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1. Introduction

The discovery and further development of superconductivity is extremely interesting
because of its pragmatic (practical) and purely academic reasons. At the same time,
the superconductivity science is very remarkable as an important object for the study
in the framework of the history and methodology of science, since all the details are
well documented and well-known to the community because of numerous interviews by
participants including main heroes of the research and the fierce race for higher critical
temperatures of the superconducting transition, T,. Moreover, the whole science has
well-documented dates, starting from the epoch-making discovery of the superconducting
transition by Heike Kamerlingh-Onnes in 1911 [1-7], although minor details of this and,
unfortunately, certain subsequent discoveries in the field were obscured [8-11]. As an
illustrative example of a senseless dispute on the priority, one can mention the controversy
between the recognition of Bardeen-Cooper-Schrieffer (BCS) [12] and Bogoliubov [13]
theories.

If one looks beyond superconductivity, it is easy to find quite a number of controversies
in different fields of science [14, 15]. Recent attempts [16-18] to contest and discredit
the Nobel Committee decision on the discovery of graphene by Andre Geim and Kostya
Novoselov [19, 20] are very typical. The reasons of a widespread disagreement concerning
various scientific discoveries consist in a continuity of scientific research process and a tense
competition between different groups, as happened at liquefying helium and other cryogenic
gases [9, 21-24] and was reproduced in the course of studying graphite films [25, 26]. At the
same time, the authors and the dates of major discoveries and predictions in the science of
superconductivity are indisputable, fortunately to historians and teachers.

Macroscopic manifestations of the superconducting state and diverse properties of the
plethora of superconductors are consequences of main fundamental features: (i) zero
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resistivity found already by Kamerlingh-Onnes (sometimes the existence of persistent
currents discovered by him in 1914 is considered more prominent and mysterious [27]), (ii)
expulsion of a weak magnetic field (the Meissner effect [28]), and (iii) the Josephson effects
[29-37], i.e. the possibility of dc or ac super-currents in circuits, containing thin insulating
or normal-metal interlayers between macroscopic superconducting segments. Of course, the
indicated properties are interrelated. For instance, a macroscopic superconducting loop with
three Josephson junctions can exhibit a superposition of two states with persistent currents of
equal magnitudes and opposite polarity [38].

We note that those findings, reflecting a cooperative behavior of conducting electrons
(later interpreted in terms of a quantum-mechanical wave function [12, 39-43]), had to
be augmented by the observed isotope dependence of T, [44, 45] in order that the first
successful semi-microscopic (it is so, because the declared electron-phonon interaction was,
in essence, reduced to the phenomenological four-fermion contact one) BCS theory of
superconductivity [12] would come into being. Sometimes various ingenious versions of
the BCS theory, explicitly taking into account the momentum and energy dependences of
interaction matrix elements, as well as the renormalization of relevant normal-state properties
by the superconducting reconstruction of the electron spectrum [46-50], are called “the BCS
theory”. Nevertheless, such extensions of the initial concept, explicitly related to Ref. [12]
and results obtained therein, are inappropriate. This circumstance testifies that one should
be extremely accurate with scientific terms, since otherwise it may lead to reprehensible
misunderstandings [51].

Whatever be a theory referred to as “the BCS one” or as “the theory of superconductivity” [52],
we still lack a true consistent microscopic picture scenario (scenarios?) of superconducting
pairing in different various classes of superconductors. As a consequence, all existing
superconducting criteria [53-72] are empirical rather than microscopic, although based on
various relatively well-developed theoretical considerations. Hence, materials scientists must
rely on their intuition to find new promising superconductors [73-78], although bearing also
in mind a deep qualitative theoretical reasoning [43, 79-83].

It is no wonder that unusual transport properties of superconductors together with their
magnetic-field sensibility led to a number of practically important applications. Namely,
features (i) and (ii) indicated above made it possible to manufacture large-scale power
cables, fly-wheel energy storage devices, bearings, high field magnets, fault current limiters,
superconductor-based transformers, levitated trains, motors and power generators [84-93].
At the same time, the Josephson (weak-coupling) feature (iii) became the basis of small-scale
superconducting electronics [88, 94-98], which also uses the emergence of half-integer
magnetic flux quantization in circuits with superconducting currents [99, 100]. Smartly
designed SQUID devices with several Josephson junctions and a quantized flux serve as
sensible detectors of magnetic field and electromagnetic waves, which, in their turn, are
utilized in industry, research, and medicine [95-98, 101]. Recently oscillatory effects inherent
to superfluid 3He [102-104] and *He [103-105], which are similar to the Josephson one, were
used to construct superfluid helium quantum interference devices (SHeQUIDs) [106].

