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1. Introduction

Since their discovery in 1986 the high-Tc superconductors (HTSC) have been employed in
several applications.The expectation with the discover of new devices sparked the beginning
of an intense research to understand the parameters which control the physical properties of
these materials. With the goal to the practical applications, the critical current density (Jc)
is one of the crucial parameters that must be optimized for HTSC [1]. Thus the aim of this
chapter is to describe he transport critical current behavior of polycrystalline superconductors
under the applied magnetic field.

According to Gabovich and Mosieev [2], there is a dependence of the superconducting
properties on the macrostructure of ceramic. They studied the BaPb1−xBixO3 metal oxide
superconductor properties which are a consequence of the granularity of the ceramic
macrostructure and the existence of weak Josephson links between the grains. In this case, the
superconductivity depends strongly on the presence of grain boundaries and on the properties
of the electronic states at the grain boundaries. This determines the kinetic characteristics of
the material. For instance, the temperature dependence of the electrical conductivity of oxide
superconductor is related to complex Josephson medium.

Nowadays it is well known that the Jc in polycrystalline superconductors is determined by
two factors: the first is related to the defects within the grains (intragrain regions) such as
point defects, dislocations, stacking faults, cracks, film thickness, and others [3, 4]. When
polycrystalline samples are submitted to magnetic field, the intragranular critical current
can be limited by the thermally activated flux flow at high magnetic fields. Secondly the
critical current depends on the grain connectivity, that is, intergrain regions. Rosenblatt et
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al. [5] developed an idea to discuss the key concept of granularity and its implications for
localization in the normal state and paracoherence in the superconducting state. For arrays
formed by niobium grains imbedded in epoxy resin [6] the coherent penetration depth or
screening current are influenced by the intergrain regions. In fact, the main obstacles to
intergranular critical current flow are weak superconductivity regions between the grains [7],
called weak links (WLs) [8]. Ceramic superconductor samples present a random network for
the supercurrent path, with the critical current being limited by the weakest links in each path.
This Josephson-type mechanism of conduction is responsible to the dependence of the critical
current density on the magnetic field Jc(H), as noted in several experimental studies [9–11].
On the other hand, the intragranular critical current is limited by an activated flux flow at
high temperature and a high magnetic field [9, 12, 13].

Considering these factors, Altshuler et al. [14] and Muller and Matthews [15] introduced
the possibility of calculating the Jc(H) characteristic under any magnetic history following
the proposal of Peterson and Ekin [16]. Basically the model considers that the transport
properties of the junctions are determined by an "effective field" resulting from superposition
of a external applied field and the field associated with magnetization of the superconducting
grains.

Another theoretical approach to the Jc(H) dependence in a junction took into account
the effect of the magnetic field within the grains. This study has revealed that the
usual Fraunhofer-like expression for Jc(H) [17, 18] should be written as Jc(H) ∝

sin(bH1/2)/(bH1/2), which we call the modified Fraunhofer-like expression [19]. Mezzetti
et al. [20] and González et al. [21] also proposed models to describe Jc(H) behavior taking into
account the latter expression. In both studies the authors concluded that a Gamma-type WL
distribution controls the transport critical current density.

González et al. considered two different regimes [21]: for low applied magnetic field, a
linear decrease in Jc with the field was observed, whereas for high fields Jc(H) ∝ (1/B)0.5

dependence was found. Here we have decided to follow the same approach and extend the
analytical results to all applied magnetic fields.

Usually polycrystalline ceramics samples contain grains of several sizes and the junction
length changes from grain to grain. In addition, the granular samples may exhibit electrical,
magnetic or other properties which are distinct from those of the material into the grains [5].
The average Jc(H) is obtained by integrating Jc(H) for each junction and taking into account
a distribution of junction lengths in the sample. It was demonstrated that the WL width
follows a Gamma-type distribution [22]. This function yields positive unilateral values and is
always used to represent positive physical quantities. Furthermore, this Gamma distribution
is the classical distribution used to describe the microstructure of granular samples [23] and
satisfactorily reproduces the grain radius distribution in high-Tc ceramic superconductors
[24].

2. Basic properties

A superconductor exhibits two interesting properties: the first one is the electrical resistance
of the material abruptly drops to zero at critical temperature Tc. The superconductor is
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able to carry electrical current without resistance. This phenomenon is related to the perfect
diamagnetism. The second feature of superconductivity is also known as Meissner effect. In
this case a superconductor expels an external applied magnetic field into its interior.

