undercooling of 15°C occurs, then undercooling grows slowly with current 

density. Undoubtedly, the deep undercooling is the reason of the change in morphology of 

silicon particles.  

L. G. Huang et al introduced direct-current into melt poured into mould during 

solidification and investigated the effect of current density on the structural feature of Al-

4%Si and Al-10%Si alloys, which were firstly heated at 700°C. It was found that silicon 

became finer with direct-current density and reached a limit as the density is increased to 

283A/dm2 and the size of α-Al dendrite arm space (DAS) also reduced with a minimum at 
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density of 325A/dm2. It is interesting that the effect of alternating current is the same to 

direct- current [44]. B.A. Timchenko et al [45, 46] studied the effect of high direct-current 

density (100-10 000A/dm2) on the quality of casting made of eutectic Al-12%Si alloy. When a 

large current is passed through alloy during its solidification, the solubility of silicon in α-Al 

matrix is raised to 20%, and its distribution becomes more homogeneous with a reduced size 

of silicon particles. In addition, the mold filling ability (fluidity) of casting alloys is greatly 

improved accompanying with a less tendency to gas porosity and shrinkage. As a result the 

tensile strength and hardness are increased by 10%. Recently A. Prodhan [47] reported that 

molten eutectic Al-12.16%Si alloy, which firstly was superheated to 750°C, can be degassed 

by direct- current treatment during solidification (semisolid state). The initial hydrogen level 

in alloy made from the ingot is about 2.5ppm, and under current treatment within 10min the 

hydrogen content is reduced to near 1.7ppm, which is necessary for producing a casting 

without porosity [47]. However, a large current density will cause an increase of hydrogen 

concentration. It is obvious that electric field, which is introduced into melt at more or less 

higher temperature or during solidification, improves the casting properties with an 

increase in mechanical index. This is attributed to the structural rearrangement of alloy melt 

generated by electric field. However, we are unable to clarify how the electric field affects 

the properties of DEASA melt due to the absence of experimental results at high 

temperature of above 900°C.  

 
◆[22]; ■EZL101;▲EZL109 

Figure 2. Eutectic undercooling in freezing against current density in Al-Si melt. 

The major effects induced by electric field on the behavior of alloy melt include Joule’s effect 

and electron-transport.  Electric current causes the input of heat due to Joule’s heating effect, 

which leads to an increase in solidification time, resulting in the improvement of fluidity of 

alloy, and hence the reduce of shrinkage and porosity[47]. Obviously, Joule’s heating effect 

doesn’t affect the properties of DEASAs, which solidify without electric field in present 

study.  
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In electrolysis process Al-Si alloy melt is ionized to macroscopic homogeneous Al3+ and Si4+ 

ions, and conduct electrons, which are moving through the melt. Under electric potential, 

positive ions migrate to the cathode and the electrons move toward the anode. The so-called 

electron- transport, which depends on ionization potential of constituent elements and its 

mobility in the applied field, is most important factor that reduces the solute distribution co-

efficient and influences the rearrangement of elements on the solid-liquid alloy boundary 

during solidification, therefore reducing the constitutional undercooling and changing the 

crystallographic behavior of alloys. Under the current potential, the conduction electrons 

surrounding the aggregates of Si+-rich or Al+-rich groups are readily to be transferred to 

unlike atoms, making the groups unstable[17,28]. When the electron-drag applied to the 

ions, the unstable groups either Si+-rich or Al+-rich are capable of splitting into smaller one. 

The smaller Si+-rich aggregators, which act as a nuclear center of silicon phase in Al-Si alloys 

as reported in reference [36] will promote a larger undercooling in eutectic reaction, which 

strongly change the crystallographic characteristic of silicon phase. Our data showed that 

compared to commercial unmodified Al-Si alloys eutectic arrest temperature in DEASA 

ingot drops to about 15-18°C[15], which is sufficient to modify the microstructure of Al-Si 

alloys either eutectic[48] or hypereutectic. 

Summarizing the experimental results in literatures mentioned above, it is apparent that the 

effect of overheating on the microstructure and properties of Al-Si alloys is more or less 

same as electric current that leads the same variety in arrangement of melt in some degree, 

resulting in a large undercooling in solidification of alloy. It is worth noting that the 

structure of liquid DEASA is homogeneous in electrolysis process, and therefore, the effect 

of both of superheating and current field is weakened compared to the existing alloys. It is 

thought that in the electrolysis process the combination of both factors (superheating and 

electric field) provides Al-Si alloys a circumstance, where the ability of melt to stabilize the 

homogeneous structure is enhanced, hence the morphological transition of constituents of 

DEASA easily undergoes either under lower cooling rate during solidification or upon 

remelting compared to the common alloy. DEASA is an excellent undercooled alloy, of 

which the crystallographic behavior is same to alloy treated with electric field at high 

temperature and rapid cooling rate during solidification. This inference has been evidenced 

in present and previous studies [14,15, 49].  

3. Crystallization feature of DEASA 

3.1. Morphology of silicon phase and its inheritance upon remelting 

As well known, silicon is the major alloying element in Al-Si alloys and its morphology is 

primary important factor affecting the mechanical properties, castability, machinability and 

other physical properties. In 1950s it has been found that for Al-Si alloy the growth of silicon 

crystal is temperature-dependent and dictated by the undercooling in freezing [50]. Since 

then a number of investigations have been done to clarify the relationship between its 

morphology and undercooling in solidification [48,51-53]. In general, an eutectic 



Direct Electrolytic Al-Si Alloys (DEASA) –  
An Undercooled Alloy Self-Modified Structure and Mechanical Properties 115 

temperature undercooling of 6-8°C is necessary for appropriate modification for 

hypoeutectic or eutectic Al-Si alloys. If the combination of undercooling induced by cooling 

rate during solidification and modifier is below the critical value, an unmodified structure is 

obtained.  

