
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 0

Eilenberger Approach to the Vortex State

in Iron Pnictide Superconductors

I. Zakharchuk, P. Belova, K. B. Traito and E. Lähderanta

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48571

1. Introduction

The SC gap, which characterizes the energy cost for breaking a Cooper pair, is an important
quantity when clarifying the SC mechanism. The gap size and its momentum dependence
reflect the strength and anisotropy of the pairing interactions, respectively. Some experiment
executed by Li et al. [1] in response to a suggestion by Klemm [2] tested the phase of
the wave function in Bi2Sr2CaCu2O8 and revived the s-wave viewpoint [3, 4]], which,
although championed by Dynes’s group [4], had been out of favor even for Bi2Sr2CaCu2O8,
although not disproven. This experiment once more created uncertainty over whether
the superconducting pairs are consistent with s-wave or d-wave superconductivity (Van
Harlingen [5], Ginsberg [6], Tsuei and Kirtley [7]).

The discovery of Fe-based superconductors [8] generated intensive debate on the
superconducting (SC) mechanism. Motivated by high-Tc values up to 56 K [9], the possibility
of unconventional superconductivity has been intensively discussed. A plausible candidate is
the SC pairing mediated by antiferromagnetic (AFM) interactions. Two different approaches,
based on the itinerant spin fluctuations promoted by Fermi-surface (FS) nesting [10, 11],
and the local AFM exchange couplings [12], predict the so-called s±-wave pairing state, in
which the gap shows a s-wave symmetry that changes sign between different FSs. Owing to
the multiorbital nature and the characteristic crystal symmetry of Fe-based superconductors,
s++-wave pairing without sign reversal originating from novel orbital fluctuations has also
been proposed [13, 14]. The unconventional nature of the superconductivity is supported by
experimental observations such as strongly FS-dependent anomalously large SC gaps [15–17]
and the possible sign change in the gap function [18, 19] on moderately doped BaFe2As2,
NdFeAsO and FeTe1−xSex. However, a resonance like peak structure, observed by neutron
scattering measurements [18], is reproduced by considering the strong correlation effect via
quasiparticle damping, without the necessity of sign reversal in the SC gap [20]. Although
the s±-wave state is expected to be very fragile as regards impurities due to the interband
scattering [21], the superconducting state is remarkably robust regarding impurities and
α-particle irradiation [22].

©2012 Belova et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 9



2 Will-be-set-by-IN-TECH

There is growing evidence that the superconducting gap structure is not universal in the
iron-based superconductors [23, 24]. In certain materials, such as optimally doped BaKFe2As2

and BaFeCo2As2, strong evidence for a fully gapped superconducting state has been observed
from several low-energy quasiparticle excitation probes, including magnetic penetration
depth [25, 26], and thermal conductivity measurements [27]. In contrast, significant
excitations at low temperatures due to nodes in the energy gap have been detected in several
Fe-pnictide superconductors. These include LaFePO (Tc = 6 K) [28, 29], BaFe2AsP2 (Tc = 31
K) [30–32], and KFe2As2 (Tc = 4 K) [33, 34].

At a very early stage, it was realized that electron and hole doping can have qualitatively
different effects in the pnictides [35]. Hole doping should increase the propensity to a nodeless
(s±) SC phase. The qualitative picture applies to both the "122" as the "1111" compounds: As
the Fermi level is lowered, the M h pocket becomes more relevant and the M ↔ X scattering
adds to the (π, 0)/(0, π) scattering from Γ to X. As such, the anisotropy-driving scattering,
such as interelectron pocket scattering, becomes less relevant and yields a nodeless, less
anisotropic, and more stable s± [36]. This picture is qualitatively confirmed by experiments.
While thermoelectric, transport, and specific heat measurements have been performed for
KxBa1−xFe2As2 from x = 0 to the strongly hole-doped case x = 1 [37, 38], more detailed
studies have previously focused on the optimally doped case x = 0.4 with Tc = 37 K,
where all measurements such as penetration depth and thermal conductivity find indication
for a moderately anisotropic nodeless gap [39, 40]. Similarly, angle-resolved photoemission
spectroscopy (ARPES) on doped BaFe2As2 reveals a nodeless SC gap [16, 41].