This struggle between superconductivity and magnetic field penetration select two important
behaviors. If a superconductor does not permit any applied magnetic flux, it is known as
Type I superconductor. In this case, if the superconducting state is put in the presence of a too
high magnetic field, the superconductivity is destroyed when the magnetic field magnitude
exceeds the critical value Hc. Other superconductor category is the Type II material in which
the magnetic properties are more complex. For this material the superconductor switches
from the Meissner state to a state of partial magnetic flux penetration. The penetration of
magnetic flux starts at a lower field Hc1 to reach at an upper a higher field Hc2.

In addition to the two limiting parameters Tc and Hc, the superconductivity is also broken
down when the material carries an electrical current density that exceeds the critical current
density Jc. In the Ginzburg-Landau theory, the superconducting critical current density can
be written as

Jc =
( 2

3

)2/3 Hc

λ
. (1)

The current density given by Eq. (1) is sometimes called the Ginzburg-Landau depairing current

density.

Once into the superconductor state, it is possible to cross the superconductor surface changing
only the current. In this case, even for T < Tc and H < Hc with the material reaching its
normal state, and with loss of its superconductor properties.

3. Josephson-type mechanism

Following the discovery of the electron tunneling (barrier penetration) in semiconductor,
Giaever [25] showed that electron can tunnel between two superconductors. Subsequently,
Josephson predicted that the Cooper pairs should be able to tunnel through the insulator from
one superconductor to the other even zero voltage difference such the supercurrent is given
by [26]

J = Jc sin(θ1 − θ2) (2)

where Jc is the maximum current in which the junction can support, and θi (i = 1, 2) is the
phase of wave function in ith superconductor at the tunnel junctions. This effect takes in
account dc current flux in absence of applied electric and magnetic fields, called as the dc

Josephson effect.

If a constant nonzero voltage V is maintained across the Josephson junction (barrier or weak
link), an ac supercurrent will flow through the barrier produced by the single electrons
tunneling. The frequency of the ac supercurrent is ν = 2eV/h̄. The oscillating current of
Cooper pairs is known as the ac Josephson effect. These Josephson effects play a special role in
superconducting applications.

It was mentioned that the behavior of a superconductor is sensitive to a magnetic field, so
that the Josephson junction is also dependent. Therefore another mode of pair tunneling is a
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tunneling current with an oscillatory dependence on the applied magnetic flux sin(πΦ/Φ0),
where Φ0 is the quantum of magnetic flux. This phenomenon is known as macroscopic quantum

interference effect.

3.1. Basic equations of Josephson effect

As mentioned, the Josephson effect can occur between two superconductors weakly
connected. Some types of linkage are possible such as sketched in Figure (1). These
configurations depends on the application types in which the weak link can be:

1. an insulating, corresponding to a SIS junction, in which case the insulate layer can be in
order of 10 - 20 Å;

2. a normal metal, corresponding to a SNS junction of typical dimensions 102 - 104 Å;

3. a very fine superconducting point presses on a flat superconductor;

4. a narrow constriction (microbridge) of typical dimensions like the coherence length 1 μm.

Figure 1. Four types of Josephson junctions: (a) SIS with d1 = 10 - 20 Å, (b) SNS where d2 = 102 - 104 Å,
(c) Point of contact, and (d) microbridge with d3 ≈ 1μm [27].

Consider that two superconductors are separated from each other by an insulating layer. The
junction is of thickness d normal to the y-axis with cross-sectional dimensions a and c along
x and z, respectively. A voltage is applied between the superconductors and the junction is
thick enough so that one assumes the potential to be zero in the middle of the barrier. Figure
(2) displays Josephson junctions corresponding to a SIS junction.

In Feynman approach Ψ1 and Ψ2 are the quantum mechanical wavefunction of the
superconducting state in the left and the right superconductor, respectively. This system is
determined by coupled time-dependent Schroedinger equations:

ih̄
∂Ψ1
∂t

= −2eV1Ψ1 + KΨ2

ih̄
∂Ψ2

∂t
= −2eV2Ψ1 + KΨ1, (3)
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The behavior of Jc can also be analyzed the Ambegaokar and Baratoff theory [29].
Ambegaokar and Baratoff generalized the Josephson tunnel theory and derived the tunnelling
supercurrent on the basis of the BCS theory for a s-wave homogeneous superconductor. In
this approach, the temperature dependence of critical current is given with the following
expression:

Jc =
π

2eRNS
Δ(T)tanh

[Δ(T)

2kBT

]

(6)

when T near Tc, Δ(T) ≃ 1.74Δ0(1 − T/Tc)1/2 is the superconducting gap parameter from
the BCS theory. RN is the normal-state resistance of the junction, S is the cross section
of a junction, and e and kB are electron charge and Boltzmann constant, respectively. For
temperature relatively close to Tc, we can suppose the condition Δ(T) ≪ kBT and the
tanh[Δ(T)/2kBT] ≈ Δ(T)/2kBT. Taking this into account, Eq. (8) is transformed into [21]

Jc ≈
π

4eRNS
Δ2

0

[

1 −
T

Tc

]

. (7)

And in limiting T → 0,

Jc ≈
π

4eRNS

Δ0
e

. (8)

To calculate the Josephson coupling energy for cuprate superconductors that have a d-wave
order parameter with nodes, we recall the work of Bruder and co-workers [30]. They have
found that the tunneling current behaves in a similar fashion of s-wave superconductors
junction and the leading behavior is determined by tunneling from a gap node in one side
of a junction into the effective gap in the other side. Consequently, as a first approximation to
the Josephson coupling energy EJ , we describe the theory of s-wave granular superconductors
[29] to an average order parameter Δ in the grains.

In 1974, Rosenblatt [31] also analysed the tunnelling supercurrent through Josephson barriers,
but in bulk granular superconductors (BGS). He proposed that the superconducting order
parameter of an assembly of superconducting grains in the absence of applied current can
be represented by a set of vectors in the complex plane Δα = |Δ| exp(iφα), where φα is the
superconducting phase in αth grain. He showed the arrays of Josephson junctions become
superconducting in two stages. At the bulk transition temperature To, the magnitude of the
order parameter of each grain becomes nonzero [32]. He considered two neighboring grains
along an axis with complex superconducting order parameters Δ1 and Δ2. Therefore, the
Josephson junction can be modelled by [33]

Ht = − ∑
〈ij〉

JijS
+
i S−

j (9)

where Ht is pair tunnelling Hamilton, S±
i;j is destruction and creation operators,

Jij =
Rc

2Rij
Δ(T)tanh

[Δ(T)

2kBT

]

, (10)

the Josephson coupling energy between grains i and j, Rc = πh̄/2e2 and Rij is normal state
resistance of the junctions between grains i and j.
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Until now it was discussed Josephson junctions independent of magnetic field. However the
Josephson contacts exhibit macroscopy quantum effects under magnetic field. In order to
examine the effect of applying a magnetic field into the junctions, considering the Josephson
junctions as sketched in Figure (3) with a magnetic field B0�k applied along the vertical z
direction,

Figure 3. Behavior of the magnetic field in a Josephson junction. A1 is potential in the superconductor 1
and A2 is potential in the superconductor 2 [28].

It is assumed because of symmetry, the magnetic field H(y) has no x- or z-direction
dependence, but it varies in y-direction insofar the field penetrates into superconductor.

�H = Hz(y)�k.

It is known that magnetic field is derived from potential vector �H = ∇× �A, such that

�A = Ax(y)�i

with |y| = d
2 . Inside the barrier the material is not superconducting and Hz = H0. Now it

must choose an integration contour as shown in Figure (4)

Consider the equation that relates the gradient of the phase of the wave function of the
superconducting state with the magnetic vector potential integration of a closed path where
the current is zero.

∮

�∇Θ(r)d�l =
2π

Φ0

∮

�A · d�l. (11)

For the integration path ABCD

∫ B

A

�∇Θ(r)d�l +
∫ C

B

�∇Θ(r)d�l +
∫ D

C

�∇Θ(r)d�l =
2π

Φ0

(

∫ B

A

�A · d�l +
∫ C

B

�A · d�l +
∫ D

C

�A · d�l
)

. (12)

The integrals in AB and CD are zero due to orthogonality of the vectors �A · d�l.