High-T. oxide superconductors found in 1986 [107] and including large families of materials
with T < 138 K [108-112] extended the application domain of superconductivity, because,
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first, liquid-nitrogen temperatures were achieved and, second, the predominant 4 X2 —y2- order
parameter symmetry (at least in hole-doped oxides) made possible applications in electronics
and quantum computation more diverse [37, 113-122].

While studying high-T, cuprates, superconductivity was shown to compete with charge
density waves (CDWs), so that the observed properties in the superconducting state must
be modified by CDWs [123-128]. It should concern Josephson currents phenomenon too
[129-134], although this topic has not been properly developed so far.

Of course, other superconducting materials found after the discovery of high-T. oxide
materials are also very remarkable, because of their non-trivial electron spectra, so that
Josephson currents through junctions involving those materials should possess interesting
features. We mean, in particular, MgB, with T, < 40 K [135] and a multiple energy-gap
structure [136, 137], as well as Fe-based pnictides and chalcogenides with T, < 56 K
and concomitant spin density waves (SDWs) suspected to have deep relations with
superconductivity in those materials [78].

In this paper, we present our theoretical studies of dc Josephson currents between
conventional superconductors and partially CDW-gapped materials with an emphasis
on cuprates, although the gross features of the model can be applied to other CDW
superconductors as well. The next Section 2 contains the justification of the approach and the
formulation of the problem, whereas numerical results of calculations, as well as the detailed
discussion, are presented in Section 3. Section 4 contains some general conclusions concerning
dc Josephson currents across junctions involving partially gapped CDW superconductors.

A more involved case of Josephson junctions between two CDW superconductors with
various symmetries of superconducting pairing will be treated elsewhere.

2. Theoretical approach

2.1. d-wave versus s-wave order parameter symmetry

Coherent properties of Fermi liquids in the paired state are revealed by measurements
of dc or ac Josephson tunnel currents between two electrodes possessing such properties.
The currents depend on the phase difference between superconducting order parameters
of the electrodes involved [30, 31, 119]. Manifestations of the coherent pair tunneling are
more complex for superconductors with anisotropic order parameters than for those with
an isotropic energy gap. In particular, it is true for d-wave superconductors, where the
order parameter changes its sign on the Fermi surface (FS) [119, 138-143]. As was indicated
above, high-T. oxides are usually considered as such materials, where the dxz_yz pairing is
usually assumed at least as a dominating one [117, 144-152]. However, conventional s-wave
contributions were also detected in electron tunneling experiments [153-160] and, probably, in
nuclear magnetic resonance (NMR) and nuclear quadrupole resonance measurements [161].
Therefore, only a minority of researchers prefer to accept the isotropic s-wave (or extended
s-wave) nature of superconductivity in cuprates [162-175]. Notwithstanding the existing
fundamental controversies, the d-wave specificity of high-T, oxide superconductivity has
already been used in technical devices [95, 116, 118-120, 122].
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2.2. Pseudogaps as a manifestation of non-superconducting gapping

In addition to the complex character of superconducting order parameter, cuprates reveal
another intricacy of their electron spectrum. Namely, the pseudogap is observed both
below and above T, [176-180]. Here, various phenomena manifesting themselves in
resistive, magnetic, optical, photoemission (ARPES), and tunnel (STM and break-junction)
measurements are considered as a consequence of the “pseudogap”’-induced depletion in
the electron density of states, in analogy to what is observed in quasi-one-dimensional
compounds above the mean-field phase-transition temperature [181, 182].

