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1. Introduction 

The aim of this chapter is to answer the essence of SEMG and to explore the potential use of 

nonlinear analysis as a tool in the clinical and biomechanical applications. The technical 

tools include nonlinear time series test, time series analysis based on chaos theory, 

multifractal analysis. 

In Section 2, we discuss the two methods of nonlinear time series test: surrogate data test 

method and Volterra-Wiener-Korenberg (VWK) model test method. Theoretically, the two 

methods can detect the nonlinearity of the data indirectly. The surrogate data method is 

used to analyze the SEMG. The result shows that the SEMG has deterministic nonlinear 

components. Meanwhile, we introduce the VWK model test method and compare it with the 

surrogate data method. The nonlinearity of SEMG during muscle fatigue can be detected by 

the VWK. 

In Section 3, we describe the time series analysis based on chaos theory. The chaos definition 

and chaotic characteristics are discussed. The embedding theory of the attractor 

reconstruction is investigated for the dynamical system. From the view of the fractal 

structure of the chaotic attractor, the correlation dimension is used to test the chaotic 

characteristics of the SEMG during arm movements. The Largest Lyapunov exponent is also 

studied. Then, we investigate the influence of measure noise, internal noise and sampling 

interval on the principal components of chaotic time series. The symplectic principal 

component analysis is given. We illustrate the feasibility of this method and give the 

embedding dimension of the action surface EMG signal. 

In Section 4, the self-affine fractal definition and nature are described. The power spectrum 

and frequency relationship is used to calculate the self-affine fractal dimension of the time 

series, such as SEMG. Then, the multifractal dimension is given for the SEMG. 

The conclusion and future research are shown in Section 5. Here, it is necessary to note that 

this chapter is actually the result of many years work. The new methods presented here 
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build on a broad and strong foundation of nonlinear time series analysis and chaotic 

dynamical theory. 

2. Detecting nonlinearity of the surface EMG signals 

In many areas of science and engineering, it is a critical issue to determine whether an 

observed time series is purely stochastic, or deterministic nonlinear, even chaotic. One may 

know about the intrinsic properties of the observed phenomenon by distinguishing between 

nonlinear deterministic dynamics and noisy dynamics from a time series. In this section, we 

review and discuss the surrogate data test method[1] and Volterra-Wiener-Korenberg 

(VWK) model test method[2] for identifying the nonlinearity of a time series. These methods 

have been successfully used to detect and characterize nonlinear dynamics from recordings 

in biology and medicine[2-5]. 

Surrogate analysis is currently an important empirical technique of testing nonlinearity for a 

time series. The aim is to test whether the dynamics are consistent with linearly filtered 

noise or a nonlinear dynamical system[1, 6]. The basic idea of the surrogate data method is 

to first specify some kind of linear stochastic process as a null hypothesis that mimics “linear 

properties” of the original data. According to the null hypothesis, surrogate data sets are 

generated. Then, a discriminating statistic is calculated for the original and for each of the 

surrogate data sets. If the statistic of the original data is significantly different from those of 

surrogate data sets, the null hypothesis can be rejected within a certain confidence level. It 

shows that the original data is from a nonlinear dynamical system. The method is 

demonstrated for numerical time series generated by known chaotic systems and applied to 

the analysis of SEMG. 

VWK test method is a kind of nonlinear detection of time series based on linear and 

nonlinear Volterra-Wiener-Korenberg model [2, 5]. That is, it first produces the linear and 

nonlinear predicted data from the original time series and then compares their information 

criterions to detect the nonlinearity of the raw data. VWK test technique is capable of robust 

and highly sensitive statistical detection of deterministic dynamics, including chaotic 

dynamics, in experimental time series. This method is superior to other techniques when 

applied to short time series, either continuous or discrete, even when heavily contaminated 

with noise or in the presence of strong periodicity. Later, an extension of the Volterra 

algorithm (called the numerical titration algorithm) was given to detect and quantify chaos 

in noisy time series[7]. Here, the surrogate data method and VWK test approach are used to 

analyze the nonlinearity of surface EMG signals. 

2.1. Surrogate data test method 

Surrogate data method includes two parts: a null hypothesis and a test statistic. The null 

hypothesis is a specific process which may or may not adequately explain an origin of 

the data. The test statistic provides a quantitative description to demonstrate the data 

sources. 
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2.1.1. Null hypotheses and algorithms[1] 

The null hypotheses usually specify some certain properties of the original data that reflect 

some structure characteristics of the dynamical system, such as mean and variance, and 

possibly also the Fourier power spectrum. Different null hypotheses describe different 

specific dynamical systems. In terms of the corresponding null hypothesis, the surrogate 

data can be generated so as to test the corresponding specific dynamical system class. 

Null hypothesis 1 The observed data is produced by independent and identically 

distributed (IID) random variables. 

For this hypothesis, the corresponding surrogate data can be generated by shuffling the 

time-order of the original time series so that it has the same mean, variance and amplitude 

distribution as the original data. But any temporal correlations of the original data are 

destroyed in the surrogate data. Schienkman and LeBaron[8] applied this hypothesis to 

analyze stock market returns. Breeden and Packard also used this hypothesis to 

demonstrate that a time series of quasar data which were sampled nonuniformly in time has 

some dynamics structure[9]. 

The algorithm of the null hypothesis is that one first create gaussian random numbers from 

1 to N, where N is the length of the original data x. Then, the original data x is permuted by 

the random numbers to generate the surrogate data. 

Null hypothesis 2 The observed data is produced by the Ornstein-Uhlenbeck process. 

The surrogate data generated by the Ornstein-Uhlenbeck process is a sequence that has the 

simplest time correlation. The Ornstein-Uhlenbeck process can be given as follows. 

 
ttt exaax σ++= −110
 (1) 

where et is a Gaussian random with zero mean and unit variance. The coefficients a0, a1, and 

σ work together to determine the mean, variance, and autocorrelation time of the time series 

xt. In this case, its autocorrelation function is exponential form. Let 1log a−=λ ,  ⋅ denotes 

an average over time t. That is, 
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In order to generate the surrogate data that is consistent with this hypothesis, the algorithm 

is that one first calculates the mean µ , varianceγ  and autocorrelation A(1) (in Eq. (2)) from 

the original data x. Then, the coefficients in Eq. (1) can be estimated: )1(1 Aa = , )1( 10 aa −= µ , 

and )1( 2
1

2 a−= γσ . The Gaussian et can be generated by a pseudorandom number generator. 

Finally, the surrogate data can be produced by iterating Eq. (1). 

Null hypothesis 3 The observed data is produced by the linear autocorrelated gaussian 

process with the mean and variance of the original time series. 

The hypothesis has been usually used to test whether the original time series contains 

nonlinear components. It can be described by using a linear autoregressive (AR) model. 
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There are the two algorithms to produce the surrogate data in accord with this hypothesis. 

One algorithm is to directly use Eq.3. That is, the coefficients are firstly identified by using 

the original data. Then, the surrogate data is generated by repeatedly iterating Eq.3. 

However, the performance of this algorithm is very unstable. If the values of the coefficients 

are mis-estimated slightly, this algorithm may lead to the iterative results which easily 

diverge to infinity. The alternative algorithm is that a surrogate data is generated by 

randomizing the phases of a Fourier transform. According to the Weiner-Khintchine 

theorem, the two algorithms are equivalent in essence[1, 10]. The surrogate data has the 

same Fourier spectrum as the original data. Meanwhile, the algorithm based on the Fourier 

transform is stabler in the numerical calculation than the first algorithm. The following is the 

steps of this algorithm. 

Let an observed data as )(nx . The Fourier transform of )(nx  is computed as follows[3]: 
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The Fourier transform has a complex amplitude at each frequency. One can randomize the 

phases of the Fourier transform by multiplying ϕie , 

 ϕiekXkX ⋅=′ )()(  (5) 

where ϕ is independently chosen for each frequency from the [0, 2π ]. In order to the 

inverse Fourier transform to be real (no imaginary components), the phases must satisfy the 

antisymmetric condition ( ) ( )kNk −−= ϕϕ . Meanwhile, ( ) 00 =ϕ , ( ) 02/ =Nϕ (when N is 

even), so that 

 )()( kNXkX −′=′  (6) 

This point can be easily proved[11].  

Proof: 

According to the nature of DFT of a real time series x(n), if Rnx ∈)( , then 

 )()( kk −−= φφ  (7) 

where )(kφ is the phase angle of )(kX . k = 0, 1, … N-1. N is the period of Fourier Transform. 

Then, for k = 0, k = N /2 (N is even), there are 

 ),0()0( φφ −=  (8) 

 )2/()2/()2/( NNN φφφ −=−−=  (9) 

In order to ensure that the inverse Fourier transform results are real values, there must be 
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 0)0( =φ , 0)2/( =Nφ .   

In practical, if the data length N is odd, ϕ(f1)=0, ϕ(fi) =-ϕ(fk), i=2~(N+1)/2, k=N~(N+1)/2+1; If N 

is even, ϕ(f1)=0, ϕ(fN/2+1)=0, ϕ(fi)=- ϕ(fk), i=2~N/2, k=N~N/2+2. Thus, the surrogate data x‘(n) 

given by the inverse Fourier transform is a sequence of real numbers. 

  ⋅′=′
−

=

1

0

/2)(
1

)(
N

k

NinkekX
N

nx π  (10) 

 
a b 

Figure 1. The imaginary components of surrogate data by our (a) and previous (b) FT algorithm 

Thus, there are no imaginary components (see Fig. (1a)). The values of the imaginary parts 

are very little (magnitude 10-14) so that they can be regarded as computing precision errors. 

The surrogate data has the same Fourier transform spectrum as the original data by using 

this algorithm. The reproduced “pure” frequencies are very well. Fig.(1b)shows that the 

previous FT algorithm[1] cannot make the imaginary components of Fourier inverse 

transform to be zero. So, if one only uses the real part of Fourier inverse transform as 

surrogate data and omit its imaginary components, the obtained surrogates would have the 

two limitations[1, 12]. 

Null hypothesis 4 The observed data is produced by the static nonlinear transform of linear 

gaussian process. 

The static nonlinear transform is that the observation or measure function is nonlinear. The 

static means that the measure data xt only depends on the state yt of the dynamic process at 

the time t , not on derivatives or values in the past.  Let h be a measure function, then 

 ( )tt yhx =  (11) 

The generated surrogate data not only contain the linear correlated characteristic, but also 

can reflect the static, monotonic nonlinearity of the original data. Strictly speaking, time 

series in this class are nonlinear. But this nonlinearity is not from the dynamics. This 

hypothesis can be used to indicate whether the nonlinearity is from the dynamical system or 

the amplitude distribution (i.e. the measure process). 
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For generating surrogate data corresponding to this null hypothesis, an algorithm is 

described. The aim is to shuffle the time-order of the data xt and to preserve the linear 

correlations of the underlying time series yt = h-1(xt). The first step is to make a Gaussian time 

series yt, where each element is generated independently from a Gaussian pseudorandom 

number generator. Next, we rescale yt in accordance with the time-order of the original data 

xt. The re-ordered yt has a time series which “follows” the static, monotonic nonlinearity of 

the original data. Then, the data ty ′  is created by using the above FT algorithm to deal with 

the re-ordered yt. Finally, the raw data xt is rescaled in terms of the time-order of the data ty ′  

to generate the surrogate data tx ′ . The “underlying” time series (yt and ty ′ ) are Gaussian 

and have the same Fourier power spectrum. The produced tx′  matches the amplitude 

distribution of the raw data xt.  

