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1. Introduction 

The neuro-computing approaches based on Hopfield model were successfully applied to 

various combinatorial optimization problems such as the traveling salesman problem [1-3], 

scheduling problem [4], mapping problem [5], knapsack problem [6,7], communication 

routing problem [8], graph partitioning problem [2,9,10], graph layout problem [11], circuit 

partitioning problem [12,13]. 

MFA, as a neuro-computing technique, is applied for solving combinatorial optimization 

problems [1,2,4-8,10,13] , cell placement problem [14].  

MFA combines the annealing notion of SA approach with the collective computation 

property of Hopfield neural networks to obtain optimal solution for np-hard problems. 

We begin our study with the review of basic concepts of MFA techniques and describe the 

applied use of this technique to solve the problems in high speed Integrated Circuits (IC) 

design and in addition we applied a modified MFA algorithm to solve VLSI relocation 

problem [15]. 

1.1. Annealing 

Annealing is a mechanical process in which material is slowly cooled allowing the 

molecules to arrange themselves in such a way that the material is less strained thereby 

making it more stable. 

If materials such as glass or metal are cooled too quickly its constituent molecules will be 

under high stress lending it to failure (breaking) if further thermal or physical shocks are 

encountered. Slowing the cooling of the material allows each molecule to move into a place 

it feels most comfortable, i.e., less stress. 
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Figure 1. Molecules movement at the cooling process 

As the material is kept at a high temperature the molecules are able to move around quite 

freely thus reducing stress on a large scale, indeed if the material is made too hot it will 

move into the liquid state allowing free movement of the molecules. As the material is 

cooled the molecules are not able to move around as freely but still move limited distances 

reducing stress in regional areas. The result is a material with significantly less internal 

stress and resistant to failure due to external shock. 

The statistic mechanic is a domain in physics that describes the process of slow cooling of 

Hamiltonian Ising for particles or spins with high degree of freedom until they accede on 

their equilibrium states. The particles that are cooling, on solid state, provide a framework 

to characteristics improvisation of intricate and large systems. Now this idea is stated inside 

optimization algorithms to resolve various cases of problems. 

1.2. Hopfield Neural Network (HNN) 

The Hopfield Network is a fully connected network of simple processing units, Vi , with 

numerically weighted symmetric connections, Tij, between units Vi and Vj. processing units 

have states (either discrete in {0, 1}, or continuous in [0, 1] depending on whether the 

discrete or the continuous version of the network is being considered). Each processing unit 

performs simple and identical computations which generally involve summing weighted 

inputs to unit, applying an internal transfer function, and changing state if necessary. The 

power of the Hopfield model lies in the connections between units and the weights of these 

connections [16]. An Energy function was defined by Hopfield on the states of the network 

(values of all units). The energy function, E, in its simplest form is: 

ܧ  = 	− ଵଶ∑ ∑ ௜ܶ௝ ௝ܸ ௜ܸ +	ே௝ୀଵே௜ୀଵ ∑ ௜ܸܫ௜ே௜ୀଵ  (1) 

Where ௜ܸ denotes the current state (value) of the ith neuron and ܫ௜ denotes its bias. Hopfield 

utilized the fact that the ܧ(௏೔→ ) is a Liapunov function (bounded from below) to show that, 

from any starting state, the network would always converge to some energy function 

minimum upon applying a sequence of asynchronous local state updates (that locally 

reduce energy). 

To solve any particular problem, first a decision must be made on how to set the network 

parameters T and I, so that minimization of the problem objective function and enforces 

High Temperature Movements Thermal Equilibrium 
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satisfaction of the problem constraints; this process is termed ‘mapping’ the problem onto 

the network. Hopfield gives the motion equation of the ith neuron: 

 
ௗ௎೔ௗ௧ =	௎೔ఛ −	డா(ೇ೔→ )డ௏೔ , ௜ܷ =	 డாಹ(ೇ೔→ )డ௏೔  (2) 

Where E is energy function in term of ௜ܸ and	ܧு is Hopfield term of energy function. Totally 

Eq. 2.is motion (updating) equation of state of neurons and its output is ௜ܷ.Usually a simple 

nondecreasing monatomic output function in term of ௜ܷ like ݃( ௜ܷ) is applied torelate ௜ܷ to 

the states. Typically this function is a step function or a hyperbolic tangent function. ߬ is a 

constant number as the weighting factor of ௜ܷ.Thereforea Hopfield Neural Network 

minimizes a cost function that is encoded with its weights by implementation of gradient 

descent. For more details see [16] 

2. MFA technique 

As it mentioned before, MFA merges collective computation and annealing properties of 