The relationship between temperature / undercooling in freezing and morphological 

transition including eutectic, primary silicon and aluminum phase in Al-Si alloys 

containing different silicon content can be described in quasi-equilibrium Al-Si diagram 

(Fig.3.)[54].  

 
A,B: Quasi-eutectic zone; C:Al-dendrite＋eutectic; D:Primary silicon＋eutectic;  

◇: Al-dendrtic + eutectic in present work;  

□: Coupled eutectic in present work;  

●: Primary Si + eutectic in present work. 

Figure 3. Quasi-eutectic zone in the Al-Si system.[54] 

Compared to equilibrium diagram, where eutectic reaction runs at a constant temperature 

and silicon content, the region of formation of quasieutectic structure exists, i.e.in a wide 

range of temperature/undercooling and silicon content the eutectic structure can be 

observed. For hypereutectic Al-Si alloys with an increase in silicon content the region shifts 

towards higher silicon concentration and depresses the eutectic temperature, implying that 

a higher undercooling is required to produce quasieutectic structure and, meanwhile, the 

silicon content in quasieutectic is much more than equilibrium. Whether hypereutectic alloy 

displays a quasieutectic structure or quasieutectic plus primary silicon grain depends upon 

undercooling. Obviously, the microstructure of eutectic alloy composes of eutectic plus 

primary α-Al dendrite in casting condition. On the other hand for hypoeutectic alloys due to 

eutectic shift toward higher silicon content the volume fraction of primary aluminum 

dendrite increases compared to the equilibrium Al-Si diagram with same silicon content, 

whereas with undercooling the volume fraction of Al-dendrite increases. In general, using 

the quasi-diagram the variety in crystallographic feature of Al-Si alloy with different silicon 

level and undercooling / temperature can be clearly explained.   
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In order to reveal this relationship between the crystallographic feature in DEASA and 

undercooling in freezing we observed the microstructure of DEASAs containing silicon 

content in the range 6- 18% and measured their cooling curves during solidification. 

Chemical analysis is listed in Table 1 and 2. The samples of eutectic (EZL102, EZL108 and 

EZL109) and hypoeutectic (EZL101 and ES9) alloys were cut from the center ingots. 

Hypereutectic alloys (EZL14, EZL16 and EZL18), of which the charge was composed of 

DEASA (EZL108)(Tab. 2.) ingot and Al-30%Si master alloy along with other master alloy 

additions., were melted in a 2 kg graphite crucible in an electric resistance furnace and 

heated to 850°C. After melting (Note: it is 1st remelting for EZL108) the molten alloy was 

held for 15 min to homogenizing the composition, then poured into a metallic mold, 

preheated to 250°C to form a casting 40x50x120mm3 as shown in Fig.4. Pouring temperature 

is about 740°C for all alloys tested.  

All tested alloys with different silicon content were repeatedly remelted to produce the 

unmodified structure with measured undercooling. This promotes to reveal the effect of 

undercooling on the structure in DEASA. Metallographic specimens were cut from the 

interiors of the casting near the site of a chromel-alumel thermocouple (Fig.4), by which the 

cooling curve was recorded. The cooling rate during solidification was about 1.0°C/sec. 

 

Figure 4. Mold and thermocouple 

 

Alloy Si Mg Cu Mn Ni Fe Ti Sr Ca Zr Remark 

EZL108 11.60 0.65 1.00 0.60 0.25 0.25 0.10 <0.000 0.001 0.0070 DEASA 

EZL14 13.70 0.55 0.80 0.31 <0.05 0.25 0.03 <0.0006 <0.001 0.0010 D*+AS30** 

EZL16 15.70 0.59 1.00 0.34 <0.02 0.35 0.03 0.0006 0.001 0.0072 D+AS30 

EZL18 17.60 0.39 0.75 0.25 <0.05 0.35 0.04 <0.0006 <0.001 0.0017 D+AS30 

D: DEASA; AS50: Al-30%Si master alloy. 

Table 2. Chemical Analysis of DEASA tested 
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As well known, the alloying elements such as Mg, Cu, Mn, Ni, Fe and Zn lower the eutectic 

arrest temperature, TE, in Al-Si alloy [55-57]. In general the following equation (1) is used to 

estimate the change of TE in commercial alloys where the total of %Al +%Si is high, near 99% 

[57, 58]. 

 ( )
( ) ( ) ( ) ( )

( ) ( )
E

4.43 %Mg   1.43 %Fe   1.93 %Cu  1.7 %Zn  
T  577  12.5 /  %Si   

 3.0 %Mn   4.0 %Ni

 + + +
= −  

+ +  
 (1) 

In present work the estimated eutectic arrest temperatures, TE,, range from 569°C to 573 °C 

depending upon the composition of alloys tested. Thus the undercooling, △T, will be  

 ’
E ET  T  TΔ = −  (2) 

where TE ‘ is the measured eutectic temperature for given alloy. 

Microstructure of eutectic DEASA (EZL102, EZL108 and EZL109) ingot is shown in Fig.5-8. 

A high volume proportion, 43-50%, of primary aluminum dendrite, which distributes 

evenly in modified eutectic matrix, can be found. and the eutectic undercooling is higher 

than 18°C that is significant different from the commercial eutectic alloy and similar to the 

impurity-modified alloys although the silicon content is just near to the eutectic 

composition.   