2.1.2. Test statistics[6] 

The test statistic is a value which estimates some certain aspects of the time series. To 

compare the raw data to its surrogate data sets, a suitable test statistic must be selected. A 

useful statistic should be pivotal and independent of the way that surrogate data sets are 

generated. In other words, for every data set z and every realization zi of any Fi∈Fφ, their test 

statistics should be different, i.e. 

 )()( izTzT ≠  (12) 

where Fφ represents the null hypothesis process. Meanwhile, the distribution of T under the 

null hypothesis does not depend on µ or σ. Here we give two discriminating statistics as 

follows: 
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where “¯” denotes the average of the data. The mean µ and varianceσ have no effect on the 

T value in Eq. (13). Therefore, some linear structure characteristics can be determined except 

for the mean and variance. The T value in Eq.(14) can judge if the surrogate data are consist 

with the raw data in the view of the correlation with the mean and variance. The T value in 

Eq. (15) is a simple skewed difference statistic that is both rapidly computable and often 

quite powerful. 

 23 )()( tmttmt xxxxT −−= ++  (15) 

where ⋅ is mean operator, m is time delay. This statistic T provides a more significant 

rejection of the hypothesis of the static nonlinear filter of an underlying linear process. 

Informally, this statistic indicates the asymmetry between rise and fall times in the time 

series. 



 
Nonlinear Analysis of Surface EMG Signals 125 

2.1.3. Performance of surrogate data method based on our FT algorithm[3, 13, 14] 

The surrogate data method is suitable to detect the nonlinearity of a short, noisy time series. 

Here, a Gaussian data and a Logistic chaotic time series are used to study the performance of 

surrogate data method. For a two-sided test, the probability of rejecting the null hypothesis is 

given by the confidence level p, the surrogate data sets B must be at least as large as 

1)1(2min −−= pB . For 95% confidence level, there should be 39 sets of surrogate data. 

A Gaussian data x is a random time series with zero mean and unit variance produced by the 

pseudorandom generator. The data length is 1000 points. According to the null hypothesis 3, 

39 sets of surrogate data are generated by using our above FT algorithm. The T value is 

calculated by Eq. (13) and Eq. (14), respectively. In the Figure (2a and b), there are no statistical 

discrepancy between the test statistic T of the raw data x and those of surrogate data.  

The statistic T values of the raw data are on the range of the empirical distribution of T 

given by the surrogate data. The results show that the generated surrogate data has the 

same Fourier transform spectrum as the raw data besides the same mean and variance as 

the raw data because the T value in Eq. (14) is a measure of the time irreversibility of the 

data. The null hypothesis 3 is accepted at the confidence level 95%. The raw data is 

consistent with the stochastic process of the null hypothesis 3. The surrogate data produced 

by the above FT algorithm is equivalent to the raw data. The generated surrogate data 

reflects the null hypothesis 3. 

 
a. T calculated by Eq. (13) b. T calculated by Eq. (14) 

Figure 2. The histogram is T distribution of surrogate data given by FT algorithm, * is T value of the 

original data, where abscissa is T, ordinate is the number of surrogate data sets 

To further test that the surrogate data based on the above FT algorithm can be used to detect 

nonlinearity of a time series, we apply the Logistic chaotic system to produce a chaotic time 

series as follows. 

 exxx ttt +−=+ )1(1 α  (16) 

where 9.3=α , ]1,0[0 ∈x , e is white noise with mean 0, variance 0.0012. If e takes part in the 

evolution process of the above equation, it is called as interior noise (or dynamic noise); 

otherwise it is called as measure noise. 
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a. The length N=5000 of the raw time series b. The length N=500 of the raw time series 

Figure 3. T calculated by Eq. (13), histogram is T distribution of surrogate data, * is T value of the 

original data, where abscissa is T, ordinate is the number of surrogate data sets 

For the case without noise e = 0, we use Eq. (16) to compute the two Logistic chaotic time 

series with the length of 5000 points and 500 points. 39 surrogate data generated by the 

above FT algorithm contain the linear properties of the original data in terms of the null 

hypothesis 3. In Fig.3, we can see the obvious difference between the original data and its 

surrogate data, regardless of the length of 5000 points or 500 points. The null hypothesis can 

be rejected in 95% confidence level. The original data has nonlinear components. The results 

show that the data length has little effect on the surrogate data method based on the above 

FT algorithm. In Figure 4, we study the nonlinear test of Logistic chaotic time series with 

measure noise and interior noise, respectively. The data length is 1000 points. According to 

the null hypothesis, 39 sets of surrogate data are generated. The statistic T for the original 

data is significantly different from the values obtained for the surrogate data sets. The null 

hypothesis 3 can also be rejected in 95% significance. The nonlinearity of the original data 

can be detected. To sum up, the length and noise has no impact on the surrogate data 

method based on our FT algorithm.  

 
a. Chaos time series with measure noise b. Chaos time series with interior noise 

Figure 4. T calculated by Eq.(13), histogram is T distribution of surrogate data, * is T value of the 

original data, where abscissa is T, ordinate is the number of surrogate data sets 
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2.1.4. Nonlinear test of surface EMG signal based on surrogate data[3, 13, 14] 

The nature of SEMG plays an important role in neuromuscular disorder diagnosis, muscle 

fatigue monitoring, prosthesis control, etc. Here the analyzed data are collected from 

physiological instruments. Humid surface electrode and AD12-16LG collecting card of 

physiology signal are used in the whole experiment that was done at Hua Shan Hospital in 

Shanghai. The data are sampled at 1kHz for the action surface EMG (ASEMG) [3]and the 

fatigue surface EMG (FSEMG) when one hand carries a 1kg heavy thing [15](see Fig. 5). The 

length of data for ASEMG is 1000 points during the beginning of action because this time 

span contains the information of the forearm movement. In the case of carrying a 1kg heavy 

thing, the length of FSEMG data is also 1000 points when the arm has been fatigue.  

For these surface EMG signals, 39 surrogate data are produced by the null hypothesis 2. The 

surrogate data analysis is given for the action surface EMG signal and the fatigue surface EMG 

signal, respectively(see Fig. 6). The results show that for action surface EMG signal and fatigue 

surface EMG signal, their T values are obviously different from those of surrogate data in 

terms of Eq.13. The null hypothesis 2 can be rejected in 95% degree of confidence. The action 

surface EMG signal and fatigue surface EMG signal is not stochastic signal produced by a 

linear stochastic process, but contains nonlinear components. However, this result could not 

ensure that this nonlinearity must be from the dynamic system.  

 
a. a typical action surface EMG wave b. a typical fatigue surface EMG wave 

Figure 5. The surface EMG signals 

 
a. action surface EMG signal b. fatigue surface EMG signal 

Figure 6. Surrogate data analysis of surface EMG signal. * is Torig, histogram is Tsurr distribution of 

surrogate data 
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Figure 7. Surrogate data test of surface EMG signal during movement, where surrogate data sets are 39 

sets; * is T value of surrogate data by the null hypothesis 4, +is T value of EMG signal, where T is 

calculated by Eq. 15 

In order to test that the nonlinear components are intrinsic deterministic, we further assume 

that ASEMG is stochastic signal consistent with the null hypothesis 4. Fig.7 gives the T 

values of ASEMG and surrogate data calculated by Eq. 15. This statistic indicates the 

asymmetry between rise and fall times in the time series. From this figure, we can see that 

there is the difference between data and surrogates, and the null hypothesis 4 is rejected in 

95% credibility. This result shows that the nonlinearity of ASEMG is intrinsic and 

deterministic. 

2.2. Volterra-Wiener-Korenberg test method 

2.2.1. Volterra-Wiener-Korenberg test model[2] 

For a dynamic system, an observed time series N
nny 1}{ =  can be treated as a closed loop 

Volterra series by utilizing the feedback of yn. Suppose the time series is univariate. A 

discrete Volterra-Winner-Korenberg series can be calculated as follows: 
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where the memory k and combination degree d correspond to the embedding dimension 

and the degree of nonlinearity of the model, respectively. The coefficients am are recursively 

estimated through a Gram-Schmidt procedure from linear and nonlinear autocorrelations of 

the data itself with a total dimension M=(k+d)!/(d!k!).  

There is the following information criterion in accordance with the parsimony principle: 

 NrrrC += )(log)( ε  (18) 
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where ],1[ Mr∈  is the number of polynomial terms of the truncated Volterra expansions 

from the given pair {k, d}, 2),( dkε  is a normalized variance of the error residuals, 

= =
N
n nN
yy 1

1 . For d=1, VWK model is linear, whereas the model is nonlinear for d>1. 

For each data series, there is the following numerical procedure to search for the optimal 

pair {kopt, dopt}: 

1. when d=1, search for kopt which minimizes C(r). 

2. with k=kopt, increasing d>1, search for dopt which minimizes C(r). 

3. calculate Clin(r) with d=1 and k=M-1, and Cnl(r) with d=dopt and k=kopt. 

4. Compare Clin(r) and Cnl(r), if Cnl(r) is obviously smaller than Clin(r), then the original 

system dynamics is nonlinear, the obtained time series is nonlinear, even chaos; 

otherwise, the original system dynamics is linear, the raw data is linear. 

Note that when kopt is rather large, M is quite large, too, then the computational time will 

rapidly go up. In this case, k and d should be adjusted synchronously to search for kopt and 

dopt so as to make Cnl(r) < Clin(r). Furthermore, one can obtain the corresponding linear and 

nonlinear models for surrogate data generated by the FT algorithm according to the null 

hypothesis 3 so that )()(),(),( rCrCrCrC nl
orig

nl
surr

lin
surr

lin
orig >  in the statistical sense. 

2.2.2. Analysis of SEMG based on VWK method[15, 16] 

Here, the VWK method is used to deal with the surface EMG signals in Fig.5. For the 

action surface EMG signal, Clin(r) is almost equal to Cnl(r), i.e. )()( rCrC nllin ≈ , this 

technique can hardly detect its nonlinearity (see Fig.8a). For the fatigue surface EMG 

signal, Cnl(r) is distinctly smaller than Clin(r) so that its nonlinear component can be 

detected (see Fig.8b). So VWK technique can effectively detect the nonlinear dynamic 

speciality of fatigue surface EMG signal but fails to test the nonlinearity of the action 

surface EMG signal. In other words, VWK technique can not be used directly to deal with 

the action surface EMG signal. 

 
a. The action surface EMG signal b. The fatigue surface EMG signal 

Figure 8. VWK test analysis of surface EMG signal 
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a. The action surface EMG signal b. The fatigue surface EMG signal 

Figure 9. VWK combined with surrogate analysis of surface EMG signal. solid is )(rC nlsurr , * is 

)(rC nlorig  

2.2.3. Analysis of SEMG based on VWK method with surrogate data[16] 

In order to detect the nonlinearity of the action surface EMG signal, 39 FT-based surrogate 

data are used according to the null hypothesis 3. The generated surrogate data contain the 

linear properties of the raw data. Figure 9 is the analysis of surface EMG signal based on 

VWK with surrogate data. We can see that no matter whether it is the action or fatigue EMG 

signal, )(rC nlorig  is always smaller than )(rC nl
surr . The null hypothesis 3 can be rejected in 95% 

significance. The results illuminate that the action and fatigue surface EMG signals contain 

nonlinear dynamic properties. 

3. Analysis of the surface EMG signals based on chaos theory 

The discovery of chaotic phenomena is the third major breakthrough in the 20th century 

physics scientific community following the creation of relativity and quantum mechanics. It 

organically combines the two major theoretical systems of determinism and probabilism 

that have long been debated to create a scientific model of a new paradigm, so that people 

can use some simple rules to explain seemingly stochastic information in the past[17-19]. 