The experimental findings for the SC phase in KFe2As2 were surprising. Thermal conductivity
[33], penetration depth [34], and NMR [42] provide a clear indication of nodal SC. The critical
temperature for KFe2As2 is ∼ 3 K, an order of magnitude less than the optimally doped
samples. ARPES measurements [43] show that the e pockets have nearly disappeared, while
the h pockets at the folded Γ point are large and have a linear dimension close to π/a. A
detailed picture of how the SC phase evolves under hole doping in KxBa1−xFe2As2 was found
and that the nodal phase observed for x = 1 is of the (extended) d-wave type [44]. The
functional renormalization group was used to investigate how the SC form factor evolves
under doping from the nodeless anisotropic s± in the moderately hole-doped regime to a
d-wave in the strongly hole-doped regime, where the e pockets are assumed to be gapped
out. The d-wave SC minimizes the on-pocket hole interaction energy. It was found that the
critical divergence scale to be of an order of magnitude lower than for the optimally doped s±

scenario, which is consistent with experimental evidence [44].

The synthesis of another iron superconductor immediately attracted much attention for
several reasons [9, 45]. LiFeAs is one of the few superconductors which does not require
additional charge carriers and is characterized by Tc approaching the boiling point of
hydrogen. Similar to AeFe2As2 ( Ae = Ba, Sr, Ca "122") and LnOFeAs ("1111") parent
compounds, LiFeAs (Tc = 18 K) consists of nearly identical (Fe2As2)2− structural units
and all three are isoelectronic, though the former do not superconduct. The band structure
calculations unanimously yield the same shapes for the FS, as well as very similar densities of
states, and low energy electronic dispersions [46, 47]. Moreover the calculations even find in
LiFeAs an energetically favorable magnetic solution which exactly corresponds to the famous
stripelike antiferromagnetic order in "122" and "1111" systems [46, 48]. The experiments,
however, show a rather different situation. The structural transition peculiar to "122" and
"1111" families is remarkably absent in LiFeAs and is not observed under an applied pressure
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of up to 20 GPa [49]. Resistivity and susceptibility as well as μ-spin rotation experiments
show no evidence of magnetic transition [50, 51]. Only a weak magnetic background [51]
and field induced magnetism in the doped compound have been detected [50]. What was
identified was a notable absence of the Fermi surface nesting, a strong renormalization of
the conduction bands by a factor of 3, a high density of states at the Fermi level caused by
a van Hove singularity, and no evidence of either a static or a fluctuating order; although
superconductivity with in-plane isotropic energy gaps have been found implying the s++

pairing state [52]. However, a gap anisotropy along the Fermi surface up to ∼ 30% was
observed in Ref. [53]. Thus, the type of the superconducting gap symmetry in LiFeAs is still
an open question.

The aim of our paper is to apply quasiclassical Eilenberger approach to the vortex state
considering s±, s++ and dx2−y2-wave pairing symmetries as presumable states for the
different levels of impurity scattering rates Γ∗, to calculate the cutoff parameter ξh [54, 55]
and to compare results with experimental data for iron pnictides. As described in Ref. [56],
ξh is important for the description of the muon spin rotation (μSR) experiments and can be
directly measured.

The London model used for the analysis of the experimental data does not account for the
spatial dependence of the superconducting order parameter and it fails down at distances of
the order of coherence length from the vortex core center, i.e., B(r) logarithmically diverges as
r → 0. To correct this, the G sum in the expression for the vortex lattice free energy can be
truncated by multiplying each term by a cutoff function F(G). Here, G is a reciprocal vortex
lattice vector. In this method the sum is cut off at high Gmax ≈ 2π/ξh, where ξh is the cutoff
parameter. The characteristic length ξh accommodates a number of inherent uncertainties of
the London approach; the question was discussed originally by de Gennes group [57] and
discussed in some detail in Ref. [58]. It is important to stress that the appropriate form of
F(G) depends on the precise spatial dependence of the order parameter in the the vortex core
region, and this, in general, depends on the temperature and the magnetic field.