Hopfield neural Networks and SA, respectively, to obtain a general algorithm for solving 

combinatorial optimization problems. MFA can be used for solving a combinatorial 

optimization problem by choosing a representation scheme in which the final states of the 

discrete variables (spins or neurons) can be decoded as a solution to the problem. In fact the 

space of problem is mapped to the space of MFA variables (spins) and there will be a one-to-

one relation between two spaces. This is called encoding. Then, an energy function is 

formulated in term of spins with a structure that is based on essence of problem whose 

global minimum value corresponds to an optimum solution of the problem. MFA is 

expected to compute the optimum solution to the target problem, starting from a randomly 

chosen initial state, by minimizing this energy function. Steps of applying MFA technique to 

a problem can be summarized as follows: 

1. Choose a representation plan which encodes the configuration space of the target 

optimization problem using spins. In order to get a good performance, number of 

possible configurations in the problem domain and the spin domain must be equal. 

That means there must be a one-to-one mapping between the configurations of spins 

and the problem. 

2. Formulate the cost function of the problem in terms of spins to derive the energy 

function of the system. Global minimum of the energy function should correspond to 

the global minimum of the cost function. 

3. Derive the mean field theory equations using formulated energy function. Derive 

equations are used for updating averages (expected values) of spins. 

4. cooling schedule 

5. Set suitable parameters of the energy function and the cooling schedule to obtain 

efficient algorithm. 

These main steps are same for various types of optimization problems and are explained at 

the following sections. 
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2.1. Encoding 

The MFA algorithm is derived by analogy to Ising and Potts models which are used to 

estimate the state of a system of particles, called spins, in thermal equilibrium. In Ising 

model, spins can be in one of the two states represented by0 and 1, whereas in Potts model 

they can be in one of the K states and the configuration of the problem determines which 

one has to be used. 

For K-state Potts model with nS spins, the states of spins are represented using nS K-

dimensional vectors. 

 Si= [Si1,… ,Sik, … , SiK] for 1≤ i ≤ nS (3) 

Just one of the components of Si is 1 and the others are 0. That means ith spin must be at one 

of the K- states. 

 ∑ ௜ܵ௞ = 1	ݎ݋݂	1  i  nௌ௄௞ୀଵ  (4) 

For encoding of VLSI circuit design problem, for example, each spin vector corresponds to a 

cell in the circuit or a module in the placement. Hence, number of spin vectors is equal to the 

number of cells or modules; nC. Dimension K of the spin vectors is equal to the number of 

empty part of overall circuit space or empty spaces of the placement. That means we can 

divide the circuit space (chip area or die surface)to K parts and fill every part just by one and 

only one of the circuit elements [12, 13]. Therefore when a spin is assigned in kth state that 

means its corresponding cell or module (circuit element) is placed on kth space or part of 

circuit or placement. 

2.2. Energy function formulation 

In the MFA algorithm, the aim is to find the spin values minimizing the energy function of 

the system. In order to achieve this goal, the average (expected) value Vi = <Si> of each spin 

vector Si is computed and iteratively updated until the system stabilizes at some fixed point. 

Vi = < Si> for 1  i  nC and Vi =[vi1, … , vik , … viK] So: 

 [vi1, … ,vik , … viK]= [< Si1> , … . <Sik> , … , <SiK>] for1  i  nC (5) 

vik is probability of finding spin i at state k and can take any real value between 0 and 1. 

When the system is stabilized, vik values are expected to converge to 0 or 1.As the system is a 

Potts glass we have the following constraint: 

 ∑ ௜௞ݒ = 1	ݎ݋݂	1  i  n஼௄௞ୀଵ  (6) 

This constraint guarantees that each Potts spin Si is in one of the K states at a time, and each 

cell is assigned to only one position for encoded configuration of the problem. In order to 

construct an energy function it is helpful to associate the following meaning to the values ݒ௜௞, for example: 
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௜௞ݒ  = ܲሼspin	݅	is	in	position	݇ሽ	݂ݎ݋	1  i  n஼ 	, 1  k  K(P{} is probability function) (7) ݒ௜௞is the probability of finding spin i at state k. If	ݒ௜௞ =1, then spin i is in state k and the 

corresponding configuration is Vi = Si.  

Locating spin i at stat k relevant to type of target problem has some costs and actually 

energy function calculates these costs. Example given, for circuit partitioning problem, 

utilizing the interconnection cost and the wire-length cost for VLSI placement problem are 

common cost functions and are used to formulating energy function of these target 

problems [12-14]. 

The interconnection cost is represented by Ec that for the circuit is total length of internal 

connections between circuit components or the cost of the connections among the circuit 

partitions. It is clear that if all of the circuit elements are located in one place and overlaps 

together, the interconnection cost (total wire length) becomes 0 and it is not acceptable. This 

is what we mean illogical minimization of interconnection cost energy function. So another 

term of the energy function must be applied for penalizing illogical minimization of first 

cost function. This term is represented by Ep. For example, this term is imbalanced 

partitioning for circuit partitioning problem and overlap between modules for VLSI 

placement problem [13, 14].The total energy function, Et, is sum of both terms: 

௧ܧ  ௖ܧ	= + 	ߙ	  ௣ (8)ܧ	×

Where α parameter is introduced to maintain a balance between the two opposite terms of 

total energy function. 