 

Figure 5. Optical micrograph of EZL102 ingot, showing as-cast self-modified structure. A few iron-rich 

crystal appears as a fine flake form as indicated by arrow.  

The DEASA hypereutectic alloys, which contain 14% and 16%Si solidify with a completely 

modified eutectic microstructure (Fig.9 and 10) with undercooling of 12°C and 9°C, 

respectively. For the alloys with silicon content more than 17% (EZL18) the microstructure 

exhibits the coarse primary silicon crystals well distributed throughout the unmodified matrix 

as seen in Fig.11. In this case the eutectic temperature reached 568°C with undercooling of 5°C. 

In the hypoeutectic electrolytic Al-7%Si ingot the volume proportion of α-Al dendrite reach 

72% accompanying with modified eutectic silicon phase and undercooling of 12°C similar to 
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Sr-or Na-modified Al-7%Si alloy (Fig.12). As increasing silicon level to 9% the fine silicon 

grows in modified mode with a high volume percentage of α-Al dendrite of 60% (Fig.13).  

 

Figure 6. As-cast  micrograph of EZL108 ingot, revealing self-modified structure.  Optical 

 

Figure 7. Microstructure in the top region of the electrolytic EZL109 ingot. The equiaxed coarse Al-Si 

eutectic cell appears, in which silicon grows in modification manner. Optical 

 

Figure 8. Optical micrograph in the bottom part of electrolytic EZL 109 ingot, indicating the fine self-

modified structure. 
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Figure 9. Self-modified microstructure of hypereutectic DEASA(EZL14),showing complete eutectic 

structure. On the boundary of eutectic cell some silicon flake can be observed.   Optical.  

 

Figure 10. Optical self-modified structure of hypereutectic DEASA (EZL16). Complete eutectic 

structure appears accompanying some fine silicon flake on the boundary of eutectic cell. 

 

Figure 11. Microstructure of hypereutectic DEASA (EZL18). Coarse primary silicon distributes through 

the unmodified eutectic matrix. Some α-Al dendrites. occur.   Optical 

By combining with the regularity of morphological transition of silicon phase in Al-Si alloys 

treated by electric field at high temperature in literatures and our experimental results it 
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would be expected that the variety in crystallographic feature is attributed to the 

undercooling in freezing. This inference has been strongly supported by the experimental 

results in remelting DEASAs. The very fine self-modified structure in DEASA such as 

EZL101 and EZL109 is fully inherited upon first remelting with a deep undercooling of 9°C 

and 13°C, respectively, as shown in Fig.14. As undercooling is higher than critical value of 6-

8°C, the alloys solidify in modified manner. In contrast, an unmodified structure in Al-

17%Si alloy appears due to lower undercooling of 5°C  

 

Figure 12. Microstructure of hypoeutectic DEASA(EZL101) ingot, demonstrating the self-modified 

structure with high volume fraction of α-Al dendrite. Optical.  

 

Figure 13. Optical micrograph of hypoeutectic DEASA(ES9) ingot, showing fine modified silicon phase 

with high volume percentage of α-Al dendrite. 

It is interesting that the modified structure in EZL109 fades considerably slower and even 

upon 3-fold remelting the modified structure is inherited (Fig15) with an undercooling of 

5°C. However, for EZL101with 7% Si or EZL102 having 12%Si after 3-fold remelting some 

silicon flake can be observed, displaying a decreased undercooling (Fig.16). It is thought that 

the alloying elements such as Cu, Mn, Ni and Mg prompt the occurrence of deep 

undercooling, strengthening the structural inheritance in EZL108,EZL109 and ES9 (TableⅠ) 

In general, with 4-fold or more remelting the almost fully structural fading occurs and the 
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undercooling disappears. In this case the microstructure in eutectic EZL108 and EZL10 is 

composed of eutectic with few, if any, α-Al dendrites. Note that upon first remelting the 

quasi-eutectic in DEASA hypereutectic alloys is subjected to fully fading, resulting in an 

appearance of coarse primary silicon grain distributed in unmodified eutectic matrix as 

shown in Fig.17, while the undercooling cannot be found. Fig.18 shows the variety of 

undercooling with remelting for DEASA (EZL101, EZL109). When undercooling is lower 

than 5°C, the inheritance of self-modified structure of EZL101 is subjected to significantly 

fading. In contrast, as undercooling decreases to 5°C the self-modified microstructure of 

EZL109 remains unchanged. Thus, it is reasonable to consider that for hypoeutectic and 

eutectic DEASAs the critical undercooling is 5°C, which is lower than critical value of 6-8°C 

for commercial Al-Si alloys. This phenomenon is thought to be associated with the 

homogeneous characteristics of DEASA melt, which cause silicon to solidify in modification 

mode at lower undercooling and cooling rate [23]. 

 

A: modified silicon B: unmodified silicon 

 

Figure 14. Relationship between eutectic undercooling and Si content in remelted DEASA. 

 

Figure 15. Optical structure of DEASA(EZL109) upon 3-fold remelting. Self-modified structure is fully 

inherited.  
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Figure 16. Microstructure of DEASA(EZL102) upon 3-fold remelting composed of unmodified 

structure. Some small faceted primary silicon appears. Optical. 

It is worth noting that the self-modified structure is relatively insensitive to cooling rate as 

compared to commercial alloy. In general, the microstructure in top area of commercial 

ingot, where the cooling rate is very slow, displays coarse unmodified silicon flake but in 

the edge the fine silicon structure can be observed due to rapid cooling rate. Our 

observation reveals that there is no obvious difference in fineness of the eutectic between 

top and edge of eutectic DEASA ingot (EZL109) (Fig.7and 8). It is expected to be associated 

with the homogeneous melt, of which the stability is strengthened by the electric field in 

electrolytic process. That would be thought to be superiority over commercial alloy to 

produce complex castings.  