Notwithstanding large theoretical and experimental efforts, the pseudogap nature still
remains unknown [126-128, 133, 178, 183-201]. Namely, some researchers associate them
with precursor order parameter fluctuations, which might be either of a superconducting or
some other competing (CDWs, SDWs, etc.) origin. Another viewpoint consists in relating
pseudogaps to those competing orderings, but treating them, on the equal footing with
superconductivity, as well-developed states that can be made allowance for in the mean
field approximation, fluctuation effects being non-crucial. We believe that the available
observations support the latter viewpoint (see, e.g., recent experimental evidences of CDW
formation in various cuprates [202-205]). Moreover, although undoped cuprates are
antiferromagnetic insulators [206], the CDW seems to be a more suitable candidate responsible
for the pseudogap phenomena, which competes with Cooper pairing in doped high-T.
oxide samples [123-127], contrary to what is the most probable for iron-based pnictides and
chalcogenides [78, 207]. Nevertheless, the type of order parameter competing with Cooper
pairing in cuprates is not known with certainty. For instance, neutron diffraction studies of
a number of various high-T. oxides revealed a nonhomogeneous magnetic ordering (usually
associated with SDWs) in the pseudogap state [208, 209].

2.3. Superconducting order parameter symmetry scenarios

Bearing in mind all the aforesaid, we present here the following scenarios of dc Josephson
tunneling between a non-conventional partially gapped CDW superconductor and an
ordinary s-wave one. The Fermi surface (FS) of the former is considered two-dimensional with
ady_ -, dyy- or extended s-wave (with a constant order parameter sign) four-lobe symmetry
of superconducting order parameter and a CDW-related doping-dependent dielectric order
parameter. The CDWs constitute a system with a four-fold symmetry emerging inside the
superconducting lobes in their antinodal directions for cuprates (the d,._,.-geometry of
the superconducting order parameter, see Figure 1) or in the nodal directions for another
possible configuration allowed by symmetry (the d,-geometry of the superconducting order
parameter). (Below, for the sake of brevity, when considering the extended s-wave geometries
for the superconducting order parameter, we use the corresponding mnemonic notations
sf:z‘t_yz and s%t.) Thus, the CDW order parameter ¥ competes with its superconducting
counterpart A over the whole area of their coexistence, which gives rise to an interesting
phenomena of temperature- (T-) reentrant X [126-128, 210, 211]. In this paper, the main
objective of studies are the angular dependences, which might be observed in the framework
of the adopted model. Of course, any admixture of Cooper pairing with a symmetry different
from d x2—y2-one [148, 154, 160, 212, 213] may alter the results. Moreover, the superconducting
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order parameter symmetry might be doping-dependent [214]. To obtain some insight into
such more cumbersome situations, we treat here the pure isotropic s-wave case as well.
Other possibilities for predominantly d-wave superconductivity coexisting with CDWs lie
somewhere between those pure s- and d- extremes.

2.4. Formulation of the problem

The dc Josephson critical current through a tunnel junction between two superconductors,
whatever their origin, is given by the general equation [30, 35]

~ 2
I(T) = 4€TZ ‘qu‘ ZFIJ-FITSC(P}Wn)FOS(q? —wn), 1)
Pa Wy

Here, qu are matrix elements of the tunnel Hamiltonian corresponding to various
combinations of FS sections for superconductors taken on different sides of tunnel junction, p
and q are the transferred momenta, e > 0 is the elementary electrical charge, Fyrsc (p;w,) and
Fos(q; —wy) are Gor’kov Green’s functions for d-wave (CDW gapped!) and ordinary s-wave
superconductor, respectively, and the internal summation is carried out over the discrete
fermionic “frequencies” w, = (2n+1)nT, n = 0,%£1,%2,.... The external summation
should take into account both the anisotropy of electron spectrum ¢(p) in a superconductor
in the manner suggested long time ago for all kinds of anisotropic superconductors [215], the
directionality of tunneling [216-220], and the concomitant dielectric (CDW) gapping of the
nested FS sections [129].

Hereafter, we shall assume that the ordinary superconductor has the isotropic order parameter
A*(T). At the same time, the superconducting order parameter of the high-T, CDW
superconductor has the properly rotated (see Figure 1) pure d-wave form A(T) cos [2 (6 — )],
the angle 6 being reckoned from the normal n to the junction plane and 1 is a tilt angle between
n and the bisectrix of the nearest positive lobe. Note that, for the s®*'-symmetry, the gap profile
is the same as in the d-case, but the signs of all lobes are identical rather than alternating (for
definiteness, let this sign be positive).