2.3. Derivation of the mean field theory equations 

Mean field theory equations, needed to minimize the total energy function Et, can be 

derived as follow: 

 ߶௜௞ = − డா(௏)డ௩೔ೖ  (9) 

The quantity	߶௜௞ represents the kth element of the mean field vector effecting on spin i. Using 

the mean field values, average spin values, vik, can be updated. 

௜௞ݒ  = ௘ഝ೔ೖ/೅∑ ௘ഝ೔೙/೅೙಼సభ for1   i  nC , 1   k  K (10) 

Where T is the temperature parameter which is used the relax the system iteratively and is 

managed with a cooling schedule program. 

2.4. Energy difference and cooling schedule 

A teach iteration of algorithm, the mean field vector effecting on a randomly selected spin is 

computed. Then, spin average vector is updated. This process is repeated for a random 

sequence of spins until the system is stabilized for the current temperature. The system is 



 

Simulated Annealing – Single and Multiple Objective Problems 8 

observed after each spin vector update in order to detect the convergence to an equilibrium 

state for a given temperature. 

If the total energy does not decrease in most of the successive spin vector updates, this 

means that the system is stabilized for that temperature. Then, Tis decreased according to 

the cooling schedule by a decreasing factor and the iterative process restarted again with 

new temperature. To reduce the complexity of energy difference computation an efficient 

scheme could be used. 

 Δܧ௜௞ =	߶௜௞	Δݒ௜௞	݋ݏ	Δܧ = ∑ ߶௜௞	Δݒ௜௞௄௞ୀଵ where	Δݒ௜௞ = (ݓ݁݊)௜௞ݒ −  (11) (݈݀݋)	௜௞ݒ

Depending to complexity of problem, the cooling program could be in one stage or more 

stages in order to reach faster and better result. In some problems like circuit partitioning 

problem the applied cooling schedule is simply in one stage (ݐ௙ is decreasing factor): 

 ௡ܶ௘௪ =	 ௢ܶ௟ௗ ௙ݐ	× 0	ݎ݋݂	 < ௙ݐ < 1 (12) 

Actually cooling schedule controls amount of acceptable cost increasing moves and the 

efficiency of the algorithm. Clearly for very large temperatures almost any change will be 

accepted while as the temperature is reduced the chance that a positive cost change will also 

be accepted is reduced. 

2.5. Total MFA algorithm 

The total format of MFA for various kind of problem is represented as: 

 

1. Get the initial temperature T0, and set T = T0 

2. Initialize the spin averages V=[v11,…, vik,…,ݒ௡಴௄ ] 

3. While temperature T is in the cooling range DO: 

3.1. While E is decreasing DO: 

3.1.1. Select the ith spin randomly. 

3.1.2. Compute mean field vector corresponding to the ith spin: ߶௜௞ = − డா(௏)డ௩೔ೖ  

3.1.3. Compute the summation: ∑ ݁థ೔೙/்௄௡ୀଵ  

3.1.4. Compute new spin average vector: ݒ௜௞(݊݁ݓ) = ݁థ೔ೖ/்/∑ ݁థ೔೗/்௄௟ୀଵ  

3.1.5. Compute new spin average vector: Δܧ = ∑ ߶௜௞	(ݒ௜௞(݊݁ݓ) − ௜௞)௄௞ୀଵݒ  

3.1.6. Update the spin average vector: ݒ௜௞(݊݁ݓ) =  ௜௞ݒ

3.2. Decrease the temperature: ܶ = 	ܶ  ௙ݐ	×

Inside the algorithm some notes must be considered. Selection of initial temperatures is 

crucial for obtaining good quality solutions. Typically spin averages initialize with an equal 

values plus a small disturbing part that is randomly valued but this is not an eternal rule. 

Adding this disturbing part causes the spins exit their stable states and their movement 

starts. Selecting balance factors in energy function has important role for efficiency of the 

algorithm. 
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3. VLSI Relocation problem using MFA technique 

In modern VLSI physical design, Engineering Change Order (ECO) optimization methods 

are used to mitigate model placement problems such as hot spots and thermal dissipation 

that are identified at a given layout at post-routing analysis that is an evaluation stage after 

placement stage. The relocation problem is defined as adding an additional module to a 

model placement in order to solve problems at a manner that similarity of the resultant 

placement to the model placement is kept. 

Our presented MFA-based technique is modified form which was applied for cell placement 

problem in [14] by adding some considerations relating to particular characteristics of the 

local relocation problem. 