The practical significance that finds chaotic phenomena is to recognize that a deterministic 

nonlinear system can have inherent uncertainty. Perhaps a system has only a few degrees of 

freedom, but it can produce complex, similar to the random output signal. In the past, one 

could only denote a random-looking data as a random process from the view of the 

traditional time series analysis. The statistical methods or random time series models were 

used to analyze the data. Since the chaotic phenomenon was discovered by Lorenz[17], 

people have begun to reunderstand and restudy these random-looking signals so as to 

reveal the inherent deterministic mechanisms of these signals. That is, it is to explore that 

the systems which generate these signals may contain essentially deterministic 

characteristics. Chaos phenomenon breaks the path that the regularity is found in a lot of 

completely different systems. This will lead to a revolution in the field of influence of 

various disciplines. It is chaos to lead people to explore the complexity in nature. 
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At present, the idea of Chaos has been introduced into the analysis of time series to create 

the field of chaotic time series analysis. Since the inception of chaotic time series analysis, it 

has quickly been penetrated into other disciplines and engineering fields. Thus it becomes 

the most active branch of the modern nonlinear dynamics. This section describes the chaos 

definition and the phase space reconstruction of chaotic time series, discusses some 

parameters that are used to analysis chaotic time series, such as the correlation dimension 

and Lyapunov exponent, study the principal component analysis methods based on SVD, 

and propose the symplectic principal component method based on symplectic geometry. 

Then we use these methods to investigate the surface EMG signals. 

3.1. Chaos and its definition 

Chaos is “order in disorder”. The order means its deterministic nature. The disorder means 

that the final results can be unpredictable for a long time. As a scientific concept, chaos 

generally denotes that the long-term dynamical behavior of a deterministic nonlinear system 

manifests as a random-looking behavior. Mathematically speaking, “chaos” has not been a 

unified strict definition. For the definition of chaos, there are at least nine different 

definitions, where the three definitions given by Li-Yorke, Devaney, Marotto are more 

commonly used. Here describes the definition of chaos by Li-Yorke[18]. 

Li-Yorke Theorem: Let )(xf as a continuous self-map in ],[ ba . If )(xf  has a periodic point 

with period 3, then for any positive integer n=1, 2, 3, …, there is a periodic point with period n. 

This is the famous period 3 theorem. It becomes a milestone in the development history of 

chaos theory and promotes the creation and development of chaos theory. From this 

theorem, the first formal mathematical definition of the chaos is given. 

Chaos definition: Let )(xf as a continuous self-map in closed interval I, i.e. 

 )(,: xfyRIIf m =⊂→  (20) 

where Iyx ∈, . If 1=m , f is one-dimensional mapping. If 1≠m , f is multi-dimensional 

mapping. Denote the n times iteration of f as )(xf n . If Eq.20 satisfies the following 

conditions, then it has chaotic motion: 

1. The period of periodic point of f has no upper bound. 

2. There is an uncountable set IS ⊂ , which satisfies the following conditions: 

 
yxSyxyfxf nn

n
≠∈∀>−

∞→
,,,0)()(suplim  (21) 

 
Syxyfxf nn

n
∈∀=−

∞→
,,0)()(inflim  (22) 

 
)(,,0)()(suplim fPpSxpfxf nn

n
∈∀∈∀>−

∞→
 (23) 

where Δ)( fP {x | x is a periodic point of f}. 
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This definition explains “existence” of chaos in mathematics. According to the above 

theorem and the definition, the description of chaotic motion is different from the general 

periodic and quasi-periodic motion. Its motion is not a single periodic orbit but an envelope 

for a bunch of tracks, where the infinite number of countable stable periodic orbits and 

uncountable stable aperiodic orbits are embedded densely. Meanwhile, there is at least one 

unstable aperiodic orbit. Overall, the chaos not only contains some inherent regularity, but 

also shows that the system has ergodicity. That is, the system has a long-term 

unpredictability. In other words, the long-term behavior of the system can not be predicted 

if the system displays the so-called “sensitive dependence on initial conditions”. The 

meaning of this definition is that the aperiodicity of chaotic system is exhibited accurately. 

For a dynamical system, the observable behaviour was called stochastic in the past. In fact, it 

can be random-looking, i.e. “stochastic behaviour occurring in a deterministic system”. 

Therefore, it is challenging to quantitatively describe the nature of chaotic dynamics and 

distinguish between the so-called random and chaotic motions from a time series, especially 

from an experimental time series. At present, chaotic time series analysis methods have been 

widely attention in fields of mathematics, physics, biology, biomedicine, robotics, geology, 

engineering, economics, finance, and so on. 

3.2. Phase space reconstruction theory 

3.2.1. Phase space reconstruction 

Phase space reconstruction is generally the first step of chaotic time series analysis from a 

time series data. The dynamic characteristic of the system can be explored through phase 

space reconstruction of the original time series so that the mechanism of the original system 

can be revealed from the original time series[20]. It has been proved by the so-called Takens’ 

embedding theorem[21]. According to the theorem, the reconstructed phase space can 

maintain the invariance of geometry for the original dynamical system[22], such as the 

characteristic value of the fixed point, the fractal dimension of the attractor, the Lyapunov 

exponent in the phase space orbit, and so on. 

Definition 1: Let ),( ρN and ),( 11 ρN  as two metric spaces. If the mapping 1: NN →ϕ  

satisfies ①ϕ  is a surjection; ② ),(),( 1 yxyx ϕϕρρ = , then  ),( ρN and ),( 11 ρN  are called as the 

isometric isomorphism. 

Definition 2: If ),( 11 ρN  is isometric isomorphism with a subspace ),( 20 ρN  of another 

metric space ),( 22 ρN , then ),( 11 ρN  can be embedded into ),( 22 ρN . 

Theorem 1: Let M be a compact manifold of dimension m. For pairs (ϕ, x), MM →:ϕ  a 

smooth diffeomorphism and RMx →:  a smooth function, it is a generic property that the 

map 12
),( : +→ m
x RMϕφ  is an embedding, where ))}((,)),((),({)( 2

),( yxyxyxy m
x ϕϕφ ϕ = . 

In terms of the above definitions and theorem, ))}((,)),((),({)( 2
),( yxyxyxy m
x ϕϕφ ϕ = is a 

subspace of 12 +mR . ),( xϕφ  and the subspace are isometric isomorphic. Then the manifold M 

of dimension m can be embedded into 12 +mR . In other words, 
),( xϕφ  is an embedding of 
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12 +→ mRM . For a practical time series }{ tx , the state of the original system is equivalent to 

the m-dimensional manifold M. In fact, }{ tx is a signal observed in the m-dimensional 

manifold M. If let 
dtt yy τϕ −→: , ϕ is a smooth diffeomorphism. ty  denotes the state of the 

system M at time t. dτ is the delay time. The signal observed in M at time t consist of 

},,,{ 2 dd mttt xxx ττ −−  , where )( tt yxx = , ))(()( yxyxx
dtt ϕττ == −− , …, ))(( 2

2 yxx m
mt d

ϕτ =− . 

),,,( 2),( dd mtttx xxx ττϕφ −−=   is an embedding of 12 +→ mRM . The manifold M is 

diffeomorphic with },,,{ 2 dd mttt xxx ττ −−  . If the embedding dimension is greater than 2 

times the dimension m of the attractor of the original system, the phase space with the base 

of the practical signal delay time coordinates is equivalent to the state space of the original 

system. That is, Takens’ embedding theorem states that if the time series is indeed 

composed of scalar measurements of the state from a dynamical system, then under certain 

genericity assumptions, a one-to-one image of the original set {x} is given by the time-delay 

embedding, provided d is large enough. At present, the delay coordinate method has been 

widely used to give the phase space reconstruction from the original signal. 

For a time series x(t) observed by the measure function h, i.e. 

 )()( Yhtx =  (24) 

the vector tX  can be constructed as follows, 

 
T

dddt dtxtxtxtxX )))1((,),2(),(),(( τττ −−−−=   (25) 

where dτ is an integer multiple of the sampling interval τ , called as the lag time or delay 

time. d is and embedding dimension, d≥2m+1. m is an attractor dimension of the original 

system. 

3.2.2. Problems in phase space reconstruction 

Takens’ embedding theorem offers in the absence of noise, the possibility of reconstructing 

n-dimensional dynamics from one-dimensional infinite data of one observable-measurable 

system. This means that in the case of any delay time, a time series can always be embedded 

into the state space of the system, and when the embedding dimension is sufficiently large, 

reconstructed space and embedded space is almost one-to-one correspondence. Therefore, 

one can reconstruct a phase space from an experimental time series so as to estimate 

dynamical invariants of the time series, such as dimensions, Lyapunov exponents, 

entropies[21, 23, 24] and so on. However, the embedding theorem does not directly answer 

how to choose embedding dimension d and delay time t. In practical application, the 

experimental data is always limited and noisy so that the estimation of the above 

parameters presents some difficulties[25, 26]. Accuracy of the phase space reconstruction is 

critically important to the estimation of invariant measures characterizing system behavior. 

The choice of delay time dτ  and embedding dimension d always has a great impact on the 

phase space reconstruction. 



Computational Intelligence in Electromyography Analysis –  
A Perspective on Current Applications and Future Challenges 134 

Some researchers have studied the choice of delay time dτ [26-30]. If the delay time dτ  is too 

small, the reconstructed attractor will be crowded around the main diagonal, which is called 

as redundance. If dτ is too large, the dynamic shape of the attractor will be broken, which is 

called as irrelevance, and the phase space reconstruction is no longer representative of the 

true dynamics in the real system[28]. In normal circumstances, in order to make the 

elements of tY  independent, dτ  is the same for all the embedding dimension d[27-29]. The 

autocorrelation function method and mutual information technique[30] have been most 

commonly used to give the delay time dτ  although the issue of the delay time choice has 

still been completely resolved. 

For the embedding dimension d, there are three methods that are usually used to choose the 

appropriate embedding dimension, including the correlation dimension, singular value 

decomposition(SVD), the false neighbors[21, 31, 32]. The correlation dimension method is to 

estimate appropriate dimension d in terms of the correlation theorem[8, 21, 33]. By 

increasing the embedding dimension, one notes an appropriate dimension d when the value 

of the correlation dimension stops changing. Broomhead and King[31] used the singular 

value decomposition (SVD) technique to determine an appropriate embedding dimension d 

directly from the raw time series. The false neighbor method is based on the fact that 

choosing a too low embedding dimension results in points, which are far apart in the 

original phase space, being moved closer together in the reconstruction space[32]. Besides, 

there are also some other methods and modified extensions developed based on the above 

methods. However, there are still problems on how to determine the appropriate 

embedding dimension from a scalar time series[34-38]. 

3.3. Correlation dimension 

If a system is chaotic, the strange attractor in a region of the phase space constitutes an 

infinite hierarchy of self-similar structure, i.e. a fractal structure. One can use quantitative 

measures to define the fractal nature. The correlation dimension is a useful measurement. 

Grassberger and Proccacia give a kind of computation method, called GP algorithm[33, 39, 

40]. 

3.3.1. GP algorithm of correlation dimension 

Let X1, X2, ..., Xn be a point of the attractor in phase space. Cl(Xj) is denoted as a hypersurface 

sphere with the radius l at the reference point Xj. µ[Cl(Xi)] is the probability that Xi (i=1, ..., n) 

falls into Cl(Xj), as follows. 