 

Figure 17. Optical micrograph of DEASA(EZL14) after first remelting. Self-modification is fully 

subjected to fading. Faceted primary silicon occurs 

The origin of the variety of undercooling of DEASA is associated with the homogeneous 

character of its melt. The original DEASA melt either hypoeutectic or eutectic is intrinsic 

homogeneous, causing silicon to solidify at a large undercooling due to the lack of large 

silicon-rich clusters acting as nuclei in freezing. The repeated re-melting of DEASA, in 

which the large undissolved silicon particles exist, causes a lower undercooling, 

accompanying with the fading of modified microstructure The homogeneous character in 

hypereutectic DEASA melting can be partially survives or fully lost depending upon the 
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silicon composition, because with increasing silicon content the undissolved silicon particles 

dramatically increases, nucleating silicon in solidification with a lower undercooling.  

 

Figure 18.  Relationship between undercooling and remelting undercooling and remelting 

By combining the results in present and previous works we suggested the following growth 

mechanism of quasi-eutectic structure [49]. At initiation of the growth the silicon particle as 

nucleus would be assumed to be a nodule or irregular shape, with many different facets 

exposed in the melt [59-61]. Whether or not such a nucleus grows as polyhedron primary 

silicon crystal in freezing is determined by the degree of undercooling. As the nucleus 

grows, the boundary layer of eutectic composition starts to form around the growing 

nucleus and isolates it from the melting, thus preventing the further development of 

nucleus. With lower undercooling or higher silicon concentration the silicon atoms are 

capable of diffusing cross the layer to be trapped on the surface of the silicon nucleus, thus 

the silicon nucleus further grows, developing a primary silicon crystal and eutectic structure 

before the temperature of melt lowers down to the critical value shown by curve ES in Fig.3. 

Under high undercooling silicon atoms diffusion is limited, suppressing the primary silicon 

crystal to form. If the primary silicon cannot develop until the melt is cooled, reaching 

through the apparent eutectic temperature as curve ES shown in Fig.3, the quasi-eutectic 

structure occurs. In this case the silicon particles could act as the nucleus of eutectic, 

promoting the growth of eutectic structure.  

As well known, whether the eutectic silicon grows in modified manner is attributed to the 

undercooling in solidification of alloy. This phenomenon is related with the entropy of 

melting and crystallographic structure as reported by A. Jackson in 1958 [62]. This 

relationship can be expressed as:      

  ( ) ( )S V S / R  N / Nα = Δ  (3) 

where α is Jackson criterion; ΔS is entropy of melting; R is gas constant;  NS and NV are the 

number of an atom’s nearest neighbors on the surface and within the body of a crystal. If α 
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is less than 2 cal/°C, crystal grows isotropically with an atomically rough interface. By 

contrast, if α is greater than 2, crystal is faceted with an atomically smooth surface. It is very 

interesting that for silicon the Jackson criterion for principal crystallographic planes varies in 

range from 0.89 for (110) plane to 1.87 for (100) plane, to 2.67 for (111) plane. Thus silicon 

crystal is a borderline material, of which the growth mode can easily change from faceted to 

non-faceted when the undercooling increases [63]. The variety in undercooling, which is 

induced by cooling rate during freezing or impurity element or others, will significantly 

cause the change in morphology of silicon either eutectic or primary. Generally speaking, 

for hypoeutectic or near eutectic DEASAs undercooling of 5°C is considered as a critical 

value to change the growth mode of silicon(Fig.18). Recently H.S.Kang et al [64] reported 

that the critical undercooling is a linear function of silicon content. For the higher silicon 

content an increased undercooling is required to change the morphology of eutectic silicon 

phase. They revealed that for Al-13%Si alloy at undercooling of 14°C the eutectic silicon 

morphology changes from flake to fibrous shape. However, for hypereutectic Al-20%Si alloy 

an increase in undercooling to 73°C is required. The different critical undercooling reported 

in literatures is thought to be associated with the different structure in liquid state. In 

current study DEASA melt is homogeneous, but the melt heating treated at 720°C in study 

by Kang is microheterogeneous, for which a deep undercooling /high cooling rate is needed 

to achieve the modified eutectic structure as evidenced in study[23].  

Other important variety in structural feature of DEASAs is that iron-rich phase appears in 

fine flaky form instead of needle-like shape in the center of ingot containing iron 

concentration of 0.25% as shown in Fig.19. It is interesting that as Fe-level is more than 0.5% 

in EZL102 ingot the morphology of Fe-bearing precipitate also remain unchanged as shown 

in Fig.5. That is also attributed to effect of superheating the melt in electrolysis pot on the 

crystallization of iron-rich composition as reported in reference [33,34].  

 

 

 
 

Figure 19. Fine flaky iron-rich phase indicated by arrow 2 appears in DEASA (EZL108) containing iron 

level of 0.25%. 
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3.2. Primary α-Al phase 

Primary α-Al phase is an important phase constituent, of which the volume fraction, grain 

size and morphology, dendrite arm space (DAS) and alloying element greatly affect the 

mechanical and foundry properties of hypoeutectic Al-Si alloys[65,66]. In DEASAs either 

eutectic such as EZL102, EZL108 and EZL109 or hypoeutectic such as EZL101, the volume 

proportion of primary α-Al dendrite is higher than unmodified Al-7%Si alloy (ZL101) 

(Fig.20), and with increasing silicon content the volume percentage of Al-phase decreases. 