A smooth Gaussian cutoff factor F(G) = exp(−αG2ξ2) was phenomenologically suggested.
Here, ξ is the Gizburg-Landau coherence length. If there is no dependence of the
superconducting coherence length on temperature and magnetic field, then changes in the
spatial dependence of the order parameter around a vortex correspond to changes in α. By
solving the Ginzburg-Landau (GL) equations, Brandt determined that α = 1/2 at fields
near Bc2 [59], and arbitarily determined it to be α ≈ 2 at fields immediately above Bc1

[60]. For an isolated vortex in an isotropic extreme (the GL parameter κGL ≫ 1) s-wave
superconductor, α was obtained by numerical calculation of GL equations. It was found
that α decreases smoothly from α = 1 at Bc1 to α ≈ 0.2 at Bc2 [61]. The analytical GL
expression was obtained by [62] for isotropic superconductors at low inductions B ≪ Bc2.
Using a Lorentzian trial function for the order parameter of an isolated vortex, Clem found
for large κGL ≫ 1 that F(G) is proportional to the modified Bessel function. In Ref. [63],
the Clem model [62] was extended to larger magnetic fields up to Bc2 through the linear
superposition of the field profiles of individual vortices. In this model, the Clem trial function
[62] is multiplied by a second variational parameter f∞ to account for the suppression of the
order parameter due to the overlapping of vortex cores. This model gave the method for
calculating the magnetization of type-II superconductors in the full range Bc1 < B < Bc2.
Their analytical formula is in a good agreement with the well-known Abrikosov high-field
result and considerably corrects the results obtained with an exponential cutoff function at
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low fields [64]. This approximation was widely used for the analysis of the experimental data
on magnetization of type-II superconductors (see references 27-29 in Ref. [65]). The improved
approximate Ginzburg-Landau solution for the regular flux-line lattice using circular cell
method was obtained in Ref. [65]. This solution gives better correlation with the numerical
solution of GL equations.

The Ginzburg-Landau theory, strictly speaking, is only valid near Tc but it is often used in
the whole temperature range taking the cutoff parameter ξh and penetration depth λ as a
fitting parameters. Recently, an effective London model with the effective cutoff parameter
ξh(B) as a fitting parameter was obtained for clean [54] and dirty [55] superconductors, using
self-consistent solution of quasiclassical nonlinear Eilenberger equations. In this approach, λ
is not a fitting parameter but calculated from the microscopical theory of the Meissner state.
As was shown in Ref. [66], the reduction of the amount of the fitting parameters to one,
considerably simplifies the fitting procedure. In this method, the cutoff parameter obtained
from the Ginzburg-Landau model was extended over the whole field and temperature ranges.
In this case, the effects of the bound states in the vortex cores lead to the Kramer-Pesch
effect [67], i.e. delocalization between the vortices [68, 69], nonlocal electrodynamic [58] and
nonlinear effects [70] being self-consistently included.

Following the microscopical Eilenberger theory, ξh can be found from the fitting of the
calculated magnetic field distribution hE(r) to the Eilenberger - Hao-Clem (EHC) field
distribution hEHC(r) [54, 55]

hEHC(r) =
Φ0

S ∑
G

F(G)eiGr

1 + λ2G2
, (1)

where
F(G) = uK1(u), (2)

where K1(u) is modified Bessel function, u = ξhG and S is the area of the vortex lattice unit
cell. It is important to note that ξh in Eq. (1) is obtained from solving the Eilenberger equations
and does not coincide with the variational parameter ξv of the analytical Ginzburg-Landau
(AGL) model.