Θ1 − Θ10 =
2π

Φ0
A1∞(x − x0). (13)
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Figure 4. Path of integration around the Josephson junction. One superconductor SC1 is to the above of
the insulating barrier and the other superconductor SC2. It was considered a weak-link tunnel short
junction. [28]

To Θ2(x) the integration result is similar, but it must be to consider the A’B’C’D’ path

Θ2 − Θ20 = −
2π

Φ0
A2∞(x − x0). (14)

Since the aim is to obtain the phase difference δ(x),

δ(x) = Θ2(x)− Θ1(x) = δ0 +
2π

Φ0
(A1∞ + A2∞)x, (15)

where δ0 = Θ20 − Θ10 is phase difference at x0. The total magnetic flux is given by

Φ =
∫

�A · d�l =
∫

�H · dS�n,

and then
Φ = a(A1∞ + A2∞).
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Thus the phase difference is given by

δ(x) = δ0 +
2πΦ

Φ0

( x

a

)

. (16)

Inserting equation (16) into equation (8) yields after integration over area S = ac cross section
of the barrier, the tunneling current is

I = Jc

∫

sin(δ0)dxdz = cJc

∫ +a/2

−a/2
sin(δ0 +

2πΦ

Φ0
)dx. (17)

Taking u = δ0 +
2πΦ
Φ0

, the tunneling current becomes

I = acJc
Φ0
πΦ

sin(δ0) sin(
πΦ

Φ0
) (18)

When is this current maximum? The answer is for phase difference δ0 = π
2 . Hence,

Imax = Ic

∣

∣

∣

∣

sin(πΦ/Φ0)

(πΦ/Φ0)

∣

∣

∣

∣

, (19)

where Ic = acJc is the critical current. This is named the Josephson junction diffraction equation

and shows a Fraunhofer-like dependence of the magnetic field as is displayed in Figure (5)
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Figure 5. Josephson Fraunhofer diffraction pattern dependence of magnetic field [34].
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4. Critical current model

It is well known which ceramic superconductor samples present a random network for
the supercurrent path, with the critical current being limited by the weakest links in each
path. Moreover, magneto-optical studies have demonstrated that the magnetic field first
penetrates grains associated with these regions, even for very low values of H. Consequently,
it would be interesting to estimate the influence of the magnetic field on the overall Jc of a
sample taking into account the previous remarks. There are some general hypotheses about
transport properties in polycrystalline ceramic superconductors on application of a magnetic
field. (i) The electric current percolates through the material and heating begins to occur in
WLs and in channels between them. This means that the critical current measured in the
laboratory is an intergranular current. (ii) The junction widths among grains are less than
the Josephson length, and the magnetic field penetrates uniformly into the junctions. (iii) The
sample temperature during transport measurement must be close to the critical temperature.
Under these conditions, the junction widths are less than the bulk coherence length and the
Cooper-pairs current is given by Josephson tunneling. (iv) Near the critical temperature the
magnetic field first penetrates WLs and, at practically the same time, the grains.

Normally polycrystalline ceramics samples contain grains of several sizes and the junction
length changes from grain to grain. The average Jc(H) is obtained by integrating Jc(H) for
each junction and taking into account a distribution of junction lengths in the sample. This
function yields positive unilateral values and is always used to represent positive physical
quantities. Furthermore, this Gamma distribution is the classical distribution used to describe
the microstructure of granular samples [23] and reproduces the grain radius distribution in
high-Tc ceramic superconductors [24].

Following the previous discussion, we can describe Jc(H) as a statistical average of the critical
current density through a grain boundary. In the same way as Mezzetti et al. [20] and González
et al. [21], we consider that the weak-link width fits a Gamma-type distribution [35]. For
a magnetic field higher or lower than the first critical field, the usual Fraunhofer diffraction
pattern or the modified pattern is used to describe Jc(H) for each grain boundary. Thus,

Jc(H) = Jc0

∫ +∞

−∞
P(u)

∣

∣

∣

∣

sin(πu/u0)

πu/u0

∣

∣

∣

∣

du (20)

P(u) =

{

um−1e(−u/η)

ηmΓ(m)
u ≥ 0

0 u < 0,

where Γ(m) is the Gamma function which is widely tabulated [22, 36]:

Γ(m) =
∫ ∞

0
wm−1e−w dw

when m is a real number. Or Γ(m) = (m − 1)! if m is a positive integer. The parameters m

and η, both positive integer, determine the distribution form and scale (width and height),
respectively [21]. The variable u represents the WL length. The quantity u0 is defined as
u0 = φ0/Λ0H, where φ0 is the quantum flux and Λ0 is the effective thickness of the WL.
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Following the same González et al. [21] procedure, we have:

Jc(α) = Jc0
αm(−1)m

(m − 1)!
∂m−2

∂αm−2

[ coth(α/2)
α2 + π2

]

, (21)

where the variable α is defined as α = u0/η = φ0/(ηΛ0H). To obtain a simpler expression for
the transport critical current density, we develop Eq. (21) in the ranges 0 < α < π/2 and
α ≥ π/2 [37].