Undoubtedly, the increase of primary α-Al dendrite greatly affects the properties of eutectic 

DEASA castings.  

 

Figure 20. Volume fraction of α-Al dendrite in commercial and electrolytic Al-Si alloys. 

 

Figure 21. Volume percentage of α-Al dendrite in DEASA against the remelting. 

The volume percentage of α-Al dendrite in the edge area of EZL109 ingot, where the cooling 

rate is much higher than bottom or top, is more or less larger than other areas (Fig.20). In 

addition, the volume proportion of aluminum dendrite decreases with remelting, which 

causes a decrease in undercooling in freezing (fig.18). After 3 or 4-fold remelting the volume 

percentage recovers to the value estimated from equilibrium Al-Si phase diagram (Fig.21) 

accompanying with an unmodified silicon structure. Apparently, the volume fraction of α-
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Al dendrite is a function of undercooling, which can be clarified using Al-Si quasi-diagram 

(Fig.3).  

  

Figure 22. Volume percentage of α-Al dendrite in DEASA is a function of undercooling in freezing.  

The fact that undercooling shifts the eutectic content toward to higher level during freezing 

and depresses the eutectic temperature, leading to an increase in temperature interval, in 

which the primary aluminum phase precipitates from melt, and, thus, the volume fraction of 

Al-phase is increased. Curve EP (Fig.3) represents the relation between undercooling and 

silicon content solved in Al-matrix. Therefore, we are able to estimate the volume fraction of 

α-Al dendrite in terms of undercooling in our tests (Fig.22). It is interesting that the volume 

fraction of α-Al dendrite measured in our study is much higher than the value calculated in 

terms of curve EP. By combining the successful achievement of quasi-eutectic structure in 

EZL16 with undercooling of 9°C, which is much smaller than the critical undercooling of 20°

C shown on curve ES to obtain quasi-eutectic for commercial Al-16Si alloy (Fig.3), it is 

reasonably postulated that the region of formation of quasi-eutectic structure in DEASA 

moves toward higher silicon content and smaller undercooling due to the homogeneous 

DEASA melt.     

 

Figure 23. DAS of α-Al dendrite in DEASA and commercial ZL101(A356) ingot . 
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Dendrite arm space (DAS) is an important crystallographic feature in primary Al-phase, 

greatly affecting the mechanical properties of hypoeutetic Al-Si alloys. The DAS, which is 

not related in any way to the volume percentage of Al-dendrite, can be varied 

considerably by cooling rate. As far back as the 1960s it has been found that for 

commercial Al-Si alloy castings with cooling rate in range of 10-1-102 °C/sec such as cast in 

sand and in a metal mould, and continuous castings the DAS value is a function of 

cooling rate as follows [67]: 

 nd A·V−
=  (4) 

where d is DAS (µm), R is the cooling rate (°C/sec), A is related to the chemical composition 

and n=1/3-1/2.  

In electrolytic EZL101ingot having 7% Si content the primary Al-dendrite displays the 

smaller DAS value than commercial Sr-modified ZL101 ingot as seen in Fig.23. Meanwhile 

the DAS decreases with silicon content. After 2 or 3-fold remelting DAS value doesn’t 

change, if any. That is related with the same cooling rate in freezing of those samples [67].  

Summarizing the structural characteristics of DEASAs we reach the conclusion that the 

electrolytic alloy castings either hypoeutectic or eutectic or hypereutectic exhibit very fine 

eutectic silicon grain with high volume fraction of α-Al dendrite, small DSA and small 

curved iron-bearing compound compared to commercial alloy. It is an advance superiority 

of DEASA over existing alloy for producing the high quality casting with excellent usage 

properties. 

 

Figure 24. DAS in DEASA (EZL109) against remelting.  

4. Technological parameters influencing self-modification in DEASA 

castings  

In foundry several technological parameters including amount of DEASA ingot in metallic 

charge, furnace temperature and holding time, remelting and level of modifier added into 
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melts, significantly affect the microstructure of castings and its mechanical properties. To 

optimize those parameters is an important event for producing high quality cast product 

with low cost. 

In this chapter we have discussed the structural heredity of alloys upon remelting. It is 

concluded that remelting a fine metal easily produced a fine casting compared to a coarse 

metal at the same condition [68]. Experimental results demonstrated that at least 10% of a 

fine Al-Si ingot is required to achieve a casting with fine silicon grain [69]. Therefore, 

amount of DEASA ingot added in metal charge is an important factor for producing a 

casting with the fully modified microstructure. 

In our test the metallic charge is composed of EZL101 ingot (Table 1.), pure aluminum ingot 

and Al-20%Si along with other master alloy additions. No modifier is added in melt. The 

percentage of DEASA ingot in metallic charge ranges from 10 to 50%. Table 3. lists the 

chemical analysis of alloys tested. Note that with either the holding time in furnace or 

remelting the strontium content is unchanged and much less than the critical level (0.004%) 

to create a modified eutectic in Al-Si alloys [70, 71]. Thus, the change in microstructure is 

associated with the amount of DEASA ingot used rather than strontium content in alloy. 