  −−=
=

n

i
jijl XXl

n
XC

1

)(
1

)]([ θµ  (26) 

where • is Euclidean norm. )(rθ is Heaviside function whose value is 1 if r≥0, otherwise, 

zero. 

Then a correlation integral function is defined as 
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   −−=
= =

n

i

n

j
ji XXl

n
lC

1 1
2

)(
1

)( θ  (27) 

with l→0, there are a scaling relation 2)( D
llC ∝  between the correlation integral C(l) and l. A 

correlation dimension D2 is defined. 

 
)ln(

)(ln
lim

0
2

l

lC
D

l→
=  (28) 

In practical computation, D2 is the slope of log C vs log l curve over a selected straight line 

range. 

3.3.2. Correlation dimension theorem[41] 

Theorem 2: Let a map nn RRG →: . A is an attractor of map G that has only a finite number 

of periodic points of period P. Under a natural probability measure µ , the correlation 

dimension of A is )(2 µD . For a measure function h of A, RRh n →: , define a delay 

coordinate map dn
h RRF →:  as 

 ))]((,,))((,)([)( )1(1 XGhXGhXhXF d
h

−−−=   (29) 

where d P≥ . ( )hF µ is a natural probability measure in Rd of ( )hF A . If 2( )d D µ≥ , then for 

almost every h, 2 2( ( )) ( )hD F Dµ µ= . 

The theorem says that with the embedding dimension increasing, the slope of 

corresponding correlation integral curve will converge to the correlation dimension 2D of 

the original system attractor. Therefore, the optimal embedding dimension can be estimated 

by using the correlation dimension 2D . That is, if the embedding dimension 2Dd ≥ , the 

slope of the correlation integral curve is equal to the correlation dimension. This also 

indicates that the dimension estimation actually does not have to meet the requirements of 

the embedding theorem on the embedding dimension 12 2 +≥ Dd . When the embedding 

dimension 2Dd ≥ , the reconstructed attractor can contain the fractal structural feature of the 

original system attractor to reflect the chaotic characteristics of the original system. 

Correlation dimension has been widely used in the analysis of chaotic time series. 

3.3.3. Chaotic test based on correlation dimension 

Chaos has a fractal structure so that the corresponding correlation dimension D2 is a 

fractional value. The estimation of correlation dimension D2 from a time series can be used 

to determine whether the time series is chaotic. If D2
 
is fractional, the original time series can 

have chaotic features, otherwise, it cannot be chaotic. According to the correlation 

dimension theorem, when the embedding dimension d of the reconstructed phase space is 

increased to a certain value, the correlation dimension D2 will be saturated. Then, the 
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optimal embedding dimension d will be given from a time series. The corresponding 

correlation dimension
 
D2  is called as the correlation dimension of this time series. 

Lorenz chaotic time series is given by the state variable x of Lorenz system as follows. 

 














+−=

−−=

−=

xybz
dt

dz

xzyrx
dt

dy

xy
dt

dx
)(σ

 (30) 

where σ=10, b=8/3, γ=28, initial conditions: x(0)=5, y(0)=5, z(0)=15. The sampling intervalτ=0.1. 

The sampling points N=1000. For delay time τd=τ, the corresponding correlation dimension 

values are given in Table 1 when the embedding dimension d is increased from 2 to 12. From 

this table, we can see that the correlation dimension of the time series is about 2.07. The 

result shows that the reconstructed attractor has a fractal structure to reflect the chaotic 

feature of the system. The time series can reconstruct the state space of the original system 

when the embedding dimension d=6. 

Logistic chaotic time series N

nnx 1}{ =  is given by Logistic system in Eq.16 with α=3.9 and e =0. 

The length N is 1000 points. Here,τd=1 (i.e. discrete time series interval). With increasing the 

embedding dimension d, the corresponding correlation dimension is 0.97 (see Table 2). The 

optimal embedding dimension is 2. 

For finite sampling number (e.g. N=1000), the reconstructed attractor will be broken when 

the embedding dimension d is increased continuously to a higher value. The estimation of 

correlation dimension will fail during computation. Therefore, embedding dimension d 

should not be unlimitedly increased. 

d 2 3 4 5 6 7 8 9 10 11 12 

D2
 

1.8009 1.9284 1.9718 2.0389 2.0737 2.0966 2.086 2.0788 2.0705 2.0760 2.0753 

Table 1. The analysis of correlation dimensions of Lorenz chaos time series 

 

d 1 2 3 4 5 6 7 8 9 10 11 

D2
 

0.9598 0.9718 0.9689 0.9713 0.9718 0.9591 0.9774 0.9621 0.9827 0.9826 0.9839 

Table 2. The analysis of correlation dimensions of Logistic chaos time series 

3.3.4. The analysis of surface EMG signal based on correlation dimension 

From the above analysis, we can see that the surface EMG signal has deterministic nonlinear 

component. Here, the correlation dimension is further used to study whether its nonlinear 

component are chaotic. Figure 10a shows a raw data for forearm pronation. Figure 10b gives 

the correlation integral curve of the data under the embedding dimension from 2 to 12. In 
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the recontructed phase space, the delay time dτ is chosen as the sampling interval. With the 

increase of embedding dimension, the straight line segments of the computed correlation 

integral curves will tend to be parallel and keep unchange in the range.  

 
a. The original data b. The correlation integral 

curves of data in Fig. a 

Figure 10. The correlation dimension analysis of surface EMG signal 

The corresponding slope value is the correlation dimension of the surface EMG signal, about

0560.08050.3 ± (see Table 3). The result indicates that the surface EMG signal during 

movement has fractal feature to reveal the implied chaotic motion behavior. Table 3 shows 

that the reconstructed attractor contains the nature of the raw system when the embedding 

dimension is over 6. 

 

d 2 3 4 5 6 7 8 9 10 11 12 

2D  1.9315 2.7037 3.2808 3.4837 3.8047 3.7597 3.8511 3.8864 3.8129 3.7160 3.8039 

Table 3. The analysis of correlation dimension of surface EMG signal during movement 

3.3.5. Study of surrogate data test method based on correlation dimension 

The correlation dimension is a quantitative index that describes the fractal structure of 

chaotic attractor. It measures the freedom degree and complexity of the system. For the raw 

data and all data of φFF ∈ , in the case of the same embedding dimension, the corresponding 

test results will be obviously significant[42]. Here, the correlation dimension is used as a test 

statistic to analyze the surface EMG signal. According to the null hypothesis 3, 39 sets of 

surrogate data are produced in confidence level 95%. In order to quickly obtain the 

correlation dimension in a variety of circumstances, the linear parts of all correlation integral 

curves are taken as the same. Though these values are not accurate, this test algorithm is 

great effective to test the chaotic fractal feature of the experimental data.  

When the sampling interval τ=1, Figure 11a and b show the results of the surrogate data test 

analysis for Lorenz chaotic time series based on correlation dimension. There are significant 

differences between the original data and its surrogate data in m = 5 (see Fig. 11a). This 

result explains that the null hypothesis can be rejected in confidence level 95%. The  
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a. * is D2 value of raw data in m = 5, 1=τ  
histogram is D2 distribution of surrogate 

data, abscissa is D2, ordinate is histogram 

b. The D2 curves of raw data and 

surrogate data with m, abscissa is m=2~10, 

ordinate is D2 

 
c. * is D2 value of raw data in m = 4, τ=0.1 

histogram is D2 distribution of surrogate 

data, abscissa is D2, ordinate is histogram 

d. The D2 curves of raw data and surrogate 

data with m, abscissa is m=2~10, ordinate 

is D2 

 
e. * is D2 value of raw data in m = 2, τ=0.005 

histogram is D2 distribution of surrogate 

data, abscissa is D2, ordinate is histogram 

f. The D2 curves of raw data and surrogate 

data with m, abscissa is m=2~10, ordinate 

is D2 
 

Figure 11. The surrogate data test analysis based on correlation dimension for Lorenz chaos time series 

by sampling intervals 
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differences disappear between the raw data and its surrogate data in m = 10 (see Fig. 11b). 

This illustrates that the reconstructed attractor appears broken. The reconstructed phase 

space is similar to that of the surrogate data with linear stochastic noise characteristics.  

Figure 11c and d show the results with τ=0.1. The differences between the raw data and its 

surrogate data can be seen in Fig. 11c (m = 4). When m>2, these differences become larger as 

m increases. Figure 11e and f show the results with τ=0.005. Figure 11e shows the surrogate 

data test histogram in m = 2. The correlation dimension curves of the raw data and its 

surrogate data are given in m = 2 ~ 10 (see Fig. 11f). Even in the case of oversampling, the 

correlation dimension as test statistic can also make the surrogate data method very 

effective. 

3.3.6. The surface EMG signal analysis based on the surrogate data and correlation 

dimension 

Figure 12 shows the surrogate data analysis for the surface EMG signal in Fig. 12a based on 

correlation dimension. When m = 6, the correlation dimension value of the raw data is 

different from those of its surrogate data generated by the null hypothesis 3. The correlation 

dimension curves of the raw data and its surrogate data are given when m = 2 ~ 8 in Fig. 12b. 

We can see the differences between the original data and its surrogate data. The null 

hypothesis 3 can be rejected in confidence level 95%. The result indicates that the surface 

EMG signal has deterministic nonlinear components, even chaotic. 

 
a. * is D2 of surface EMG in m = 6, histogram is 

D2 distribution of surrogate data, abscissa is D2, 

ordinate is histogram 

b. The curves of surface EMG and 

surrogate data with m, abscissa is 

m=2~8, ordinate is D2 

Figure 12. The surrogate data test analysis based on correlation dimension for surface EMG signal. 

3.4. Largest Lyapunov exponent 

The Lyapunov exponent method is to directly identify whether a system is chaotic. If the 

system is chaotic, the Lyapunov exponent is positive. Otherwise, the Lyapunov exponent is 

negative. For this, the Lyapunov exponent can be used to test the chaotic feature of a signal 

under study. The first algorithms developed computed the whole Lyapunov spectrum by 
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Wolf et al. [43] and Sano et al. [44]. Meanwhile, the largest Lyapunov exponent is sufficient 

for assessing the presence of chaos. At present, there are many algorithms to estimate the 

largest Lyapunov exponent from a time series, such as an algorithm given by Rosenstein et 

al.[45]. This algorithm is aimed specifically at estimating the largest Lyapunov exponent 

from short data.  

3.4.1. Algorithm of largest Lyapunov exponent estimation[45] 

For a short time series, Rosenstein et al. present a robust estimation algorithm of the largest 

Lyapunov exponent. First, the attractor is reconstructed, refer to Eq. 25. Next, the algorithm 

locates the closest neighbor of each point Xi on the trajectory, with respect to the Euclidian 

distance. Then, one defines the distance between two neighboring points at instant n=0 by: 

 ij
X

i XXd
j

−= min)0(  (31) 

where •  is the Euclidian norm. Here, the temporal separation of the nearest neighbors 

should be greater than the mean period of the time series. 

 periodmeanji >−  (32) 

According to time, the average distance between two neighboring vectors can be simply 

 ninji
XXnd ++ −=)(  (33) 

Assume that the system is controlled by the largest Lyapunov exponent only. Then, the 

distance between two neighbor points obey the following relationship: 

 tCetd λ=)(  (34) 

For tnt Δ= , there is: 
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where 
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t
b ln

1

Δ
= . 
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a. y(n) curves of time series x of Lorenz 

chaos system sampled by τ=0.01, 

embedding dimension m=2~8 

b. y(n) curves of time series x of Logistic 

chaos system in α=3.9, embedding 

dimension m=2~8 

 
c. y(n) curves of Henon chaos series 

embedding dimension m=2~8 

d. y(n) curves of gaussian noise 

embedding dimension m=2~8 

 
e. y(n) curves of linear stochastic process 

embedding dimension m=2~8 

f. y(n) curves of Lorenz chaos series in 

1=τ , embedding dimension m=3~8 

 

 

Figure 13. y(n) curves of signals, abscissa is n, ordinate is y(n)  
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Then, the Lyapunov exponent can be given by using a least-squares fit to the “average” line: 

 )(ln
1

)( nd
t

ny
i

Δ
=  (39) 

where bnny += λ)( . The largest Lyapunov exponent λ is the slope of y(n) in the above 

equation. 