3.1. Cell placement problem 

Placement is the process of determining the locations of circuit devices on a die surface. 

ItisanimportantstageintheVLSIdesignflowbecauseitaffectsroutability, performance, heat 

distribution, and to a less extent, power consumption of a design.  

Traditionally, it is applied after the logic synthesis stage and before the routing stage. Since 

the advent of deep submicron process technology around mid-1990, interconnect delay, 

which is largely determined by placement, has become the dominating component of circuit 

delay. As a result, placement information is essential even in early design stages to achieve 

better circuit performance. 

The circuit is presented with a hyper-graph Ω(C, N), that consists of a set C representing the 

cells circuit, a cell weight function of the circuit, a hyper-edge set N representing the nets of 

the ߱௖௘௟௟: ܥ → ࣨ	and a net weight function ߱௡௘௧: ܰ → ࣨ where ࣨ represents the set of 

natural numbers. Space of circuit is a rectangular grid of clusters with P rows and Qcolumns 

where the cells will be placed. 

 
 

 

Figure 2. Cell location on spin space configuration 

As presented before in the K-state Potts model of S spins, the states of spins re represented 

using S K-dimensional vectors. To apply MFA technique for cell placement problem the 

circuit layout space is mapped to a grid space with P rows and Q columns. If the number of 
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cells be CL, the number of spins that encode the configuration of problem is CL (P × Q)-

dimensional Potts spins so there would be a total of |CL|×P×Q two-state variables. To 

decreasing the number of spins that encode the configuration of problem, they are separated 

to two types: row and column spins. Therefore there would be P row spins and Q column 

spins and totally |CL|× (P+Q) spins[14].For example for a circuit space with 2 rows and 3 

columns if the row spin vector of ith cell is ݒ௜௣௥ = ሾ0,1ሿ and its column spin vector is ݒ௜௤௖ =ሾ0,0,1ሿ that means this cell is located at second row and third column of configuration space 

as Fig. 2. 

3.1.1. Energy function formulation 

Energy function in the MFA algorithm corresponds to formulation of the cost function of the 

cell placement problem in terms of spins. Since the MFA algorithm iterates on the expected 

values of the spins, the expected value of the energy function is formulated. The gradient of 

the expected value of the energy function is used in the MFA algorithm to compute the new 

values to update spin vectors in order to minimize the energy function. The applied cost 

energy for this problem is routing cost energy that is calculated approximately. It is not 

feasible to calculate the exact routing length for two reasons. Firstly, a feasible placement is 

not available during the execution of some algorithms; secondly, the computation of the 

exact routing cost necessitates the execution of the global and the detailed routing phases 

which are as hard as the placement phase. Commonly used approximations are the semi-

perimeter method or Half Perimeter Wire Length (HPWL) method. 

Using the expected values of spins, the probability of existence of one or more cells of nth 

net in pth row and qth column is calculated and applying HPWL method routing length 

cost is obtained. Different weights for row and column routing length costs could be 

considered. 

If the routing cost is used as the only factor in the cost function, the optimum solution is 

mapping all cells of the circuit to one location in the layout. This placement will reduce the 

routing cost to zero but obviously it is not feasible. Hence, a term in the energy function is 

needed which will penalize the placements that put more than one cell to the same location. 

This term is called the overlap cost. This term is calculated by multiplying the probabilities 

of being ith and jth cells in same location. The total energy functionܧ௧, is: 

௧ܧ  ௩௥௖ܧ	= ௛௥௖ܧ	+ + 	ߚ	  ௢ (13)ܧ	×

where ܧ௩௥௖, ܧ௛௥௖ and ܧ௢ are vertical routing cost, horizontal routing cost and overlap cost 

respectively.The parameter ߚ is balance factor between routing and overlap cost functions. 

3.1.2. Half Perimeter Wire Length (HPWL) method 

A very simple and widely used cost function parameter is the interconnect wire length of a 

placement solution; this can be easily approximated using the bounding box method. This 

wire length estimation method draws a bounding box around all ports in a given net, half 
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the perimeter of this box is taken as the net’s interconnect length approximation. The half 

perimeter wire length (HPWL) estimation for minimally routed two and three port nets gives 

an exact value. 

3.2. Local relocation using MFA technique 

Our method executes local relocation on a model placement where an additional module is 

added to it for modification with minimum number of displacement. The model placement 

is a given placement of the circuit that needs modification. MFA based method resolves the 

problem in less time and hardware in compare to SA-based method. In addition, the 

runtime of solution is mostly independent of size and complexity of input model placement. 

Our proposed MFA algorithm is optimized by adding the ability of rotation of modules 

inside an energy function called permissible distances preservation energy that will be defined 

at section 3.2.6. This in turn allows more options in moving the engaged modules. Finally, a 

three-phase cooling process governs convergence of problem variables called neurons or 

spins.  