In chapter 2 and 3 we solve the Eilenberger equations for s±, s++ and dx2−y2-wave pairing
symmetries, fit the solution to Eq. (1) and find the cutoff parameter ξh. In this approach
all nonlinear and nonlocal effects connected with vortex core and extended quasiclassical
states are described by one effective cutoff parameter ξh. The nonlocal generalized London
equation with separated quasiclassical states was also developed as regards the description
of the mixed state in high-Tc superconductors such as YBa2Cu3O7−δ compounds (the
Amin-Franz-Affleck (AFA) model) [70, 71]. In this case, fourfold anisotropy arises from
d-wave pairing. This theory was applied to the investigation of the flux line lattice (FLL)
structures [72] and effective penetration depth measured by μSR experiments [73]. This
approach will be considered in chapter 4.

2. The cutoff parameter for the field distribution in the mixed states of s±-

and s++-wave pairing symmetries

In this chapter, we consider the model of the iron pnictides, where the Fermi surface is
approximated by two cylindrical pockets centered at Γ (hole) and M (electron) points of the
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Figure 1. (Color online) The temperature dependence of superfluid density ρS(T)/ρS0 at (a) interband
scattering rate Γπ = 0 with different values of intraband scattering Γ0 and (b) intraband scattering rate
Γ0 = 3 with different values of interband scattering Γπ .

Fermi surface, i.e. a two dimensional limit of the five-band model [74]. In Eq. (1) λ(T) is the
penetration depth in the Meissner state. In this model λ(T) is given as

λ2
L0

λ2(T)
= 2πT ∑

ωn>0

Δ̄2
n

ηn(Δ̄2
n + ω2

n)3/2
, (3)

where λL0 = (c2/4πe2v2
F N0)

1/2 is the London penetration depth at T = 0 including
the Fermi velocity vF and the density of states N0 at the Fermi surface and ηn = 1 +

2π(Γ0 + Γπ)/(
√

Δ̄2
n + ω2

n). Here, Γ0 = πniNF|u0|2 and Γπ = πniNF |uπ |2 are the intra-
and interband impurity scattering rates, respectively (u0,π are impurity scattering amplitudes
with correspondingly small, or close to π = (π, π), momentum transfer). In this work,
we investigate the field distribution in the vortex lattice by systematically changing the
impurity concentration in the Born approximation, and analyzing the field dependence of
the cutoff parameter. In particular, we consider two limits: small Γ∗ ≪ 1 (referred to as
the "stoichiometric" case) and relatively high Γ∗ ≥ 1 ("nonstoichiometric" case). Here, Γ∗

is measured in the units of 2πTc0. We consider Γ∗ as intraband scattering Γ0 with constant
interband scattering Γπ = 0.

In Eq. (3), Δ̄n = Δ(T) − 4πΓπΔ̄n/
√

Δ̄2
n + ω2

n for the s± pairing and Δ̄n = Δ(T) for the
s++ pairing symmetry. The order parameter Δ(T) in Meissner state is determined by the
self-consistent equation

Δ(T) = 2πT ∑
0<ωn<ωc

VSCΔ̄n
√

Δ̄2
n + ω2

n

. (4)

Experimentally, λ(T) can be obtained by radio-frequency measurements [75] and
magnetization measurements of nanoparticles [76]. Fig. 1 shows the calculated temperature
dependence of the superfluid density ρS(T)/ρS0 = λ2

L0/λ2(T), with different values of
impurity scattering Γ for s±-wave pairing symmetry. With the Riccati transformation of
the Eilenberger equations, quasiclassical Green functions f and g can be parameterized via
functions a and b [77]

f̄ =
2a

1 + ab
, f † =

2b

1 + ab
, g =

1 − ab

1 + ab
, (5)
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Figure 2. (Color online) (a) The temperature dependence of the upper critical field Bc2 at interband
scattering Γπ = 0 with different values of intraband scattering values Γ0. (b) The calculated temperature
dependence of Bc2 at intraband scattering rate Γ0 = 3 with different values of interband scattering Γπ .