This method is deduced directly from the largest Lyapunov exponent definition. The 

accurate evaluation of λ depends on the full use of the data. In practice, the curve y(n) will 

tend to saturation. The largest Lyapunov exponent λ is given by computing the slope of the 

linear part in the curve y(n). 

3.4.2. Chaos test based on largest Lyapunov exponent 

In general, if the signal is chaotic, the slope of the curve y(n) will be independent of the 

embedding dimension. Otherwise, if the signal is not chaotic, the slope of the curve y(n) will 

depend on the embedding dimension. When the embedding dimension m is chosen from 2 

to 8, the Lyapunov exponent of the curve y(n) of the signal is shown in Figure 13. For a 

chaotic signal, a good illustration is given (see Figure 13a, b and c). The y(n) curves are 

different from those of a non-chaotic signal (compare with Figure 13d and e). However, 

even for chaotic signals, the y(n) curves are not always parallel. For example, in the case of 

undersampling ( 1=τ ), the y(n) curves of Lorenz chaotic time series are similar to those of 

linear stochastic process(compare with Figure 13e and f). In the literature[23], the y(n) curves 

of the Ikeda chaotic time series are also not parallel. 

3.4.3. The analysis of surface EMG signal based on the largest Lyapunov exponent 

Figure 14 gives the curves of Lyapunove exponent y(n) for the surface EMG signal. The y(n) 

curves are not very parallel for the surface EMG signal. It is difficult to distinguish the 

curves of y(n) for the surface EMG signal  from those of Figure 13d, f and g. The surface 

EMG signal can not be determined as chaotic, or as stochastic. But it can be a high-

dimensional system. 

 

Figure 14. y(n) curves of surface EMG signal,  embedding dimension m=2~8, abscissa is n, ordinate is 

y(n)  
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3.5. Principal component analysis 

Broomhead and King[31] proposed the idea of singular system analysis that determines an 

appropriate embedding dimension d directly from the raw time series. It provides its 

convenience for the further analysis of the given system. Numerical experience, however, 

led several authors to express some doubts about reliability of singular system analysis in 

the attractor reconstruction[46-48]. Palus and Dvorak[37] explain why singular-value 

decomposition(SVD), the heart of the singular system analysis and by nature a linear 

method, may become misleading technique when it is used in nonlinear dynamics studies 

that reconstruction parameters are time-delay, embedding dimension (or embedding 

windows). For this, we propose a novel nonlinear analysis method based symplectic 

geometry, called symplectic principal component analysis(SPCA)[49]. 

3.5.1. Principle and algorithm of principal component analysis 

Let a time series x1, x2,..., xn be the measured signal by sampling interval ts, n is the number 

of samples. According to Takens’ embedding theorem, a trajectory matrix X can be given by 

time delay coordinates method, refer to Eq. 25(τd=1): 
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 (40) 

where d is embedding dimension. m=n-d+1 is the number of points in d-dimension 

reconstruction attractor, miX T

i ,,1, = , denotes a point in the attractor. For the matrix X, 

there are a m×d orthogonal matrix V and a d×d  orthogonal matrix. The matrix X can be 

decomposed as follows. 

 TVSUX =  (41) 

where S is d×d diagonal matrix, whose elements are defined 

 djimS
iijij

,,2,1,, == σδ  (42) 

Since the matrix V is orthogonal, then  

 
ijij

T VV δ=⋅ )(  (43) 

Meanwhile, for the matrix U, there are 

 
ijij

T

ij

T UUUU δ=⋅=⋅ )()(  (44) 

In order to facilitate the calculation, Broomhead et al. applies the covariance matrix C of the 

matrix X to replace the matrix X. The details are as follows: 
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Its values reflect the degree of correlation between the time delay coordinate variable i and j. 
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Let Y=XU, then: 

 211
S

m
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m
UCU TT ⋅=⋅⋅=⋅⋅  (49) 

where UTCU is the covariance matrix of the matrix Y. Its elements are zero, except that the 

diagonal elements are equal to σi. This means that the variables i and j of the matrix Y are 

independent. The coordinate system is orthogonal, which is constituted from the variables 

of the matrix Y after the above transformed. The σi
 
 is called the principal component or 

singular value in accordance with the order of the largest to the smallest. The orthogonal 

vector Ui corresponding to the principal component σi
 
 is called the principal axis. The 

principal component describes the distribution of the signal energy. That is, the value of the 

principal component reflects the projection of the signal energy in the corresponding 

principal axis. In the different principal axes, a distribution value is given as  =
d
i ii 1/ σσ , 

where  =
d
i i1σ  is the total energy of the signal. If 

di σσ ≈≈+ 1
, the distribution values are 

called a noise floor. The distribution can be used to estimate the dimension of the dynamical 

system that generates a time series or to filter out the noise. Let 
iU  be the principal axes 

corresponding to the principal components over the noise floor. Zero vector describes the 

principal axes corresponding to the noise floor. Thus, for σi
 
> noise floor, a new coordinate 

transform matrix is made up of: 

 ]0,,0,,,,[ 21  iUUUU =  (50) 

In order to filter out noise, the trajectory matrix X is first projected into the coordinate 

system U. 

 XUY =  (51) 

The variables in the matrix Y are independent. Then, the original coordinate system is 

updated by using the matrix Y: 

 TT UXUUYX ⋅== )(  (52) 

That is, X  is a new time delay coordinate system. 
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3.5.2. Influence of noise on the principal component spectrum of chaotic time series 

Figure 15a shows the principal component spectrum of Logistic attractor from a Logistic 

chaotic time series without noise. The principal component spectrum has not a significant 

noise level. When the interior noise is Gaussian noise with zero mean and 0.0012 variance, 

the principal component spectrum is given for Logistic attractor. Figure 15c and d give the 

principal component spectrum of Logistic attractor with the measurement noise σ2=0.0012 

and σ2=0.82, respectively. It can be seen that the Logistic attractor with the internal noise has 

the same principal component spectrum as the attractor without noise. The curves of the 

principal component spectrum are also slanting. The total energy is significantly distributed 

into each principal axes. The principal components are declining with the index i so that 

there is no noise floor. It is difficult to choose an appropriate embedding dimension d. For 

the larger measurement noise, the corresponding principal component spectrum of Logistic 

attractor slant into a floor area with increasing the embedding dimension. In the floor area, 

the principal components keep unchanged and do not decline with the index i, called noise 

floor. Broomhead and King[31] have suggested that this noise floor can be used to 

determine the embedding dimension and filter out noise from the data. The signal energy 

will be focused on the truncated principal components and the corresponding principal axes 

 
a. The principal components of Logistic with no 

noise 

b. The principal components of Logistic 

with interior noise σ2=0.0012 

 
c. The principal components of Logistic with 

exterior noise σ2=0.0012 

d. The principal components of Logistic 

with exterior noise σ2=0.82 

Figure 15. The principal component analysis of Logistic chaos series with different noises based on 

SVD, d=3 : 2 : 23, abscissa is d, ordinate is ))(/log( ii tr σσ   
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when the principal components above noise floor are only held. The number of the principal 

components above the noise floor is the optimal embedding dimension.  

Besides, the new coordinate system corresponding to the principal axes can eliminate the 

noise floor to reduce the noise from the data. However, the truncated position of the 

principal components depends on the signal-noise-ratio, especially for the measurement 

noise. The principal components of the chaotic time series based on SVD spectrum more 

easily subject to the measurement noise so that the embedding dimension estimation is 

directly affected. For the smaller noise, there is the more number of principal components 

above the noise floor. For the larger noise, the number of the corresponding principal 

components will be reduced. Here, the above calculation accuracy is 2.2204e-016, which 

does not consider the numerical calculation error. 

3.5.3. Influence of sampling interval on the principal component spectrum of chaotic time 

series[49] 

The Lorenz chaotic system is considered to give the state variable x in order to study the 

influence of sampling interval on the principal component spectrum. The principal 

component spectrum slant and have no floor for the chaotic time series x with τ=0.005 (see 

Fig. 16a). When τ=0.1 (see Fig. 16b), the principal component spectrum are basically similar  

 
a. The principal components of Lorenz chaos 

time series, τ=0.005 

b. The principal components of Lorenz 

chaos time series, τ=0.1 

 
c. The principal components of Lorenz chaos 

time series, τ=1 

d. The principal components of noise, 

n=10000 

Figure 16. The principal component analysis of gaussian noise and Lorenz chaos time series by 

different sampling intervals based on SVD, d=3 : 2 : 23, abscissa is d, ordinate is ))(/log( ii tr σσ  
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to those in the Figure 16a. When τ=1, each line is separated from each other and tends to 

horizontal line in the case of different embedding dimensions(see Fig. 16c). It shows that the 

distribution of the total energy has little difference in each principal axis, like the Gaussian 

noise (see Fig. 16d). For the Gaussian noise, its principal component spectrum curves are 

horizontal lines, where N=10000. It shows that every principal component is equal to each 

other. The energy distributes into every principal axis averagely. Therefore, it can be seen 

that sampling interval affects the determination of embedding dimension. When the 

sampling interval is not undersampling, the determination of embedding dimension 

depends the amount of signal-noise-ratio. In the case of undersampling, the chaotic time 

series is similar to noise so that the embedding dimension seems to be estimated as 1. 

3.6. Symplectic principal component analysis 

The symplectic geometry is a kind of phase space geometry. Its nature is nonlinear. It can 

describe the system structure, especially nonlinear structure, very well. It has been used to 

study various nonlinear dynamical systems[50-52] since Feng Kang[53] has proposed a 

symplectic algorithm for solving symplectic differential. However, from the view of data 

analysis, few literatures have employed symplectic geometry theory to explore the 

dynamics of the system. Our previous works have proposed the estimation of the 

embedding dimension based on symplectic geometry from a time series[49, 54-56]. 

Subsequently, Niu et al. have used our method to evaluate sprinter’s surface EMG 

signals[57]. Xie et al[58] have proposed a kind of symplectic geometry spectra based on our 

work. Subsequently, we show that SPCA can well represent chaotic time series and reduce 

noise in chaotic data[59, 60]. 

In SPCA, a fundamental step is to build the multidimensional structure (attractor) in 

symplectic geometry space. Here, in terms of Taken’s embedding theorem, we first construct 

an attractor in phase space, i.e. the trajectory matrix X from a time series. That is, for a 

measured data (the observable of the system under study) x1, x2, ..., xn recorded with 

sampling interval ts, the corresponding d-dimension reconstruction attractor, Xm×d can be 

given (refer to Eq.40).Then we describe the symplectic principal component analysis (SPCA) 

based on symplectic geometry theory and give its corresponding algorithm. 