4.1. Expression for Jc(H) for 0 < α < π/2

The function F(z) = [coth(z/2)] = (z2 + π2) has singular points at z = ±iπ, but is analytical
at all remaining points on the disc |z| = π. Thus, we expanded F(z) for the disc |z| < π.

The hyperbolic cotangent has the expansion [36]

z coth(z/2) = 2
[ ∞

∑
n=0

b2n

2n!
z2n

]

|z| < π, (22)

where b2n are the Bernoulli numbers (b0 = 1, b2 = 1/6, b4 = −1/30, b6 = 1/42, . . .) given by
[36]:

b2n = [(−1)n−12(2n)!]/[(2π)2n]ζ(2n),
where ζ(2n) is the Zeta Riemann function. The function [1/(z2 + π2)] is represented by the
Taylor series around zero:

1
z2 + π2 =

1
π2

∞

∑
j=0

(−1)j z2j

π2j
. (23)

Now we can compute the Cauchy product of the series (22) and (23) to obtain:

z coth(z/2)
z2 + π2 =

2
π2

[

1 +
∞

∑
n=1

( ∞

∑
j=0

(−1)n+jb2j

π2n−2j(2j)!

)

z2n
]

. (24)

It is convenient to define

βn =
[ ∞

∑
j=0

(−1)n+jb2j

π2n−2j(2j)!

]

=
2

π2n

[ ∞

∑
j=0

(−1)n−1

(2)2j
ζ(2j)

]

. (25)

Thus, we can rewrite Eq. (24) as:

z coth(z/2)
z2 + π2 =

2
π2

[1
z
+

∞

∑
n=1

βnz2n−1
]

z �= 0. (26)

The critical current density Jc(α) is calculated by taking z = α in Eq. (26) and differentiating it
(m − 2) times, term by term. This yields:

Jc(α) =
2Jc0

π2(m − 1)
α
[

1 + (−1)m
∞

∑
n0

(

2n − 1
m − 2

)

βnα2n
]

(0 < α < π/2), (27)
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where n0 is the lower integer and n0 ≥ (m − 1)/2. This expression (27) for Jc is valid for the
range 0 < α < π. However, for more efficient calculation, we suggest that it is only used for
the range 0 < α < π/2.

Finally, we can express Jc as a function of H by substituting the definition of α, α = u0/η =
φ0/(ηΛ0H) in Eq. (27). Thus [37],

Jc(H) =
2Jc0

π2(m − 1)
1.02

√

H∗
0

H

[

1 +

(−1)m
∞

∑
n0

(1.02)2n(m)2n

(

2n − 1

m − 2

)

βn

( H∗
0

H

)2n]

, (28)

where H∗
0 = φ0(〈mη〉 Λ0) = φ0/ūΛ0 = φ0/A is the effective magnetic field characteristic

for each polycrystalline superconductor, and A is the area perpendicular to the magnetic field
direction. It is important to emphasize that the first term of Eq. (28) was determined by
González et al. [21] for high magnetic fields (α ≪ 1).

The estimate errors for the series in Eq. (28) were calculated as [37]:

EN =
5π2

12

[4
3

(

2N − 1
m − 2

)

+
(

1 +
(−1)m

3m−1

)]

(1/2)2N , (29)

where EN is defined as the N-order error of the series in Eq. (28).

4.2. Expression for Jc(H) for α ≥ π/2

The hyperbolic cotangent in Eq. (21) can also be written as:

coth(z/2) = 1 +
( 2e−z

1 − e−z

)

= 1 + 2
∞

∑
k=1

e−kz

(Re z > 0), (30)

since the series in (30) is a Dirichlet type and is convergent at all semi-planes Rez > 0. Dividing
Eq. (30) by (z2 + π2), we obtain:

coth(z/2)
z2 + π2 =

1
z2 + π2 +

2
z2 + π2

∞

∑
k=1

e−kz

(Re z > 0). (31)

The expression for the critical current density for α ≥ π/2 is obtained by differentiation of Eq.
(31) in Eq. (21) (m − 2) times. Thus,

Jc(z) =
Jc0zm(−1)m

(m − 1)!