The relocation problem is formulated as follows: 

Input: A model placement including a set of modules and a net list or hypergraph 

representation of circuit, the additional module with its coordinates and the incident  

nets. 

Output: Local relocated placement 

Objective: Fast relocation with minimum number of displacements and more similarity  

Constraint: No overlap between modules and preservation of permissible distances 

There are four classified approaches to the problem of inserting an extra module into a 

model placement. 

i. The additional elements are inserted into unoccupied “whitespace” areas as much as 

possible. 

ii. Before additional logic elements are inserted, an effort is made to predict the amount of 

whitespace area required; this whitespace is distributed over the chip. If the prediction 

is accurate (or conservative), the added elements can be placed within the available 

space. 

iii. The third approach is to simply insert or resize the required logic elements, and begin 

the optimization process from scratch.  

iv. The fourth approach is to insert additional logic elements without considering  

overlaps. 

Our approach matched the fourth approach above. The MFA relocation algorithm removes 

overlaps by moving or rotating modules. Note that all of the movements and rotations must 

observe some permissible distances that will be explained in the following sections. 

Feasibility of problem depends on topology of placement and similarity. It is clear that 
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selecting a big part of model placement as the relocation range may cause a feasible solution 

but causes more unsimilarity.  

3.2.1. Local relocation algorithm 

The proposed relocation algorithm consists of two stages: 

i. Construction of MFA vectors and calculation of permissible distances from a proper 

relocation range around additional module. 

ii. Local Relocation with MFA 

At first stage, given the model placement and an additional module with its coordinates, the 

small area around the additional module is scanned to find proper range that has enough 

free space as the local relocation range, then necessary information that will be used at the 

second stage are extracted. At second stage, MFA algorithm starts to move or rotate some 

modules (movable modules) considering critical distances criteria using information of first 

stage. All of the seconcepts like movable modules, permissible distances and critical 

distances are defined at the following sections. 

3.2.2. Calculation of permissible distances and construction of MFA vectors 

The first stage of local relocation algorithm has to extract information of hypergraph 

representation of selected part of model placement as inputs of second stage, such as P, Q 

and sets C and N and MFA input vectors. The selected part of model placement is called the 

local relocation range and must has enough free space or dead space for inserting an extra 

module. 

Selecting size and position of relocation rang depends on size of additional module and 

desirable similarity between model placement and relocated placement. It is clear that 

selecting bigger part of a model placement as a relocation range may cause more 

unsimilarity. So, this algorithm seeks around additional module in different directions 

considering relocation range limitation to find desirable range. 

After relocation range determination, its underlying modules are classified into two  

groups: 

First group includes modules that are completely inside the relocation range and are movable 

modules. Second group consists of modules that just overlap with relocation range and must 

have fixed position during relocation because they form a frame around movable modules 

and are fixed modules. 

Actually if we assume the model placement as a puzzle, this frame is just a piece of it. It's 

clear that after local relocation, this piece must fit on its location again so any movement or 

rotation from inside modules must preserve vertical and horizontal distances between outer 

ones. Fig. 3.a shows the relocation range and its underlying modules on the model 

placement. Fig. 3.b shows local relocated placement of Fig. 3.a.  
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Dashed square is the relocation range and black module is the additional module. Modules 

marked as "o" are outer modules and those marked as "i" are inner modules. In our method 

we have used MFA with discrete variable for relocation, so the problem's configuration 

must encode to discrete space. As a result, the width and height of relocation range are 

divided into equal spans that form some columns and rows respectively. The rows and 

columns that are occupied with modules are marked. The outer modules are then separated 

into four sets: up boundary modules, down boundary modules, left boundary modules and 

right boundary modules. 

 

Figure 3. a) Relocation range and it sunder lying modules. b) Local relocated placement using MFA 

3.2.3. Calculating permissible distances 

For each row or column, two modules are determined as its boundary module. Permissible 

distance of every row or column is obtained with calculating distance between left boundary 

module and right boundary module of that row or distance between up boundary module 

and down boundary module of that column respectively. Fig. 4.a shows coordinates of a 

module. Left-down corner and right-top corners of a module are considerable here. Right-

top corner coordinate of module "i" is obtained. 

௜ݓݔ  ௜ݔ	= ,		௜ݓ	+ ℎ௜ݕ ௜ݕ	= +	ℎ௜ (14) 

For each row or column, two modules are determined as its boundary modules. Fig. 4.b 

represents boundary modules of the relocation range shown in Fig. 3. 