 

Alloy 

Amount 

of 

DEASA 

Number 

of 

remelting

Holding 

time 

(min) 

Chemical Analysis  wt% 

 (%)   Si Mg Ti Fe Cu Mn Zn Ni Sr 

EA50-0* 50 0 10 7.33 0.21 0.11 0.21 <0.01 0.01 0.003 0.016 0.0011 

   10 7.08 0.41 0.19 0.27 <0.01 0.006 0.012 0.007 0.0012 

EA30-0 30 0 120 6.90 0.34 0.17 0.30 <0.01 0.007 0.012 0.006 0.0013 

   240 6.98 0.30 0.17 0.25 <0.01 0.007 0.012 0.006 0.0012 

EA30-2  2 120 7.00 0.25 0.21 0.26 <0.01 0.006 0.012 0.009 0.0011 

   10 6.71 0.39 0.053 0.25 <0.01 0.009 0.015 0.038 0.0016 

EA10-0 10 0 120 6.84 0.28 0.050 0.25 <0.01 0.009 0.015 0.006 0.0016 

   240 6.50 0.28 0.048 0.25 <0.01 0.009 0.015 0.006 0.0014 

EA10-2  2 10 6.69 0.32 0.047 0.26 <0.01 0.006 0.013 - 0.0012 

E: electrolytic; A: Al-Si alloy; 50: 50% of DEASA in charge; 0: no remelting. 

Table 3. Technological parameters and chemical analysis of DEASA alloys wt% 

When 10% of metallic charge is DEASA silicon crystals grow in modified manner in as-cast 

microstructure of EA10-0 alloy, but a few silicon flakes can be found (Fig.25). However, 

increasing the amount of DEASA to 30% (EA30-0) or more (EA50-0) results in a fully 
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modified microstructure as seen in Fig.26. It would be expected that the self-modified silicon 

crystal in DEASA acts as a modifier for the commercial Al-Si alloy. Like Na, Sr and other 

modifiers there is a critical amount of DEASA, below which the eutectic is not modifiable. 

For ZL101(A356) alloy 30% DEASA ingot in metallic charge is needed to obtain a full 

modified microstructure. Obviously, the higher the amount of DEASA used in charge, the 

stronger the trend to modification in alloy. Note that there is no overmodification with 

increasing the amount of DEASA ingot. It is a superior characteristic of DEASA castings to 

existing Al-Si alloy. 

 

 

Figure 25. Modified microstructure of EA10-0 alloy with 10% of DEASA ingot in metallic charge and 

holding time of 10min.. Some silicon flake can be found.    Optical 

 

 

Figure 26. Optical microstructure of EA30-0  alloy with 30% of DEASA ingot in metallic charge and 

holding time of 10min, indicating a completely modified eutectic silicon.. 

Self-modified structure in EZL101(A356) alloys with either 10% or 30% of DEASA (EA10-0 

and EA30-0) ingot strongly depends upon remelting and furnace holding time. When 

furnace holding time at 720°C is about 120min, both EA10-0 and EA30-0 alloys are subjected 
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to partial structural fading as shown in Figs.27 and 28. Our test results reveal that for both 

alloys the inheritance of modified structure can be survived after first remelting. However, 

upon 2-fold remelting EA10-2 with 10% DEASA is subjected to partially fading in modified 

structure (Fig.29). As amount of DEASA increases to 30% (EA30-2), the modified structure 

can be maintained upon 2-fold remelting with holding time of 2 hrs, as shown in Fig.30, but 

when the holding time excesses 2 hours, some silicon flakes can be found.  

 

Figure 27. Optical micrograph of EA10-2 with 10% of DEASA ingot and holding time of 2hr at 720°C, 

indicating the unmodified structure.  

In general, in foundries casting must be done within two hours after degassing aluminum 

melts in furnace. It is evident that strengthening the modification of DEASA alloys is needed 

for producing high quality castings. Below we will discuss the effect of small amount of 

strontium added into the molten alloy on the modified structure after different holding 

time. Table 4. lists the chemical analysis of Sr-modified DEASAs in tests.  

 

Alloy 
Amount of 

DEASA.%

Holding 

time. min
Chemical Analysis wt% 

   Si Mg Cu Mn Fe Ti Cr Ni Zn Sr 

  10 7.08 0.43 0.03 0.006 0.29 0.064 <0.00 — 0.014 0.003 

SEA10* 10% 120 6.84 0.28 0.04 0.009 0.35 0.088 0.004 0.006 0.015 0.002 

  240 6.95 0.30 0.04 0.015 0.33 0.070 0.004 0.008 0.017 0.002 

  10 6.81 0.39 0.032 0.007 0.36 0.16 0.002 0.004 0.012 0.003 

SEA30 30% 120 6.66 0.34 0.032 0.007 0.35 0.17 0.002 0.006 0.012 0.002 

  240 6.50 0.32 0.033 0.007 0.35 0.17 0.002 0.003 0.012 0.002 

*S: Sr-modification; E: electrolytic; A: Al-Si alloy; 10: 10% of DEASA in charge. 

Table 4. Chemical analysis of EZL101 alloys tested  
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Figure 28. Micrograph of EA30-2 with 30% of DEASA ingot and holding time of 2hr at 720°C, 

indicating the unmodified structure.  Optical 

 

Figure 29. Optical micrograph of EA10-2 with 10% of DEASA ingot upon 2-fold remelting, indicating 

the partial fading of modified structure. 

 

Figure 30. Micrograph of EA30-2 with 30% of DEASA ingot upon 2-fold remelting and holding time of 

2 hrs, showing the modified structure. Optical. 
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Note that after adding Al-10%Sr master alloy into melts the level of Sr in alloys increases to 

about 0.003%, which is less than in commercial Sr-modified alloys, resulting in a fully 

modified structure in either SEA10 or SEA30 alloy (Fig.31). It is important that when 

holding time is four hours, in microstructure of SEA10 alloy some flaky silicon crystal can be 

found, but for SEA30 alloy the modification fading occurs in some degree as seen in Fig.32. 