The dielectric order parameter X(T) corresponds to the checkerboard system of mutually
perpendicular CDWs (observed in various high-T. oxides [221-223]). In the adopted model, it
is nonzero inside four sectors, each of the width 2«, with their bisectrices rotated by the angle
B with respect to the bisectrices of superconducting order parameter lobes [126-128, 210, 211].
Actually, we shall assume S to be either 0 or 77 /4. Since the nesting vectors are directed along
the ky- and ky-axes in the momentum space [126, 224], the adopted choice corresponds to the
choice between d,2_,2- and dy,-symmetry. Another possible, unidirectional CDW geometry
is often observed in cuprates as well [225-227]. It can be treated in a similar way, but we shall
not consider it in this work.

Note also that, in agreement with previous studies [216-220, 228], the tunnel matrix elements
qu in Eq. (1) should make allowance for the tunnel directionality (the angle-dependent
probability of penetration through the barrier) [140, 229, 230]. We factorize the corresponding
directionality coefficient w (). The weight factor w (0) effectively disables the FS outside a

certain given sector around n, thus governing the magnitude and the sign of the Josephson
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Figure 1. Geometry of the junction between a conventional s-wave superconductor (s-BCS) and a d-,
s-extended (s®*!) or s-superconductor partially gapped by charge density waves (CDWs, induced by
dielectric, i.e. electron-hole, pairing). The angle a denotes the half-width of each of four angular sectors
at the Fermi surface, where the CDW gap appears. The gap profiles for the parent CDW insulator (X), s-
(As), d- (Ay), and s-extended (Aext) superconductors, and conventional superconductor (A*) are shown.
p is a misorientation angle between the nearest superconducting lobe and CDW-gapped sector, 7 is a tilt
angle of superconducting lobe with respect to the junction plane determined by the normal n, f is a
measure of tunneling directionality (see explanations in the text).

tunnel current. Specifically, we used the following model for w (6):

2
w (0) = exp [— (:I?:O) ] , 2)

where 0 is an angle describing the effective width of the directionality sector. We emphasize
that, for tunneling between two anisotropic superconductors, two different coefficients w ()
associated with p- and q-distributions in the corresponding electrodes come into effect [216].

In accordance with the previous treatment of partially gapped s-wave CDW superconductors
[123-125, 129, 130, 132, 231-234] and its generalization to their d-wave counterparts [126—
128, 210, 211, 235] and in line with the basic theoretical framework for unconventional
superconductors [236, 237], the anomalous Gor’kov Green'’s functions for high-T. oxides are
assumed to be different for angular sectors with coexisting CDWs and superconductivity (d
sections of the FS) and the “purely superconducting” rest of the FS (nd sections)

o A(T)cos [2(0 —7)]
Frrscnd (Piwn) = wj + A2(T) cos? 2 (6 —v)] + &2, (p)

A(T) cos[2(6 — 1)
W%+ B2(T) cos? [2(6— )] + 22 (T) + &3(p)

, ®)

Frrsc,a(piwn) =

(4)
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Here, we explicitly took into account a possible angle deviation y of the A-lobe direction,
which is governed by the crystal lattice geometry, from the normal n to the junction plane;
the latter is created artificially and, generally speaking, can be not coinciding with a crystal
facet. The concomitant rotation of the CDW sectors is made allowance for implicitly. The
quasiparticle spectra ;(p) and ¢,;(p) correspond to “hot” and “cold” spots of the cuprate
ES, respectively (see, e.g., Refs. [176, 238-240]).

Substituting Egs. (2), (3), and (4) into Eq. (1) and carrying out standard transformations [30,
35], we obtain
_A(0)A*(0)
IC(T) = WZC(T), (5)

io(T) = % /9d w(B)cos[2(0 — )] P {A*(T), \/ZZ + A2(T) cos? [2 (0 — ’Y)]] do

* % /9 w(B)cos[2(6 — )] P[A™(T), |A(T) cos2 (8 — )] . ©)