In Fig. 4.b row and column permissible distances are computed using Eq. 15 considering 

coordinates of the boundary modules of that row or column. Subscribe "o" Refers to outer 

modules, ܴ݀݌௜and ݀݌ܥ௜represent ith row's jth column's permissible distances. 
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௜݀݌ܴ  ௢௜ݔ	= ௢௜ݓݔ	− 	, ௜݀݌ܥ	 ௢௝ݕ	=  ℎ௢௝ (15)ݕ	−

 

Figure 4. a) Coordinates of a module b) Boundary modules 

In main algorithm sum of widths or heights of modules that are located in the same row or 

column are calculated and results are not permitted to exceed permissible distance of that 

row or column. For decreasing number of variables and calculations, outer modules that 

must have fixed position are laid aside and just inner modules that are movable enter MFA 

algorithm. In addition extra module as an overlap maker module enters the algorithm but it 

stays on its location during algorithm. Some of outer modules that advance inside the inner 

modules area could enter MFA algorithm to prevent some undesirable locating. 

3.2.4. Construction of MFA initial average spin vectors based on the position of movable 

modules (mapping) 

In addition extra module as an overlap maker module enters the algorithm too but it stays 

on its location during algorithm. Some of outer modules that advance inside the inner 

modules area could enter MFA algorithm to prevent some undesirable locating. We divided 

inner modules area to P rows and Q columns. Minimum value between all of the heights 

and widths of the modules is obtained. Then the width and height of relocation range are 

divided to this obtained value and rounded to integer values that are number of columns 

and rows; Q and P. We define position of a module with two vectors at MFA space, one for 

representing its vertical position and another one for its horizontal position. These vectors 

have P and Q elements respectively and for module "m" these vectors are shown with ݒ௠௥  

andݒ௠௖  that finally form overall matrices as ݒ௥andݒ௖. Every element of above mentioned 

vectors called spin (neuron) and sum of values of these elements is equal to 1. Left-down 

corner coordinate of a module determines its position, that means if this point locates in 

range of ith row and jth column, ith element of	ݒ௠௥ and jth element of ݒ௠௖  is set to 1 and others 

to 0 as: 



 
Mean Field Annealing Based Techniques for Resolving VLSI Automatic Design Problems 15 

(16)

To construct precision vertical and horizontal vectors we used a pseudo-trigonometric 

method. Module position is determined using its left-down corner distance with left-down 

corner of relocation range with coordinate as(ݔ௥௥,  ௥௥).Fig. 5 shows the relocation range ofݕ

Fig. 3 and its incident inner modules that are darker one. We used a special value to 

normalize these distances. This value is Euclidean distance between left-down corner of 

relocation range and a point with coordinate of inner modules maximum "x" and maximum 

"y" as: 

 ܵ݀ = 	ඥ(max(ݔ௜௡) − ௥௥)ଶݔ + (max(ݕ௜௡) −  ௥௥)ଶ (17)ݕ

 

 

Figure 5. Relocation range and its inner modules for construction of MFA initial average spin vectors 

Then for calculating row vector of a module, its vertical distance with left-down corner of 

relocation range is obtained and then normalized as Eq. 18. Same calculation is done for 

column vector. 

୧݀ݒ  = ௬౟ି	௬ೝೝௌௗ 	 , ℎ ௝݀ = ௫ೕି	௫ೝೝௌௗ  (18) 

Eq. 19 represents normalized total horizontal and vertical ranges. Horizontal range is 

divided into P parts and vertical range into Q parts. The algorithm then determines position 

of modules based on their ݀ݒ୧and ℎ ௝݀values in comparison to P and Q obtained spans. 

 Horizontal	range = ቀ୫୧୬(௫౟౤)ି	௫౨౨ୗୢ 	 ,୫ୟ୶(୶౟౤)ି	୶౨౨ୗୢ ቁ , (19) 

Vertical	range = (min(y୧୬) −	y୰୰Sd 	, max(y୧୬) −	y୰୰Sd 	) 

ݒ ݎ݉ = ሾ0 . . . 1 . . . 0ሿ , ܿ݉ݒ = ሾ0 . . . 1 . . . 0ሿ
1: i-1 i+1: P j+1: Q 1: j-1 ji
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For module "m", being in the ith vertical span causes the ith element of ݒ௠௥  to become 1 and 

being in the jth horizontal span causes the jth element of ݒ௠௖  to be equal to 1. In MFA space 

that means probability of finding module "m" at row "i" and column "j" is 1. ݒ௥andݒ௖ are 

initial average spin vectors as two inputs of MFA algorithm. Fig. 6 shows the flowchart of 

first stage of MFA local relocation algorithm. 

 

Figure 6. The flowchart of first stage of Local relocation  

3.2.5. MFA relocation algorithm 

At every epoch of MFA Algorithm one of the movable modules is selected randomly for 

mean field vector calculation from a random select list that includes movable modules with 

unconverged average spin vectors, and then selected module's average spin vector are 

updated using this vector. At the end of every epoch spin of every average vector that is 

greater than “0.9” is set to 1 and others are set to 0 and this vector is deleted from random 

select list because it has converged. 