Later is sufficient to meet the requirement in foundry. 30% of DEASA used in charge with 

0.002-0.003% of Sr-level in alloy are necessary to produce high-quality Al-Si alloy. The 

process, in which the low level of strontium addition promotes a fully modified structure, is 

an advance advantage of DEASAs over Sr- or Na-modified Al-Si alloys.  

 

Figure 31. Micrograph of SEA30 alloy after furnace holding of 10min, showing the modified structure 

Optical. 

 

Figure 32. Partial modified microstructure of SEA30 alloy after furnace holding of 4hr at 720°C. Optical 

5. High-quality automotive wheels made from DEASA 

The wheel is an important part of a vehicle in terms of safety. The impact strength and 

fatigue life are on the top of the quality list of wheel characteristics. Al-7Si-0.3Mg 

alloy(A356), due to higher impact resistance and fatigue life, good castability and 
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machinability, is a preferred choice to produce quality wheel. A lot of studies have 

demonstrated that the mechanical properties of A356 alloys are strongly affected by 

morphologies of eutectic silicon, iron content and porosity dispersed in castings, which is 

associated with the impurity modification and hydrogen level [71, 72]. For producing the 

quality wheel with higher impact resistance the maximum allowable iron level is limited to 

0.20%. As mentioned above, DEASAs exhibit the excellent modified structure with a low 

level of modifier such as Sr, accompanying with the stringy Fe-rich precipitate of small size 

(Fig.19). Thus, the wheel made from DEASAs might be porous-free, resulting in higher 

impact resistance, ductility and tensile strength. At the end of last century we have 

examined the mechanical properties of wheel made from DEASA ingot (ES9, Tab.1) in the 

foundry [14].  

A 600kg crucible was used to prepare the melts in an electric furnace. The metallic charge 

consisted of pure aluminum ingot, clean scrap of A356 alloy, other master alloy and DEASA 

(ES9) ingot pieces, of which the amount was a third of charge. Each melt was degassed with 

N2 at temperature of 710°C. After degassing and holding for 15min, a small amount of Al-

10%Sr master alloy was added into the melt to obtain Sr level in alloy below the critical 

value of 0.003%. Then the prepared melts were poured into a permanent mold to produce 

wheel casting and Y-shape plate castings with dimension of 22×150×220mm3. Finally, the 

castings were heat treated to a T6 temper by solution at 535°C for 4 hrs, water quenching, 

and aging at 135°C for 6 hours. Table 5. lists the chemical analysis of DEASA (ES9) and 

EZL101 alloys, which have the different iron level, near or above the allowable value of 

0.20% for wheel casting in order to clarify the effect of Fe-rich precipite on the mechanical 

properties of DEASA wheels.  

 

Alloy Si Mg Ti Fe Cu Mn Zn Sr RE 

E S9 
9.20-

9.60 
<0.01 

0.40-

0,60 

0.44-

0.65 
<0.02 0.005 0.03 0.001-0.004 0.03 

EZL101-17 
6.63-

6.80 
0.28-0.30 0.12 

0.16-

0.17 
0.03 0.1 0.01 

0.0016-

0.0024 
— 

EZL101-21 
6.50-

7.00 
0.24-0.27 0.10 

0.19-

0.22 
0.03 0.01 0.01 

0.0022-

0.0030 
— 

EZl01-27 
6.90-

7.30 
0.28-0.30 0.10 

0.26-

0.27 
0.03 0.008 0.01 

0.0031-

0.0034 
— 

ZL101(A356) 6.90 0.30 0.12 
0.10-

0.13 
0,02 0.01 0.01 

0.0060-

0.0080 
0.0005 

Table 5. Chemical analysis of DEASAs for wheel tested  wt% 

Table 6. lists the mechanical properties of conventional (ZL101A) and electrolytic Al-7Si-Mg 

alloy (EZL101). As iron content is less than or near the maximum allowable limit of 0.20%, 

the superiority of DEASAs over existing alloy is very evident. DEASA alloys offer the 

mechanical properties higher than existing alloy (ZL101A) with lower iron content of 0.12%. 

As increasing Fe-level from 0.21 to 0.27% there is a slight tendency to decrease the 
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mechanical indexes. But the tensile strength remains to be higher than conventional alloy 

(ZL101A), the elongation and impact strength are lower than existing alloy.  

 

Alloy 
Fe content

wt% 

Tensile strength

MPa  

Elongation

% 

Impact strength

J/cm2 

 

 

Hardness 

HB 

ZL101A 0.12 (213-238)/225  (7-16)/12 (15-52)/32  (76-80)/78 

EZL101 

0.16 (217-260)/239  (7-18)/13 (31-52)/37  (74-80)/76 

0.21 (211-241)/231  (11-20)/14 (28-52)/38  (75-85)/79 

0.27 (218-240)/232  (7-10)/8 (16-52)/29  (70-85)/79 

Note: ①Test samples are cut from Y-shape plate castings with dimension of 22×150×220mm3 

②(Range of data)/Average data. 

③Averaged data obtained from 4 Y-shape plate castings poured after holding time of 10 and 90min in furnace, 

respectively. 

Table 6. Mechanical properties of conventional and electrolytic Al-Si alloys with different Fe-level  

Wheel impact strength test is carried out at wheel shock testing apparatus (Fig.33). In 

general, the critical impact strength for automobile wheel is 230mm (height) ×6000kN 

(weight) at 13degree of inclination. In production some 50% of the wheels made from ZL101 

(A356) alloy exceed this minimum requirement by 10-20%. Addition of DEASA in charge 

exerts a significant improvement on the shock resistance. Testing results demonstrate that the 

wheels made of DEASA with different iron level offer the impact value exceeding 256mm×

6000kN at 13degree of inclination, and most of them are higher than 276mm×6000kN,which 

exceeds the critical requirement by 20%. Moreover, in the extreme test at 30 degree of 

declination two third of DEASA wheels tested exceed the shock resistance of 230mm×1010kN. 