Here, Ry is the normal-state resistance of the tunnel junction, determined by’ qu ‘Zwithout the
factorized multiplier w (8), the integration is carried out over the CDW-gapped and CDW-free
FS sections (the FS-arcs 6; and 0,4, respectively, in the two-dimensional problem geometry),
A*(T) is the order parameter of the ordinary isotropic superconductor, whereas the function
P (A1, 1) is given by the expression [129, 215]

max{A1,A,}

dx tanh =%
P(A1,0;) = / 21

. 7)
i V(2= 83) (A3 —2)

Modified Egs. (3)-(6) turn out valid for the calculation of dc Josephson current through a
tunnel junction between an ordinary s-wave superconductor and a partially gapped CDW
superconductor with an extended s-symmetry of superconducting order parameter [142, 241].
For this purpose, it is enough to substitute the cosine functions in Egs. (3)-(6) by their absolute
values.

At w(0) = 1 (the absence of tunnel directionality), X = 0 (the absence of CDW-gapping),
and putting cos2 (0 — ) = 1 (actually, it is a substitution of an isotropic s-superconductor for
the d-wave one), Eq. (6) expectedly reproduces the famous Ambegaokar—Baratoff result for
tunneling between s-wave superconductors [30, 31, 35, 242].

Note that, in Eq. (6), the directionality is made allowance for only by introducing the
angular function w (6) reflecting the angle-dependent tunnel-barrier transparency. On the
other hand, the tunneling process, in principle, should also take into account the factors

‘Vg,nd . n‘ and ‘Vg,d -n|, responsible for extra directionality [140, 219, 230], where v, ,,; =
Vi, and vy = V§; are the quasiparticle group velocities for proper FS sections. Those
factors can be considered as proportional to a number of electron attempts to penetrate
the barrier [139]. They were introduced decades ago in the framework of general problem

dealing with tunneling in heterostructures [243-245]. Nevertheless, we omitted here the
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group-velocity-dependent multiplier, since it requires that the FS shape should be specified,
thus going beyond the applied semi-phenomenological scheme, as well as beyond similar
semi-phenomenological approaches of other groups [138, 139, 141, 236, 246]. We shall take the
additional directionality factor into account in subsequent publications, still being fully aware
of the phenomenological nature of both |vg - n| and w (6) functions.

It is well known [143] that, in the absence of directionality, the Josephson tunneling between
d- and s-wave superconductors is weighted-averaged over the FS, with the cosine multiplier
in Eq. (6) playing the role of weight function. In this case, the Josephson current has to be
strictly equal to zero. However, it was found experimentally that the dc Josephson current
between BiySr,CaCuyOg, 5 and Pb [155], BiySrpCaCuyOg 5 and Nb [247], YBa,CuzO;_s5 and
PbIn [248], Y{_,PryBayCuszO7_;s and Pb [153] differ from zero. Hence, either a subdominant
s-wave component of the superconducting order parameter does exist in cuprate materials, as
was discussed above, or the introduction of directionality is inevitable to reconcile any theory
dealing with tunneling of quasiparticles from (to) high-T. oxides and the experiment.

We restrict ourselves mostly to the case T = 0, when formula (7) is reduced to elliptic
functions [30, 249], although some calculations will be performed for T # 0 as well. The
reason consists in the smallness of T. for conventional s-wave superconductors (in our
case, it is Nb, see below) as compared to T. of anisotropic d-wave oxides. Hence, all
effects concerning T-dependent interplay between A and ¥ including possible reentrance
of X(T) [126-128, 210, 211, 235] become insignificant in the relevant T-range cut off by the
s-wave-electrode order parameter. On the contrary, in the symmetrical case, when one studies
tunneling between different high-T;-oxide grains, T-dependences of the Josephson current are
expected to be very interesting. This more involved situation will be investigated elsewhere.

3. Results and discussion

3.1. Total currents

In what follows, we shall consider in parallel the dc Josephson currents between a more or less
conventional (weak-coupling BCS s-wave) Nb with a zero-T energy gap A*(0) = 1.4 meV and
Tc = 9.2 K [247] and either a d,>_2- or a dyy- superconductor ( = 0 and 71/4, respectively).
The latter is also possible from the symmetry viewpoint, but have not yet been found among
existing classes of CDW superconductors.