[

Dm−2
( 1

z2 + π2

)

+ Dm−2
( 2

z2 + π2

∞

∑
k=1

e−kz
)]

,

Jc(z) =
Jc0zm(−1)m

(m − 1)!

[

fm−2(z) + R(z)
]

, (32)
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where
fm−2(z) = Dm−2

(

1/(z2 + π2)

and

R(z) = Dm−2[2/(z2 + π2
∞

∑
k=1

e−kz)].

For z = α

R(α) = 2
∞

∑
k=1

[ m−2

∑
p=0

(−1)m−p

(

m − 2

p

)

×

fp(α)k
m−p−2

]

e−kα (33)

and fp(α) can be written as

fp(p) =
(−1)p p!

(α2 + π2)p+1

[ (p + 1)!
p!

αp −
(p + 1)!
(p − 2)!3!

π2αp−2 +

(p + 1)!
(p − 4)!5!

π4αp−4 − . . .
]

, (34)

where p is greater than or equal to zero. It is advantageous to write fp(α) in this form because
it is finite for all α > 0. To obtain a expression for Jc(H) from Eq. (33), we express fp(α) and
R(α) as a function of H. Thus,

fp(H) =
(−1)p p!

m2p+2
[(

H∗
0

H

)2
+ π2

m2

]p+1

[

ap0

( H∗
0

H

)p
−

ap1

( H∗
0

H

)p−2
+ ap2

( H∗
0

H

)p−4
− . . .

]

, (35)

where ap0 =
(p+1)!

p! mp, ap1 =
(p+1)!
(p−2)!3! π

2mp−2, ap2 =
(p+1)!
(p−2)!5! π

4mp−4, and so on. It is worth

commenting again that fp(H) is finite for all values of H and is defined for p > 0. R(H) is
written as

R(H) = 2
∞

∑
k=1

[ m−2

∑
p=0

(−1)m−p

⎛

⎝

m − 2

p

⎞

×

fp(H)km−p−2
]

e

−km

(

H∗
0

H

)

. (36)
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Now Eq. (16) can be expressed as [37]:

Jc(H) =
Jc0(1)

m

(m − 1)!

(

H∗
0

H

)m
[

fm−2H + R(H)
]

. (37)

The series error estimated in R(α) [Eq. (34)] is [37]:

EK+1(α) ≤
e(m − 2)!

π

[

m−2

∑
p=0

1
(α2 + π2)(m−p−2)/2

×

p

∑
l=0

Kp−l

(p − l)! αl+1

]

e−kα, (38)

where EK+1 is defined as the K + 1-order error of the series in Eq. (34).

A low applied magnetic field implies that α � 1, and Eq. (37) is transformed to:

Jc(H) ≈ Jc(0)
(

1 −
π2(m + 1)

6m

H

H∗
o

)

, (39)

where H∗
o =

φ0

〈ηm〉2 =
φ0
ū2 is a characteristic field that determines the behavior of Jc(H) in this

region. In addition, ū represents the mean of the width distribution function P(u) involved
in the transport of Cooper pairs through the sample. Eq. (39) reproduces the quasi-linear
behavior that was also reported by Gonzalez et al. [21].

5. Critical current measurement

Typical Jc measurements are performed using the four-probe technique with automatic control
of the sample temperature, the applied magnetic field and the bias current [14]. Details of
the technique and the experimental setup are in Ref. [14] and of the synthesis and sample
characterization were published elsewhere [13].

Figure (6) shows the experimental results of [38] for the critical current as a function of the
applied field, together with the theoretical expression derived above for the critical field H∗

0 in
the figure and for m = 2 and 3. A very close fit to the experimental data is evident for m = 2
for many different applied magnetic fields.

Theoretical models of the magnetic field dependence of the transport critical current density
for a polycrystalline ceramic superconductor have been studied at last years [37, 39–41].
Here we have described a tunneling critical current between grains follows a Fraunhofer
diffraction pattern or a modified pattern . It is important to emphasize that we followed
the same approach as in [21] and extended the analytical results to all applied magnetic fields.
A characteristic field (H∗) was identified and different regimes were considered, leading to
analytical expressions for Jc(H): (i) analysis for low applied magnetic fields (α � 1) revealed
quasi-linear behavior for Jc(H) vs. H∗; (ii) for high applied magnetic fields (α ≪ 1), Jc(H) is
proportional to H−0.5, as reported in [21].
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