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we
have

u · ∇a = −a [2(ωn + G) + iu · As] + (Δ + F)− a2(Δ∗ + F∗), (6)

u · ∇b = b [2(ωn + G) + iu · As]− (Δ∗ + F∗) + b2(Δ + F), (7)

where ωn = πT(2n + 1), G = 2π 〈 g 〉(Γ0 + Γπ) ≡ 2π 〈 g 〉Γ∗, F = 2π 〈 f 〉(Γ0 − Γπ) for
s± pairing symmetry and F = 2π 〈 f 〉Γ∗ for the s++ pairing symmetry. Here, u is a unit
vector of the Fermi velocity. In the new gauge vector-potential As = A −∇φ is proportional
to the superfluid velocity. It diverges as 1/r at the vortex center (index s is put to denote
its singular nature). The FLL creates the anisotropy of the electron spectrum. Therefore, the
impurity renormalization correction in Eqs. (6) and (7), averaged over the Fermi surface, can
be reduced to averages over the polar angle θ, i.e. 〈. . .〉 = (1/2π)

∫

. . . dθ.

To take into account the influence of screening the vector potential A(r) in Eqs. (6) and (7) is
obtained from the equation

∇×∇× AE =
4

κ2
J, (8)

where the supercurrent J(r) is given in terms of g(ωn, θ, r) by

J(r) = 2πT ∑
ωn>0

∫ 2π

0

dθ

2π

k̂

i
g(ωn, θ, r). (9)

Here A and J are measured in units of Φ0/2πξ0 and 2evF N0Tc, respectively. The spatial
variation of the internal field h(r) is determined through

∇× A = h(r), (10)

where h is measured in units of Φ0/2πξ2
0.
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The self-consistent condition for the pairing potential Δ(r) in the vortex state is given by

Δ(r) = VSC2πT
ωc

∑
ωn>0

∫ 2π

0

dθ

2π
f (ωn, θ, r), (11)

where VSC is the coupling constant and ωc is the ultraviolet cutoff determining Tc0 [55].
Consistently throughout our paper energy, temperature, and length are measured in units
of Tc0 and the coherence length ξ0 = vF/Tc0, where vF is the Fermi velocity. The magnetic
field h is given in units of Φ0/2πξ2

0. The impurity scattering rates are in units of 2πTc0. In
calculations the ratio κ = λL0/ξ0 = 10 is used. It corresponds to κGL = 43.3 [77].

To obtain the quasiclassical Green function, the Riccati equations [Eq. (6, 7)] are solved by the
Fast Fourier Transform (FFT) method for triangular FLL [55]. This method is reasonable for
the dense FLL, discussed in this paper. In the high field the pinning effects are weak and they
are not considered in our paper. To study the high field regime we needed to calculate the
upper critical field Bc2(T). This was found from using the similarity of the considered model
to the model of spin-flip superconductors from the equations [78]

ln(
Tc0

T
) = 2πT ∑

n≥0

[ω−1
n − 2D1(ωn, Bc2)], (12)

where

D1(ωn, Bc2) = J(ωn, Bc2) × [1 − 2(Γ0 − Γπ)J(ωn, Bc2)]
−1, (13)

J(ωn, Bc2) = (
4

πBc2
)1/2 ×

∫ ∞

0
dy exp (−y) arctan [

(Bc2y)1/2

α
], (14)

where α = 2(ωn + Γ0 + Γπ).

Fig. 2 shows Bc2(T) dependences at (a) Γπ = 0, Γ0 = 0, 1, 2, 3, 4, 5, 6 and (b) Γ0 = 3, Γπ =
0.01, 0.02, 0.03, 0.04, 0.05, 0.06 calculated from Eqs. (12-14). In Fig. 2 the different influence of
the intraband and interband scattering on Bc2(T) dependence can be seen. The Bc2(T) curve
increases with Γ0 (ξc2 decreases with Γ0), but Γπ results in decreasing Bc2(T) (increasing of
ξc2).