3.7. Symplectic principal component method 

SPCA is a kind of PCA approaches based on symplectic geometry. Its idea is to map the 

investigated complex system in symplectic space and elucidate the dominant features 

underlying the measured data. The first few larger components capture the main 

relationship between the variables in symplectic space. The remaining components are 

composed of the less important components or noise in the measured data. In symplectic 

space, the used geometry is called symplectic geometry. Different from Eulid geometry, 

symplectic geometry is the even dimensional geometry with a special symplectic structure. 

It is dependent on a bilinear antisymmetric nonsingular cross product——symplectic cross 

product: 
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The measurement of symplectic space is area scale. In symplectic space, the length of 

arbitrary vectors always equals zero and without signification, and there is the concept of 

orthogonal cross-course. In symplectic geometry, the symplectic transform is the nonlinear 

transform in essence, which is also called canonical transform, since it has measure 

preserving characteristics and can keep the natural properties of the original data 

unchanged. It is fit for nonlinear dynamics systems.  

The symplectic principal components are given by symplectic similar transform. It is similar 

to SVD-based PCA. The corresponding eigenvalues can be obtained by symplectic QR 

method. Here, we first construct the autocorrelation matrix Ad×d of the trajectory matrix Xm×d. 

Then the matrix A can be transformed as a Hamilton matrix M in symplectic space. 

Definition 1 Let S is a matrix, if ∗−− = SJSJ 1 , then S is a symplectic matrix. 

Definition 2 Let H is a matrix, if ∗− −= HJHJ 1 , then H is a Hamilton matrix. 

Theorem 1 Any d×d matrix can be made into a Hamilton matrix. Let a matrix as A, so









− TA

A

0

0
 is a Hamilton matrix. (Proof refers to appendix A) 

Theorem 2 Hamilton matrix M keeps unchanged at symplectic similar transform. (Proof 

refers to appendix A) 

Theorem 3 Let ddCM 22 ×∈ as Hamilton matrix, so Me is symplectic matrix. 

Theorem 4 Let ddCS 22 ×∈ as symplectic matrix，there is QRS = , where Q is symplectic 

unitary matrix, R is upper triangle matrix. 

Theorem 5 The product of sympletcic matrixes is also a symplectic matrix. (Proof refers to 

appendix A) 

Theorem 6 Suppose Household matrix H is： 
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where
ϖϖ

ϖϖ
*

*2
−= nIP ， 0),,;0,,0( ≠= T

dk ωωϖ   

so, H is symplectic unitary matrix. *ϖ  is ϖ  conjugate transposition. (Proof refers to 

appendix A) 

For Hamilton matrix M，its eigenvalues can be given by symplectic similar transform and 

the primary 2d dimension space can be transformed into d  dimension space to resolve[17-19], 

as follows: 

i. Let 
2MN =  

 
2

2









−
=

AF

GA
M

T

 (58) 

ii. Construct a symplectic matrix Q,  

 







=

T

T

B

RB
NQQ

0
 (59) 

where B is up Hessenberg matrix (bij=0, i>j+1). The matrix Q may be a symplectic 

Household matrix H. If the matrix M is a real symmetry matrix, M can be considered as N. 

Then one can get an upper Hessenberg matrix (referred to equ. 13), namely, 
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 (60) 

where H is the symplectic Householder matrix. 

iii. Calculate eigenvalues { }dB µµµλ ,,,)( 21 =  by using symplectic QR decomposition 

method; if M is a real symmetry matrix, the eigenvalues of A is equal to those of B: 

 )()( AB λλµ ==  (61) 

 )()( 2 XA λλ =  (62) 

iv. These eigenvalues { }dµµµ ,,, 21 =μ are sorted by descending order, that is 

 
dkk µµµµµ ≥≥>>>>> +  121
 (63) 

Thus the calculation of 2d dimension space is transformed into that of that of d dimension 

space. The μ is the symplectic principal component spectrums of A with relevant symplectic 
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orthonormal bases. In the so-called noise floor, values of ,iµ dki ,,1+= , reflect the noise 

level in the data[49, 55]. The corresponding matrix Q denotes symplectic eigenvectors of A.  

3.7.1. Proposed algorithm of symplectic principal component method 

For a measured data x1, x2, ..., xn, our proposed algorithm consists of the following steps: 

1. Reconstruct the attractor Xm×d from the measured time series, where d is the embedding 

dimension of the matrix X, and m = n-d+1. 

2. Remove the mean values Xmean of each row of the matrix X. 

3. Build the real d×d symmetry matrix A, that is, 

 )()( meanmean XXXXA −′−=  (64) 

Here, d should be larger than the dimension of the system in terms of Taken’s 

embedding theorem.  

4. Calculate the symplectic principal components of the matrix A by QR decomposition, 

and choose the Householder matrix H instead of the transform matrix Q. It is easy to 

prove that H is a symplectic unitary matrix (Proof refers to appendix A) and H can be 

constructed from real matrix (refer to appendix B). 

5. Construct the corresponding principal eigenvalue matrix W according to the number k 

of the chosen symplectic principal components of the matrix A, where W ⊆ Q. That is, 

when k=d, W=Q, otherwise W⊂Q. In use, k can be chosen according to Eq.63. 

6. Get the transformed coefficients S = {S1, S2, …, Sm}, where 

 miXWS ii ,,1,' ==  (65) 

7. Reestimate the Xs from S,  

 
isi WSX =  (66) 

Then the reestimation data smss xxx ,,, 21   can be given. 

8. For the noisy time series, the first estimation of data is usually not good. Here, one can 

go back to the step (6) and let Xi =Xs in Eq.(65) to do step (6) and (7) again. Generally, 

the second estimated data will be better than the first estimated data. 

Besides, it is necessary to note that for the clean time series, the step (8) is unnecessary to 

handle. 

3.7.2. Performance evaluation 

SPCA, like PCA, can not only represent the original data by capturing the relationship 

between the variables, but also reduce the contribution of errors in the original data. Here, 

the performance analysis of SPCA is studied from the two views, i.e. representation of 

chaotic signals and noise reduction in chaotic signals. 
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Representation of chaotic signals 

We first show that for the clean chaotic time series, SPCA can perfectly reconstruct the 

original data in a high-dimensional space. We first embed the original time series to a phase 

space. Considering the dimension of the Lorenz system(see Eq. 30) is 3, d of the matrix A is 

chosen as 8 in our SPCA analysis. To quantify the difference between the original data and 

the SPCA-filtered data, we employ the root-mean-square error (RMSE) as a measure: 

  −=
=

N

i

ixix
N

RMSE
1

2)](ˆ)([
1

 (67) 

where )(ix and )(ˆ ix are the original data and estimated data, respectively. 

When k = d, the RMSE values are lower than 10-14 (see Figure 17). In Figure 17, the original 

data are generated by Eq. 30. The estimated data is obtained by SPCA with k=d. The results 

show that the SPCA method is better than the PCA. Since the real systems are usually 

unknown, it is necessary to study the effect of sampling time, data length, and noise to the 

SPCA approach. From the Figure 17 and 18, we can see that the sampling time and data 

length have less effect on SPCA method in the case of free-noise. 

 
Figure 17. (Color online) RMSE vs. Sampling time curves for the SPCA and PCA.          

 
Figure 18. (Color online) RMSE vs. data length curves for the SPCA and PCA. 

For analyzing noisy data, we use the percentage of principal components (PCs) to study the 

occupancy rate of each PC in order to reduce noise. The percentage of PCs is defined by 
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where d is the embedding dimension, iµ  is the i-th principal component value. From the 

Figure 19, we find that the first largest symplectic principal component (SPC) of the SPCA is 

a little larger than that of the PCA. It is almost possessed of all the proportion of the 

symplectic principal components. This shows that it is feasible for the SPCA to study the 

principal component analysis of time series. 

Next, we study the reduced space spanned by a few largest symplectic principal 

components (SPCs) to estimate the chaotic Lorenz time series (see Fig. 20). In Figure 20, the 

data x is given with a sampling time of 0.01 from chaotic Lorenz system. The estimated data 

is calculated by the first three largest SPCs. The average error and standard deviation 

between the original data and the estimated data is -6.55e-16 and 1.03e-2, respectively. The 

 
Figure 19. (Color online) The percentage of principal components for the SPCA and PCA. 

 

 
a b 

Figure 20.  (Colour online) Chaotic signal reconstructed by the proposed SPCA algorithm with k=3, 

where (a) the time series of the original Lorenz data x without noise and the estimated data; (b) phase 

diagrams with L =11 for the original Lorenz data x without noise and the estimated data. The sampling 

time ts = 0.01. 
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estimated data is very close to the original data not only in time domain (see Figure 20a) but 

also in phase space (see Figure 20b). We further explore the effect of sampling time in 

different number of PCs. When the PCs number k =1 and k =7, respectively, the SPCA and 

PCA give the change of RMSE values with the sampling time in Figure 21. We can see that 

the RMSE values of the SPCA are smaller than those of the PCA. The sampling time has less 

impact on the SPCA than the PCA. In the case of k = 7, the data length has also less effect on 

the SPCA than the PCA(see Fig. 22). 

Comparing with PCA, the results of SPCA are better in the above Figures. We can see that 

the SPCA method keep the essential dynamical character of the primary time series 

generated by chaotic continuous systems. These indicate that the SPCA can reflect intrinsic 

nonlinear characteristics of the original time series. Moreover, the SPCA can elucidate the 

dominant features underlying the observed data. This will help to retrieve dominant 

patterns from the noisy data. For this, we study the feasibility of the proposed algorithm to 

reduce noise by using the noisy chaotic Lorenz data. 

 
Figure 21. The RMSE values vs. the sampling time for the SPCA and PCA, where (a) the PCs number k 

=7; (b) k =1. 

 
Figure 22. The RMSE vs. the data length for the SPCA and PCA, where k =7. The sampling time is 0.1. 

Noise reduction in chaotic signals 

For the noisy Lorenz data x, the phase diagrams of the noisy and clean data are given in 

Figure 23a and 23b. The clean data is the chaotic Lorenz data x with noise-free (see Eq. 30).  
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Figure 23. The noise reduction analysis of the proposed SPCA algorithm and PCA for the noisy Lorenz 

time series, where L=11. 
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The noisy data is the chaotic Lorenz data x with Gaussian white noise of zero mean and one 

variance (see Eq. 30). The sampling time is 0.01. The time delay L is 11 in Figure 23. It is 

obvious that noise is very strong. The first denoised data is obtained in terms of the 

proposed SPCA algorithm (see Figure 23c- f). Here, we first build an attractor X with the 

embedding dimension of 8. Then the transform matrix W is constructed when k=1. The first 

denoised data is generated by Eq.(65) and (66). In Figure 23c, the first denoised data is 

compared with the noisy Lorenz data x from the view of time field. Figure 23d shows the 

corresponding phase diagram of the first denoised data. Compared with Fig. 23a, the first 

denoised data can basically give the structure of the original system. In order to obtain 

better results, this denoised data is reduced noise again by the step (8). We can see that after 

the second noise reduction, the results are greatly improved in Fig. 23e and 23f, respectively. 

The curves of the second denoised data are better than those of the first denoised data 

whether in time domain or in phase space by contrast with Fig. 23c and 23d. Figure 23g 

shows that the PCA technique gives the first denoised result. We refer to our algorithm to 

deal with the first denoised data again by the PCA (see Figure 23h). Some of noise has been 

further reduced but the curve of PCA is not better than that of SPCA in Figure 23e. The 

reason is that the PCA is a linear method indeed. When nonlinear structures have to be 

considered, it can be misleading, especially in the case of a large sampling time (see Figure 

24). The used program code of the PCA comes from the TISEAN tools (http://www.mpipks– 

dresden.mpg.de/ ~tisean). 