3.2.6. Energy functions 

MFA Algorithm moves modules to minimize a total energy function. Our MFA relocation 

algorithm's total energy function is summation of three energy functions. First of all is 

routing cost function or wire length energy that is sum of vertical and horizontal routing 

costs and the algorithm minimizes it. Second one is the overlap cost and avoids algorithm 

to locate more than one module in same location. In MFA probability of being a module in 

row “i” and column “j” in the same location is computed for all of the modules. The 

energy term is formulated corresponding to the overlap cost as Eq. 7 in cell-placement 

problem [14]. In Eq. 20, ߱௜and ௝߱ are constant values as the weights of modules "i" and "j" 

and are given from a module weight function that is used to encode the areas of modules. 

These values are some of input values of the algorithm and߱௜ for module "i" is related to 

its area. ݒ௜௣௥ 	is the probability of finding module "i" in one of the Q locations at row "p", 

Relocation range

Additional moduleModel placement

Underlying modules grouping

Inner modules Outer modules 

MFA initial average values of spin vectors calculation Permissible distances calculation 

MFA Relocation Algorithm
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and ݒ௝௤௖  is the probability of finding module "i" in one of the P locations at column "q", 

respectively. 

Last energy function that supervises preserving permissible distances is permissible distances 

preservation energy or ܧ௣ௗ. When a selected module moves to a location, the summation of 

widths and heights of the modules that are in the same column or row are calculated and are 

compared to permissible distance of that row and column. If these values exceed the 

permissible distances first the selected module is rotated and the summation and comparison 

is done again. If the problem still exists the value of ܧ௣ௗand total energy increases respectively. 

In Eq. 21, ܧ௧, ܧ௪ and	ܧ௢ are total energy function, routing cost or wire length energy function 

and overlap energy function, respectively. α and β are balance factors between ܧ௪ , ܧ௢ and ܧ௣ௗ 

.α and β are constant during simulation and are used to increase or decrease importance of 

every energy functions in total energy function related to others.  

 

Figure 7. The energy function minimization: ܧ௧ , ,௪ܧ  ௣ௗܧ ௢andܧ

 

1
E       ω ω   P{Modules i and j are in the same  location} 

i jo 2 i j i

P Q1
     ω ω P{Module i is in location pq} P{Module j is in location pq}

i j2 i j i p 1q 1

1 r c r c             ω ω  v v v v
i j ip iq jp jq2 i j i q

   


   
  

  


P Q
           

p 1 1
 
 

 (20) 

௧ܧ  ௪ܧ	= + ߙ	 × ௢ܧ + ߚ	 ×  ௣ௗ (21)ܧ

Fig. 7 shows energy function and its parameters, wire length cost, overlap energy and 

permissible distances preservation energy. At the final epoch, where all of the spins 
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converge, overlap and permissible distances preservation energies become 0 and wire 

length cost is minimized, therefore total energy is minimized too. 

3.2.7. Cooling Schedule 

For local relocation problem the cooling process is realized in three phases, slow cooling 

followed by fast cooling and then very fast cooling(or quenching).Eq. 22 shows the cooling 

schedule algorithm. ௥ܶ଴,	 ௖ܶ଴,	 ௥ܶ 	and ௖ܶ are horizontal and vertical initial temperatures and 

horizontal and vertical current temperatures of system, respectively. 

 

Figure 8. The total energy function minimization for three values of ݐ௙: 10, 100, 1000 and 5000 ݂݅	(0.8 × ௥ܶ଴ ≤ ௥ܶ&	0.8 × ௖ܶ଴ ≤ ௖ܶ): ௥ܶ = 0.95 × ௥ܶ 	; 	 ௖ܶ = 0.95 × ௖ܶ	 ݈݂݁݅݁ݏ	0.35) × ௥ܶ଴ ≤ ௥ܶ ≤ 0.8 × ௥ܶ଴&	0.35 × ௖ܶ଴ ≤ ௖ܶ ≤ 0.8 × ௖ܶ଴): 
௥ܶ = 0.8 × ௥ܶ 	; 	 ௖ܶ = 0.8 × ௖ܶ	 

0.35)	݂݅݁ݏ݈݁  × ௥ܶ଴ ≥ ௥ܶ&	0.35 × ௖ܶ଴ ≥ ௖ܶ) : ௥ܶ = 0.65 × ௥ܶ 	; 	 ௖ܶ = 0.65 × ௖ܶ	 (22) end 

Due to having vertical and horizontal spins two initial temperatures are calculated at the 

first of algorithm according to vertical and horizontal sizes of problem and a constant factor 

is called initial temperature factor or ݐ௙ like Eq. 23. 