The dependences of the dimensionless current i.(T = 0) on the tilt angle ¢ are shown
in Figure 2(a) for « = 15° and various values of the parameter 6y describing the
degree of directionality. Since T = 0, there is no need to solve the equation set for

%(T) and A(T) for partially CDW-gapped s-wave [233] or d-wave [128] superconductors
self-consistently. Instead, for definiteness, we chose the experimental values £(0) = 36.3 meV
and A(0) = 28.3 meV appropriate to slightly overdoped BipSrpCaCuyOg s samples [250] as
input parameters. The half-width « of each of the four CDW sectors was rather arbitrarily
chosen as 15°. In fact, it is heavily dependent on the doping extent and cannot be
unambiguously extracted even from the most precise angle-resolved photoemission spectra
(ARPES) [200, 251, 252]. Thus, hereafter we consider the parameter of dielectric FS gapping a
as a phenomenological one on the same footing as the tunneling directionality parameter 6.
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Figure 2. (a) Zero-temperature (T = 0) dependences on 7 of the dimensionless dc Josephson current i,
for the tunnel junction between an s-wave superconductor and a CDW d,,_,»-wave one ( = 0°) for
various 6y’s. The specific gap values for electrodes correspond to the experimental data for Nb

(A*(T = 0) = 1.4 meV) and BiySr,CaCuy0g, 5 (X(T = 0) = 36.3 meV and A(T = 0) = 28.3 meV). The
calculation parameter & = 15°. See further explanations in the text. (b) The same as in panel (a), but for a
CDW d,-superconductor (8 = 45°).

It is evident that, if the sector 6y of effective tunneling equals zero, the Josephson current
vanishes. It is also natural that, in the case of d-wave pairing and the absence of tunneling
directionality () = 90°), the Josephson current disappears due to the exactly mutually
compensating contributions from superconducting order parameter lobes with different signs
[119, 138, 143]. Intermediate 6y’s correspond to non-zero Josephson tunnel current of either
sign (conventional 0- and 7r-junctions [120, 122, 253]) except at the tilt angle v = 45°, when
ic = 0. In this connection, one should recognize that the energy minimum for non-conventional
anisotropic superconductors can occur, in principle, at any value of the order parameter phase
[254]. As is seen from Figure 2(a), the existence of CDWs in cuprates (« # 0, X # 0) influences
the 7y-dependences of i;, which become non-monotonic for 6y close to « demonstrating a
peculiar resonance between two junction characteristics. The effect appears owing to the
actual d,>_2- pattern with the coinciding bisectrices of CDW sectors and superconducting
lobes (B = 0°). This circumstance may ensure the finding of CDWs (pseudogaps) by a set of
relatively simple transport measurements.

At the same time, for the hypothetical dy, order parameter symmetry (8 = 45°, Figure 2(b)),
when hot spots lie in the nodal regions, the dependences i.(y) become asymmetrical relative
to v = 90° and remain monotonic as for CDW-free d-wave superconductors.

The role of superconducting-lobe and CDW (governed by the crystalline structure) orientation
with respect to the junction plane (the angle <) is most clearly seen for varying «, which
is shown in Figure 3. The indicated above “resonance” between 6y and a is readily seen
in Figure 3(a). One also sees that the Josephson current amplitude is expectedly reduced
with the increasing a, since CDWs suppress superconductivity [123-127, 255]. For B = 45°
(Figure 3(b)), the curves ic(7y) are non-symmetrical, and their form is distorted by CDWs
relative to the case of “pure” superconducting d-wave electrode.

The dependence of i on the CDW-sector width, i.e. the degree of dielectric FS gapping, is

a rapidly dropping one, which is demonstrated in Figures 4(a) (for p = 0°, i.e. for d,._

ext
Xy

y2

ext symmetries) calculated for

or 53" symmetries) and 4(b) (for B = 45°, i.e. for dy, or s
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Figure 3. The same as in Figure 2, but for 6y = 15° and various «’s.

v = 0% and 6p = 15°. Indeed, for cuprates, where the directions of superconducting lobes
and CDW sectors coincide, an extending CDW-induced gap reduces the electron density of
states available to superconducting pairing until & becomes equal to 6y (see Figure 4(a)). A
further increase of the pseudogapped FS arc has no influence on i, since it falls outside the
effective tunneling sector. We note that the x-dependence of i. for cuprates can be, in principle,
non-linearly mapped onto the doping dependence of the pseudogap [200, 251, 252]. It is
remarkable that, qualitatively, the results are the same for the extended s-symmetry (denoted
as sX!) of the superconducting order parameter and are very similar to those for the assumed
s-wave order parameter (curves marked by s).