 

Figure 24. (Color online) D2 vs. embedding dimension d 

Figure 24 shows the variation of correlation dimension D2 with embedding dimension d in 

the sampling time of 0.1 for the clean, noisy, and denoised Lorenz data. We can observe that 

for the clean and SPCA denoised data, the trend of the curves tends to smooth in the vicinity 

of 2. For the noisy data, the trend of the curve is constantly increasing and has no platform. 

For the PCA denoised data, the trend of the curve is also increasing and trends to a platform 

with 2. However, this platform is smaller than that of SPCA. It is less effective than the 

SPCA algorithm. This indicates that it is difficult for the PCA to describe the nonlinear 

structure of a system, because the correlation dimension D2 manifests nonlinear properties 

of chaotic systems. Here, the correlation dimension D2 is estimated by the Grassberger-

Procaccia’s algorithm[33, 40]. 
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3.7.3. Estimation of embedding dimension based on symplectic geometry 

In terms of Eq. 63, the values of µi, i=k+1, ..., d, are far smaller than µk. These values form a 

noise floor. Therefore, the embedding dimension of the reconstruction system can be 

determined by the noise floor. Here, the noise and nonlinear time series are used to 

investigate the feasibility of the embedding dimension estimation based on symplectic 

geometry.  

For noise (which is generally regarded as Gauss white noise with mean value 0 and variance 

1 in practical systems), symplectic geometry spectrums of this noise give the even 

distribution of its total energy (see Fig. 25a). From this figure, we can see that the symplectic 

geometry spectrums of noise can reflect the characteristic of noise very well when N=1000. 

This shows SG method can reflect noise level in the condition of short data length. For the 

time series of state variable x in Logistic chaos system without noise interference, the 

symplectic geometry spectrums (see Fig. 25b) are slant in the beginning then turn into plane 

area with the increase of index i. In other words, the distribution of total energy on the 

different axes is obviously different and with increasing the embedding dimension, the 

slants of symplectic geometry spectrums transit into noise floor. So one can determine 

embedding dimension from the number of symplectic geometry spectrums over noise floor, 

in which its determining criterion is similar to that in [37]. From Fig. 25b, the embedding 

dimension of Logistic chaotic time series can be estimated at 4 because the symplectic 

geometry spectrums begin to turn into noise floor at index 5. In a similar way, for Lorenz 

chaos time series without noise, when sampling interval τ=0.005, the embedding dimension 

can be estimated at 6 (see Fig. 25c).  

Comparison of the results of our method (see Fig. 25b and 25c) and the results of SVD 

method (see Fig. 25d and 25e) shows that in SG method, the position of the noise floor is 

determined by the intrinsic dynamical structure of the nonlinear dynamic system rather 

than the numerical accuracy of the input data and the computation precision, but in SVD 

method, the noise floor was determined reversely[8, 37, 61].  

In a word, the numerical experiments discuss that for the nonlinear dynamic systems, SG 

method can give the appropriate embedding dimension from their time series but SVD 

method cannot. So SG method is fit to deal with nonlinear systems. 

3.7.4. Robustness of the embedding dimension estimation based on symplectic geometry 

It is well known that the recent methods about embedding dimension are almost more or 

less subjective, or are affected by changes of the data length, noise, time lag, or sampling 

time, etc. Here, it is necessary that the robustness of the SG method is studied. 

The effect of data length 

In order to avoid the effect of the characteristics of the nonlinear system, this paper only 

considers and uses the noise to analyze the effect of data length. For Gauss white noise with 

mean value 0 and variance 1, when N=1000, the SG method can give better results than the 

SVD method (see Fig. 26a) because the total energy is distributed equably (see Fig. 25a). 
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a. The symplectic geometry spectrums of Gauss

white noise with mean value 0 and variance 1 

b. The symplectic geometry spectrums of 

Logistic chaotic series with no noise 

 
c. The symplectic geometry spectrums of 

Lorenz chaotic series with no noise, τ=0.005 

d. The SVD principal components of Logistic 
chaotic series with no noise 

e. The SVD principal components of Lorenz 

chaotic series with no niose, τ=0.005 

Figure 25. The study of embedding dimension based on symplectic geometry algorithm, N=1000, d=3, 

8, 13, 18, 23, abscissa is d, ordinate is ))(/log( ii tr µµ  

And yet when N is rather large, e.g. N=10000, the SVD method can just have the similar 

results (see Fig. 26b) with Fig. 25a. These show that the SG method is more robust to 

changes of the data length than the SVD method. Then the SG method is fitter to the 

analysis of short time series. 
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Figure 26. The analysis of SVD principal components of noise with different data length, d=3, 8, 13, 18, 

23, abscissa is d, ordinate is ))(/log( ii tr µµ  

 
a. The symplectic geometry spectrums of 

Logistic chaos series with interior noise, 
22 001.0=σ  

b. The symplectic geometry spectrums of 

Logistic chaos series with exterior noise, 
22 001.0=σ  

 
c. The symplectic geometry spectrums of 

Logistic chaos series with exterior noise, 
22 8.0=σ  

d. The symplectic geometry spectrums 
of Lorenz chaos series with exterior 

noise, 22 01.0=σ  
Figure 27. The study of symplectic geometry spectrum analysis in different noises, N=1000, d=3, 8, 13, 

18, 23, abscissa is d, ordinate is ))(/log( ii tr µµ  

The effect of noise 

At present, there are many estimators of appropriate embedding dimension, but it has 

gradually been realized that such estimators are useful only for low-dimensional noise-free 
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systems; such systems, however, seem hardly to occur in the real life. Therefore, this paper 

studies the robustness of the SG method under noise. For the signal obtained from the real 

system, it is always contaminated by noise (inner noise or/and outer noise). Although 

contaminated by inner or/and outer noise, the embedding dimension of Logistic system can 

always be noted at 4 by using the SG method because the noise floor begins at the 

embedding dimension 5 (see Fig. 27a and 27b). These show either inner noise or outer noise 

has little impact on the symplectic geometry spectrums. On the further increase of noise, the 

position of noise floor is obviously raised from the Figure 27c, but the appropriate 

embedding dimension 2 can still be obtained. In the similar way, for Lorenz chaos time 

series without and with noise, when sampling interval τ=0.005, the embedding dimension is 

6 without noise and 3 with noise, respectively (see Fig. 25c and Fig. 27d). These results show 

that the SG method is useful for Lorenz system with noise, too. Meanwhile, we find that the 

SG method can obtain the results similar to nonlinear high singular spectrum algorithm[62]. 

Thus, it further shows that the SG method can reflect intrinsic nonlinear characteristics of 

the raw data. 

 
a. The symplectic geometry spectrums, 

τ=0.1 

b. The principal components based 

on SVD, τ=0.1 

 
c. The symplectic geometry 

spectrums, τ=0.005 

d. The symplectic geometry 

spectrums, τ=1 

Figure 28. The symplectic geometry spectrum analysis of Lorenz chaos series by different sampling 

intervals, N=1000, d=3, 8, 13, 18, 23, abscissa is d, ordinate is ))(/log( ii tr µµ  

The effect of sampling interval 

For the changes of the sampling interval from τ=0.005 to τ=0.1, this paper finds that the 

embedding dimension can be estimated at 6 from the corresponding symplectic geometry 
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spectrums of Lorenz chaos time series (see Fig. 25c and Fig. 28a), although the position of 

noise floor is constantly driven up. However, in the same condition, SVD method cannot 

give the appropriate embedding dimension (see Fig. 25e and 28b), the results of which are 

similar to the results of the literature[61]. Besides, no matter the sampling interval is over 

sampling or under sampling, SG method can always give the appropriate embedding 

dimension d of Lorenz chaos time series (see Fig. 28c and 28d) because the correlation 

dimension m of Lorenz system is 2.07, in general, if d>m, d is viable. 

3.7.5. Analysis of the surface EMG signal based on symplectic geometry 

For the action surface EMG signal (ASEMG) collected from a normal person, SVD method 

cannot give its appropriate embedding dimension (see Fig. 29a). The method based on 

correlation theory can do it but costs much time for computation. Here, SG method can fast 

obtain its embedding dimension. Figure 29b is the symplectic geometry spectrums of action 

surface EMG signal. The embedding dimension can be chosen as 6, which is the same as that 

of correlation dimension analysis[3]. This further shows that the SG method has stronger 

practicability for the small sets of experiment data.  

 

 
a. The SVD principal component spectrums b. The symplectic geometry spectrums 

Figure 29. The analysis of action surface EMG signal, d=3, 8, 13, 18, 23, abscissa is d, ordinate is 

))(/log( ii tr µµ  

4. Study of nonlinear dynamical systems based on multifractal theory 

Fractal is a kind of geometry structures that have similarity in structure, form or function 

between the local and the whole. In nature, almost every object is very complex and 

performs a self-organization phenomenon that is a spatiotemporal structure or state 

phenomenon by forming spontaneously. From the view of geometry structure, this object 

has its own self-similarity properties in many parts, called a multifractal system. This 

structure can often be characterized by a set of coefficients, such as multifractal dimension, 

wavelet multifractal energy dimension. The multifractal theory reflects the complexity and 

richness of the nature in essence. 
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4.1. Self-affine fractal[63-65] 

Definition 1  Let the mapping nn RRS →: . S is defined by 

 bxTxS += )()(  (69) 

where T is a linear transformation on Rn. b is a vector in Rn. Thus, S is a combination of a 

translation, rotation, dilation and, perhaps, a reflection, called an affine mapping. Unlike 

similarities, affine mappings contract with differing ratios in different directions. 

Theorem 1  Consider the iterated function system given by the contractions{
mSS ,,1  }on

nRD⊂ , so that 

 yxCySxS iii −≤− )()( , Dyx ∈∀ ,  (70) 

with 1<∃ iC  for each i. Then there is a unique attractor F, i.e. a non-empty compact set such 

that 

 
m

i
i FSF

1

)(
=

=  (71) 

Moreover, if we define a transformation S on the class φ of non-empty compact sets by 

 
m

i
i ESES

1

)()(
=

=  (72) 

For E∈φ, and write Sk for the kth iterate of S (so EES =)(0  and ))(()( 1 ESSES kk −=  for  

1≥k ), then 

 
∞

=

=
1

)(
k

k ESF  (73) 

for every set E∈φ such that EESi ⊂)(  for all i. 

If an IFS consists of affine contractions {
mSS ,,1  } on Rn, the attractor F guaranteed by 

Theorem 1 is termed a self-affine set. 

Since self-affine time series have a power-law dependence of the power-spectral density 

function on frequency, .self-affine time series exhibit long-range persistence. For a practical 

data, one can use the relationship of power spectrum and frequency to determine if the data 

has the self-affine fractal characteristic.  

4.2. Spectrum analysis[65, 66] 

Let a time series be )(tx , ],0[ Tt∈ . Its spectrum is given by 

 =
T iftdtetxTfX
0

2)(),( π  (74) 

where f is frequency. The power spectrum of f is defined by 

 2
),(

1
)( TfX
T

fS =  (75) 
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If the power spectrum obeys a power law 

 
β−⋅= fKfS )(  (76) 

for large f, the time series x(t) has the self-affine fractal characteristic. The self-affine fractal 

dimension D is given 

 2/)5( β−=D  (77) 

S(f) is plotted as a function of f with log-log scaling. β is the negative of the slope of the best-

fit straight line in the range of large f. Note that the value of β is a measure of the strength of 

persistence in a time series. β>1 reflects strong persistence and nonstationary. 1>β>0 

describes weak persistence and stationary. β=0 shows uncorrelated stationary. β<0 indicates 

antipersistence and stationary. In all cases, however, a self-affine time series with a non-zero 

β has long-range (as well as short-range) persistence and anti-persistence. For small β, the 

correlations with large lag are small but are non-zero. This can be contrasted with time 

series that are not self-affine; these may have only short-range persistence (either strong or 

weak).  