 ௥ܶ଴ ∝ ௙ݐ × ܲ	, ௖ܶ଴ ∝ ௙ݐ × ܳ (23) 

Fig. 8 represents total energy minimization during algorithm iterations for three different 

values of ݐ௙as 10, 100 and 1000. It is clear that changing this factor causes changing number 

of iterations and also minimum value of total energy function. 
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On the other hand, setting this factor to insufficient values (specially too high values) may 

cause unconvergence or unacceptable results, so the range of this factor is limited and 

according to our experiments is less than 5000. 

The cooling process continues until either 90% of the spins are converged or temperature 

reduces below 1% of initial temperature. So when current temperature is below the 35% of 

initial temperature, a very fast phase of cooling process moderates the unconverged spins 

very fast.  

At the end of this process, the variable with maximum value in each unconverged spin is set 

to 1 and all other variables are set to 0. 

Fig. 9 shows the flowchart of second stage of MFA local relocation algorithm. 

 

 

Figure 9. The flowchart of second stage of MFA local relocation algorithm 

Calculate change

of ܧ௧ 

Total Energy is 
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Initialize vertical and horizontal spin average vectors
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Calculate Mean Field vectors of both vertical and 

horizontal randomly selected modules
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3.2.8. Experimental results 

We implemented the proposed algorithm on a 2.4GHz Intel Pentium IV with 512MB 

memory using MATLAB 7.2.0.232 (R2006a) in WINDOWS operating system. We applied the 

proposed algorithm to the relocation of n300a, n200a, and n100a, which are distributed in 

GSRC benchmarks in [17]. 

For every benchmark five different problems were resolved using our proposed algorithm 

and maximum and average runtime of 10 runs of them are presented in Table 1. Results 

show that our MFA based algorithm is faster than SA-based proposed method in SA-based 

relocation method in [18] because the number of displacements is limited to the number of 

movable modules of problem and the problem is local relocation. Actually relocation range 

reflects on number of displacements and also similarity of resultant placement with model 

placement. 

Results show runtimes of our proposed algorithm almost do not depend on the size of 

benchmark circuit in compare to the method represented in SA-based proposed method, 

actually size of local relocation range and numbers of movable modules of each problem are 

the main parameters here. Also feasibility of local relocation solution, to guarantee the 

similarity of resultant placement with model placement depends on the existence of enough 

dead space near additional module so that the relocation rage becomes limited and small. 
 

SA MFA Local Relocation 

Min. runtime 

(Sec.) 

Max. 

runtime(Sec.) 

Average runtime 

(Sec.) 

Min. runtime (Sec.)
Benchmark 

1.0 2.52 2.37 2.0 n100 

9.0 3.72 3.62 3.2 n200 

60.8 3.96 3.92 3.7 n300 

Table 1. MFA Local Relocation results for GSRC benchmarks 

4. Conclusion  

Briefly, Our proposed method as a local solution method has less displacement and by 

taking advantages of MFA algorithm in comparison to SA algorithm and localizing problem 

(that reduces number of engaged modules) and therefore by having less variables, is faster. 

Also having less number of movable modules causes more similarity if the solution is feasible. 

 Selection of modules for relocation is based on the range that includes enough free space 

around the extra module so the runtimes of our proposed algorithm almost do not depend 

on the size of benchmark circuit in compare to the SA-based method, actually size of local 

relocation range and numbers of movable modules of each problem are the main 

parameters. Applying ability of rotation of modules inside a fixed distance controller energy 

function as permissible distances preservation energy and three phases cooling process are 

main properties of our employed MFA algorithm. Results show our method is almost 

independent of size and complexity of model placement. 
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Although the use of SA provides for escaping from the local minima, it results in an 

excessive computation time requirement that has hindered experimentation with the 

Boltzmann machine. In order to overcome this major limitation of the Boltzmann machine, a 

mean field approximation may be used. In mean field network, the binary state stochastic 

neurons of the Boltzmann machine are replaced by deterministic analogue neurons. A 

simple formulation of the Traveling Salesman Problems energy function is described which, 

in combination with a normalized Hopfield-Tank neural network, eliminates the difficulty 

in finding valid tours[1]. This technique, as the one of the bases of MFA algorithm, is 

applicable to many other optimization problems involving n-way decisions (such as VLSI 

layout and resource allocation) and is easily implemented in a VLSI neural network. The 

solution quality is shown to be dependent on the formation of elements of the problem 

configuration which are influenced by the constraint penalties and the temperature as what 

is borrowed from SA technique. The applied algorithm for local relocation problem is 

modified form of which is applied for cell placement problem. The cooling schedule has 

three stages that the final stage is very fast cooling with decreasing factor 0.65 that may be 

what you mean quenching. Otherwise other two stages with decreasing factors 0.95 and 0.8 

are not so fast and have annealing essence. For more information about this topic, one can 

refer to [1]. 
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