0.9 1.0
0.9

0.8
0.8 SC symmetry:

W 0 7 o . d, Sext
- 07 ey
06 0.6
L | L | 05 PR U U I—|
0° 20° 40° 0° 10° 20° 30° 40°
¢ (a) ¢ (b)

Figure 4. Dependences i.(«) for v = 0° and 6y = 15° for d-, s-extended, and s-symmetries of
superconducting order parameter.

At the same time, if the CDW sectors are rotated in the momentum space by 45° with respect
to the superconducting lobes and/or the directional-tunneling 6y-cone (see Figure 4(b)), the
dependences i.(«) are very weak at small « and become steep for a« > 6. This result is true
for the dyy-, rotated extended s-, and isotropic s-symmetries of the superconducting order
parameter coexisting with its dielectric counterpart.

One sees from Figure 4 that, for small 6y = 15°, the d- and extended s-order parameters
result in the same i («). Of course, it is no longer true for larger 6, when contributions from
different lobes into the total Josephson current start to compensate each other for d-wave
superconductivity, whereas no compensation occurs for the extended s-wave scenario. To
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make sure that this assertion is valid, we calculated the dependences i.(6p) for v = 0°,
a« = 15°, and B = 0° and 45°. The results are presented in Figure 5. Indeed, for 6, > 30°,
the curves corresponding to d-wave and extended s-wave superconductors come apart, as it
has to be. Thus, Josephson currents between isotropic and CDW d-wave superconductors,
similarly to the CDW-free case, are non-zero only because the tunneling is non-isotropic.

6
SC symmetry:
B pure s
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Figure 5. Dependences i () for v = 0°, B = 0°, and ap = 15° for various symmetries of
superconducting order parameter.

It is instructive to compare the tilt-angle-y dependences of the Josephson currents i for
possible superconducting order parameter symmetries, which are considered, in particular,
for cuprates. The results of calculations are displayed in Figure 7 for « = 6y = 15°.
For an s-wave CDW-free superconductor, ic(y) = const. The reference curve i.(y) for a
CDW-free d 2 y2-wave superconductor (Figure 7(a)) is periodic and alternating. CDWs distort
both curves. Namely, the CDW d,._,2-wave superconductor demonstrates a non-monotonic
behavior of ic(7y), as was indicated above, whereas i.(7y) for the s-wave CDW superconductor
becomes a periodic dependence of a constant sign. The curve i.(y) for the extended
s-wave CDW superconductor has a different form than in the s-wave case, although being
qualitatively similar. The presented data demonstrate that CDWs can significantly alter
angle dependences often considered as a smoking gun,when determining the actual order
parameter symmetry for cuprates or other like materials.
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Figure 6. The same as in Figure 2, but for 6y = 15° and various symmetries of superconducting order
parameter.
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Figure 7. The same as in Figure 2, but for 6y = 15° and various symmetries of superconducting order
parameter.

The results for p = 45° (Figure 7(b)) differ quantitatively from their counterparts found for
B = 0°, but qualitative conclusions remain the same.

As was indicated above, the temperature behavior of i between ordinary superconductors
and cuprates is determined by the order parameter dependence A*(T) for the material with
much lower T, Nb in our case. This is demonstrated in Figure 8 for d-, extended s- and
s-wave CDW high-T. superconductors. One sees that all curves i.(T) are similar, differing
only in magnitudes.
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Figure 8. Dependences i.(T) for v = 0°, 6p = 30°, a9 = 15° and various symmetries of superconducting
order parameter.

3.2. Analysis of current components

In Figure 9, the dependences i.(7) resolved into d and nd components are shown for CDW
d-wave superconductors with B = 0°, « = 15°, and various 6y’s. Note that the order
parameter amplitudes at T = 0 are the same throughout the paper! It comes about that, for
a narrow directionality cone 6y, the contribution of the nested (d) FS sections has quite a
different tilt (y) angle behavior as compared to their nd counterparts. All that gives rise to
a non-monotonic pattern seen, e.g., in Figure 2(a).
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In Figure 10, the same dependences as in Figure 9 are shown, but for f = 45°. One sees that,
whatever complex is the -angle behavior of d contribution to the overall tunnel currents
between a dxy—superconductor and Nb, the CDW influence is much weaker in governing the

dependences ic (7).