Although the self-affine mapping are varied in a continuous way, the dimension of the self-

affine set need not change continuously. Unfortunately, the self-affine fractal situation is 

much more complicated. It is quite difficult to obtain a general formula for the dimension of 

self-affine sets. It is not enough that only one fractal dimension is used to describe the self-

affine fractal time series. The multifractal dimensions have been proposed to describe this 

kind of the time series[67-72]. 

4.3. Multifractal dimension 

For a measured time series of a multifractal system, its trajectory in phase space is often 

attracted to a bounded fractal object called strange attractor for which a whole set of 

dimension Dq has been introduced which generalize the concept of the Hausdorff 

dimension. Let X1, ..., Xn be a point of the attractor in the phase space. The probability that 

the trajectory point is found within a ball of radius l around one of the inhomogeneously 

distributed points of the trajectory is denoted by 

 )(
1

)(
1
 −−=
=

n

i
jii

XXl
n

C θµ  (78) 

where 
( )Xθ

is the Heaviside step function. If 0X ≥ , ( ) 1Xθ = ; otherwise, ( ) 0Xθ = . 

The q-order correlation integral is defined by 

 =
=

−
n

j

qq

iq C
n

lC
1

)1(
1

)))((
1

()( µ  (79) 

The multifractal dimension Dq can be computed by the following equation: 
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The above Dq is the multifractal dimension method based on Grassberger and Procaccia. The 

generalized correlation integral )(lC q which can be obtained from an experimental time 

series yields in a plot )(ln lC q  vs lnl straight lines with slopes Dq. For q=0, the D0 is called the 

topological dimension, fractal dimension or capacity dimension. For q=1, the D1 is called the 

information dimension. For q=2, the D2 is called correlation dimension. The function Dq is 

monotonically decreasing with q and gives information about the inhomogeneity of the 

attractor. For simple fractals, called monofractals, such as a homogeneous attractor, the 

multifractal dimension Dq is constant. In the general case of multifractal objects, the values 

of Dq monotonically decrease as q increase[67]. The shape of the Dq can be considered a 

criterion confirming that the object is a nonuniform fractal. Furthermore, it can be 

determined if the object is a nonlinear, complex structure by using the multifractal 

dimension of the signal. 

4.4. Analysis of surface EMG signal based on multifractal dimension 

The surface EMG signal is a complicated physiological signal. Its distribution is clearly 

uneven (see Figure 30). When the surface EMG signal is studied by using the fractal method, 

one should first determine if the surface EMG signal is fractal. Then, its corresponding 

fractal dimension D can be estimated by Eq.(77) under a certain resolution. Figure 30 shows 

the self-affine fractal analysis of the surface EMG signals from Channel 1 during finger 

flexion, finger tension, forearm pronation and forearm supination (the results of Channel 2 

are similar to those of Channel 1). It can be seen that the surface EMG signals have self-

affine fractal characteristics. The results explain the physiological mechanism of the surface 

EMG signals. 

In view of self-affine fractal characteristics, only one single fractal dimension is not easy to 

characterize the dynamics of surface EMG signals for different actions (see Table 4). There is 

little difference for the self-affine fractal dimensions of the four actions, where each type of 

action signals was chosen 100 sets of the data. The data length is 1000 points. In other words, 

it is difficult to identify the surface EMG signals of the different actions by using a single 

fractal dimension. The multifractal dimension values should be used to describe the action 

surface EMG signals during the arm movements. 

 

 Finger flexion Finger tension Forearm pronation Forearm supination 

Channel 1 -0.2402±0.0725 -0.2571±0.0947 -0.0280±0.3250 0.0692±0.1418 

Channel 2 0.0738±0.5734 -0.3199±0.2842 -0.0901±0.2591 -0.2343±0.2134 

Table 4. The self-affine D of surface EMG signals during movements 
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a. finger flexion b. finger tension 

 
c. forearm pronation d. forearm supination 

Figure 30. The analysis study of self-affine of surface EMG signal: Curve is power spectrum of surface 

EMG signal, line is straight line fit related part of curve; Abscissa is lg(f), ordinate is lg(Psd) 

Here, we use the above multifractal dimension theory to analyze the action surface EMG 

signals. For the surface EMG signals of the four actions in channel 1, the multifractal 

analysis results are shown in Figure 31. The results of channel 2 are omitted since they are 

similar to those of channel 1. In the figure, the Dq-q curves are calculated under q =8, 7, 6, 5, 

4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8. It can be seen that the Dq-q curves have a certain range. 

The results indicate that the surface EMG signals are non-uniform fractal structure signals. 

These are consistent with the results of the above self-affine fractal analysis. The parameter 

values with q can be used to classify the data. In theory, it will be more reasonable that 

multifractal dimensions are used to describe the surface EMG signals. However, the actual 

calculation process of the multifractal dimensions is very time-consuming. For the surface 

EMG signals, it is extremely difficult to meet the requirements of real-time classification. 

 
a. The multi-fractal curves of EMG signal 

during finger flexion; abscissa is ln(l), 

ordinate is ln(Cq(l)) 

b. The multi-fractal dimensions of curves in 

Fig. a; abscissa is q, ordinate is Dq 
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c. The multi-fractal curves of EMG signal 

during finger tension; abscissa is ln(l), 

ordinate is ln(Cq(l)) 

d. The multi-fractal dimensions 

of curves in Fig. c; abscissa is q, 

ordinate is Dq 

 
e. The multi-fractal curves of EMG signal 

during forearm pronation; abscissa is ln(l), 

ordinate is ln(Cq(l)) 

f. The multi-fractal dimensions of curves in 

Fig. e; abscissa is q, ordinate is Dq 

 
g. The multi-fractal curves of EMG signal 

during forearm pronation; abscissa is ln(l), 

ordinate is ln(Cq(l)) 

h. The multi-fractal dimensions 

of curves in Fig. e; abscissa is q, 

ordinate is Dq 

 

Figure 31. The multi-fractal analysis of surface EMG signals during movements 

5. Conclusion and future research 

In order to investigate whether the essence of the surface EMG signal is stochastic or 

deterministic nonlinear (even chaotic), some emerging nonlinear time series analysis 

approaches are discussed in this chapter. These techniques are based on detecting and 

describing determinisitic structure in the signal, such as surrogate data method, VWK 

model method, chaotic analysis method, symplectic geometry method, fractal analysis 

method, and so on. 
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The surrogate data method and VWK model mehtod are used to detect the surface EMG 

signal for arm movement and muscle fatigue. The results show that the surface EMG signal 

has deterministic nonlinear components. Moreover, our algorithm of surrogate data based 

on the null hypothesis 3 is proved that can completely satisfy the requirment of the null 

hypothesis 3. The VWK method with surrogate data can illuminate that not only the action 

but also fatigue surface EMG signals contain nonlinear dynamic properties. 

Chaotic analysis techniques are reviewed and applied to investigate the surface EMG 

signals. The results show that the surface EMG signals have high-dimension chaotic 

dynamics by using correlation dimension and largest Lyapunov expoent techniques. For the 

estimation of embedding dimension, symplectic principal component analysis method is 

introduced and discussed. In comparison with correlation dimension algorithm and SVD 

analysis, symplectic geometry analysis is both very simple and reliable. The results show 

that symplectic geometry method is useful for determining of the system attractor from the 

experiment data.  

The fractal theory is applied to study the fractal feature of the action surface EMG signal 

collected from forearm of normal person. The results show that he action surface EMG 

signal possesses the self-affine fractal characteristic. So, it is difficult to describe the surface 

EMG signals by using a single fractal dimension. The multifractal dimensions are used to 

analyze the action surface EMG signals during the arm movements. The results indicate that 

the surface EMG signals are non-uniform fractal structure signals. The multifractal 

dimension values can be used to identify the surface EMG signals for different movements. 

For the nonlinear characteristics of the surface EMG signals, chaos and fractal theories will 

play the leading role in the nonlinear study of the surface EMG signals. The related methods 

need to be further researched and developed although these techniques have been applied 

to analyze the surface EMG signals. It provides a new way for the study of the quantitative 

analysis of physiology and pathology, sports medicine, clinical medical diagnostics and 

bionics of robot limb motion.  

Apendix A 

Theorem 1 proof: 
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∴  According Definition 2, 







− *0

0

A

A
 is a Hamilton matrix. ฀ 

Theorem 2 proof: 

Let S as a symplectic transform matrix, M as a Hamilton matrix. Then 1−S  is also symplectic 

matrix. According Definition 1 and 2, there is 

 

( )

( )

( )

1 1

1 1 1 1

1

J SMS J

JSJ JMJ JS J

S M S

SMS

− −

− − − −

−∗ ∗ ∗

∗
−

=

= −

= −

 (82) 

1−∴ SMS  is also a Hamilton matrix. 

 MSMS ~1−∴  (83) 

So Hamilton matrix M keeps unchanged at symplectic similar transform. ฀ 

Theorem 5 proof: 

Let S1, S2,…, Sn as symplectic matrix, respectively. According Definition 1, there are 
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So the product of sympletcic matrixes is also a symplectic matrix. 

Theorem 6 proof: 

In order to prove that H matrix is symplectic matrix, we only need to prove JJHH =* .  
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where (0 , ,0 ; , , ) 0T
k nϖ ω ω= ≠  . 

Plugging Eq.(87) into Eq.(86), we have: 

 JJHH =*  (88) 

∴  H is symplectic matrix. 
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∴H is also unitary matrix. 

∴  H is symplectic unitary matrix.       ฀ 

Apendix B 

Theorem 7 suppose x and y are two unequal n dimension vectors, and 
22

yx = , so there 

is elementary reflective array TH ωω21−= , which make yHx = , where 
2

yx

yx

−

−
=ω . 

It can be easily deduced from theorem 5, for non zero n dimension vector 
T

nxxxx ),,,( 21 = , notes 
2

x=α , there is  

 1eHx α=  (90) 

 TH ϖϖ21−=  (91) 

 
Te )0,,0,1(1 =  (92) 
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21ex αρ −=  (94) 

Then 1
2
=ω , and H is elementary reflective array. 

It’s easy to testify, elementary reflective array H is symmetry matrix )( HH T = , orthogonal 

matrix )1( =HH T and involution matrix )1( 2 =H .  

For real symmetrical matrix A, Householder matrix H can be constructed as follows[73]. 

Notes A: 
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First, suppose 0)1(
21 ≠α , otherwise this column will be skipped and the next column will be 

considered until the ith column of 0)1(
2 ≠iα . Set first column vector of A: 
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select elementary reflective array H(1): 
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so, after H(1) transform, A is changed to a matrix with the first column is all zero except the 

first element is 1α , namely: 
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Second, the same method is adopted to the second column vector of A(2), let 

 ( )TnaaS
)2(

2
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construct H(2) matrix： 

 TIH )(2 )2()2()2( ϖω−=  (101) 

where, 
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Using H(2), the second column of A(2) can be changed to all zero vector except the first and 

second elements, namely:  

 )3()2()2( AAH =  (103) 

Householder matrix H can be obtained by repeating above mentioned method until A(n) 

becomes an upper triangle matrix: 

 )1()1()( HHHH nn −=  (104) 
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