However, none of wheel made from ZL101(A356) could pass this limit.  

 

Figure 33. Schematic drawing of wheel shock testing apparatus 
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Fig.34 shows the wheel fatigue test apparatus, which uses torque of 3000N-M for loading 

with rotating speed of 1500rpm of shift. For wheel of 14 or 15 inches diameter the design 

fatigue lifetime, which is expressed in terms of the number of cycles-to–failure, is 105 cycles. 

Usually the lifetime for wheel made of ZL101(A356) ranges from 0.4 to 2.0×105 cycles. Some 

of them are not capable of exceeding the minimum lifetime. However, experimental data 

show that the dramatic improvement in impact resistance on DEASAs stated above is also 

evident in fatigue strength. DEASA wheels with iron content exceeding the allowable limit 

of 0.20% exhibit higher fatigue lifetime exceeding 2.0×105 cycles, except for E356-27 with 

higher iron content of 0.27% that has fatigue lifetime of 1.5×105 cycles.  

 

Figure 34. Schematic diagram of wheel fatigue testing apparatus 

Summarizing the experimental results it is reasonable to conclude that as iron content 

exceeds the maximum allowable limit of iron level of 0.20% in some degree, for example, 

reaching 0.27%, the mechanical properties of DEASAs, especially impact strength and 

fatigue resistance, significantly are improved. Therefore, it is expected that the allowable 

iron content would be limited to more than 0.20%, which would save the cost of wheel. 

The reason why DEASA wheel containing different iron level exhibits an excellent impact 

strength and fatigue resistance compared to conventional alloy, is believed to be attributed 

to porosity, if the difference between morphologies of silicon crystals and Al-dendrites in 

DEASA and existing A356 is difficult to find in micrography of the wheel as demonstrated 

in Fig.35 and 36. Porosity is an undesirable feature of the cast structure because pores, either 

surface or internal, acting as stress raiser during loading, seriously degrade the mechanical 

properties [73-75]. This inference is strongly supported by leak test for wheel, revealing that 

all the DEASA wheels were leakproof, while 10% of ZL101 (A356) wheels were not. 

Moreover, visual inspection showed that no pinholes and microporosities could be found on 

the surface of DEASA wheels compared to common ZL101, implying that DEASA wheels 

exhibit much less porosity than existing alloy. Undoubtedly, the sound alloy made from 

DEASA has higher mechanical properties.  
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Figure 35. Opitical microstructure of hub in wheel made from DEASA EZL101-17(Table 6.) heat-treated 

by T6   

The origin of porosity is associated with two important, if not primary important, factors for 

Al-Si alloy in given casting condition, i.e. hydrogen dissolved in melt and amount of 

strontium or sodium added in molten alloy as modifier [71,76,77]. High hydrogen level 

causes an increase in porosity, resulting in decrease in mechanical properties [72-75]. 

Strontium or sodium increases the tendency to porosity of alloy [71]. In our study due to 

self-modification in DEASA ingot much less amount of modifier is required to be added into 

the DEASA molten alloy. Therefore, the tendency to porosity becomes weakened and sound 

castings are more easily obtained, resulting in higher impact resistance and fatigue strength 

in DEASA wheel.  

 

Figure 36. Microstructure of hub in wheel made of commercial A356 alloy heat treated by T6    Optical 

Until now a few studies have been done on the behavior of hydrogen in aluminum in 

electrolytic process [78]. In electrolytic pot the surface of aluminum melt is usually crusted 

over by fused cryolite, acting as an insulator to isolate the liquid from the atmosphere and 

protecting melt from hydrogen pick-up. In this case the hydrogen level is very low. Prodhan 

[47] studied the behavior of hydrogen in Al-Si alloy during solidification under electric field, 
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indicating that the hydrogen level can be decreased from 2.5ppm to 1.7ppm. This is within 

the acceptable limit of pore-free castings [47]. It would be expected that in electrolytic 

process the hydrogen in Al-Si alloy melt can be removed under electric field. Undoubtedly, 

the decreased hydrogen level in DEASAs strongly weakens the trend to porosity, enhancing 

the impact resistance and fatigue strength. It is evident that the electrolytic process would be 

a powerful mean to reduce the hydrogen level in alloy.  

6. Conclusion 

1. DEASAs either hypoeutectic or eutectic display self-modified structure in ingot with 

excellent structural inheritance upon remelting. DEASA is self-undercooled alloy.  

2. Hypereutectic DEASAs with silicon in range from 13% to 17% exhibit completely self-

modified eutectic structure, but are subjected to fully fading upon remelting due to 

disappearance of undercooling in freezing. 

3. DEASAs have high volume of α-Al dendrite that is associated with the high 

undercooling in freezing. 

4. DEASAs are insensitive to cooling rate in freezing. 

5. Iron-bearing precipitate in DEASAs appears in small curved shape as iron level 

increases to near 0.5%. 

6. 30% DEASA ingot in metallic charge with added Sr-level of 0.002-0.003% is necessary to 

produce high quality Al-Si casting with self-modified structure.  

7. Automobile wheel made of DEASA display high impact resistance and fracture 

strength that is associated to small amount of Sr-modifier added into melt, low 

hydrogen concentration and small curved shape of iron-rich compound. 

8. Electrolysis is a potential measure to produce high quality Al-Si casting.   
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