It is illustrative to carry out the same analysis in the scenario, when the high-T. CDW
superconductor is assumed to be an extended s-wave one, ie. when the sign of
superconducting order parameter is the same for all lobes. In the case B = 0°, the
corresponding results can be seen in Figure 11, where the <y-dependences of d and nd
components of ic, as well as the total i.(y) dependences, are depicted for the same parameter
set as in Figure 9. We see that the d and nd contributions oscillate with the varying 7y almost
in antiphase, remaining, nevertheless, positive. For large 6y = 30° (Figure 11(c)), oscillations
largely compensate each other making the curve i.(7y) almost flat, which mimics the behavior
appropriate to CDW-free isotropic s-wave superconductors. However, we emphasize that
this, at the first glance, dull result obtained for a relatively wide CDW sector is actually a
consequence of a peculiar superposition involving the periodic dependences of d and nd
components on y with rapidly varying amplitudes.
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The same plots as in Figure 11 were calculated for B = 45° and depicted, in Figure 12. Here,
the directionality angle 0 is the main factor determining the amplitude of 7., the role of CDWs
being much weaker than in the case § = 0°. It is natural, because now CDW-gapping is
concentrated in the nodal regions.
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4. Conclusions

The results obtained confirm that the dc Josephson current, probing coherent superconducting
properties [30, 31, 33, 37, 119, 256-258], is always suppressed by the electron-hole CDW
pairing, which, in agreement with the totality of experimental data, is assumed here to
compete with its superconducting electron-electron (Cooper) counterpart [129, 130, 132,
259-262]. We emphasize that, as concerns the quasiparticle current, the results are
more ambiguous. In particular, the states on the FS around the nodes of the d-wave
superconducting order parameter are engaged into CDW gapping [126-128, 210, 211, 235,
263], so that the ARPES or tunnel spectroscopy feels the overall energy gaps being larger than
their superconducting constituent.

Our examination demonstrates that the emerging CDWs should distort the dependences
ic(7y), whatever is the symmetry of superconducting order parameter. It is easily seen
that, for equal (or almost equal) 6y and a, CDWs make the i.(y) curves non-monotonic
and quantitatively different from their CDW-free counterparts. In particular, i values are
conspicuously smaller for ¥ # 0. The required resonance between 6y and a can be ensured by
the proper doping, i.e. a series of samples and respective tunnel junctions should be prepared
with attested tilt angles -y, and the Josephson current should be measured for them. Of course,
such measurements could be very cumbersome, although they may turn out quite realistic to
be performed.
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At the same time, when an s-wave contribution to the actual order parameter in a cuprate
sample is dominant up to the complete disappearance of the d-wave component, the i.(7y)
dependences for junctions involving CDW superconductors are no longer constant as in the
CDW-free case. This prediction can be verified for CDW superconductors with a fortiori
s-wave order parameters (such materials are quite numerous [123-128]).

In this paper, our approach was purely theoretical. We did not discuss unavoidable
experimental difficulties to face with in fabricating Josephson junctions necessary to check
the results obtained here. We are fully aware that the emerging problems can be solved on the
basis of already accumulated knowledge concerning the nature of grain boundaries in high-T¢
oxides [37, 115-119, 122, 264-268]. Note that required junctions can be created at random in
an uncontrollable fashion using the break-junction technique [250]. This method allows to
comparatively easily detect CDW (pseudogap) influence on the tilt-angle dependences.

To summarize, measurements of the Josephson current between an ordinary superconductor
and a d-wave or extended s-wave one (e.g., a high-T. oxide) would be useful to detect a
possible CDW influence on the electron spectrum of the latter. Similar studies of iron-based
superconductors with doping-dependent spin density waves (SDWs) would also be of benefit
(see, e.g., recent Reviews [78, 269-275]), since CDW and SDW superconductors have similar,
although not identical, properties [123-125].
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