Fig. 3 (a) shows magnetic field dependence ξh(B) in reduced units at T/Tc0 = 0.5 for the s±

pairing with Γ0 = 3, Γπ = 0.02 and Γ0 = 0.5, Γπ = 0.03 and "clean" case (solid lines) and for
the s++ pairing with Γ∗= 0.5 and Γ∗ = 3 (dotted lines). The dashed line shows the analytical
solution of the AGL theory [63]

ξv = ξc2(
√

2 − 0.75

κGL
)(1 + b4)1/2[1 − 2b(1 − b)2]1/2. (15)

This dependence with ξc2 as a fitting parameter is often used for the description of the
experimental μSR results [56, 79]. As can be seen from Fig. 3 (a), the magnetic field dependence
of ξh/ξc2 is nonuniversal because it depends not only on B/Bc2 (as in the AGL theory, dashed
line in Fig. 3 (a)), but also on interband and intraband impurity scattering parameters. In
the cases where Γ0 = Γπ = 0, the results are the same for s± and s++ pairing symmetries.
We indicated that this curve is "clean" one. In this figure, the case Γ0 ≫ Γπ is considered

205Eilenberger Approach to the Vortex State in Iron Pnictide Superconductors
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Figure 3. (Color online) (a) The magnetic field dependence of ξh/ξc2 for superconductors with impurity
scattering. The solid lines represent our solution of Eilenberger equations at T/Tc0 = 0.5 for "clean" case
(Γ0 = Γπ = 0) and s± model (Γ0 = 0.5, Γπ = 0.03 and Γ0 = 3, Γπ = 0.02). The dotted lines show result
for s++ model (Γ∗ = 0.5 and Γ∗ = 3). Dashed line demonstrates the result of the AGL theory for ξv from
Eq. 15. The inset shows the magnetic field dependence of mean square deviation of the hEHC distribution
from the Eilenberger distribution normalized by the variance of the Eilenberger distribution, ε, for
T/Tc0 = 0.5 at Γ0 = Γπ = 0 ("clean"); Γ0 = 3, Γπ = 0.02 and Γ0 = 0.5, Γπ = 0.03. (b) The interband
scattering Γπ dependence of ξh/ξc2 at different temperatures T/Tc0 (intraband scattering Γ0 = 0.5 and
B = 5) for the s± pairing.

and the value of ξh is reduced considerably in comparison with the clean case. One can
compare the observed behavior with that in s++ pairing model. In s++ pairing symmetry
the intraband and interband scattering rates act in a similar way and ξh/ξc2 decreases always
with impurity scattering. In contrast, in s± model ξh/ξc2(B/Bc2) dependences show different
forms of behavior with Γπ. Here, ξh/ξc2 increases with Γπ at B/Bc2 < 0.8 and decreases
at higher fields, i.e. the curves become more flattened. A crossing point appears in the
dependences ξh/ξc2(B/Bc2) for s± and s++ pairing. We also calculated the magnetic field
dependence of mean square deviation of hEHC distribution of the magnetic field from the
Eilenberger distribution normalized by the variance of the Eilenberger distribution ε =
√

(hE − hEHC)2/(hE − B)2, where · · · is the average over a unit vortex cell. The inset to Fig. 3

(a) demonstrates ε(B) dependence for T/Tc0 = 0.5 at Γ0 = 0, Γπ = 0; Γ0 = 3, Γπ = 0.02
and Γ0 = 0.5, Γπ = 0.03. From this figure, it can be seen that the accuracy of effective
London model is deteriorating as the magnetic field increases; however, in superconductors
with impurity scattering the accuracy is below 6% even when it is close to the second critical
field (the inset to Fig. 3 (a)).

In Fig. 3 (b), the interband scattering Γπ dependences of ξh are presented in low fields for the
s± pairing at different temperatures T. As can be seen ξh/ξc2 increases with the interband
scattering rate Γπ. Strong decreasing of ξh/ξc2 with a decrease in the temperature can be
explained by the Kramer-Pesch effect [67]. It should be noted that the normalization constant
ξc2 increases with Γπ because Γπ suppress Tc similar to superconductors with spin-flip
scattering (violation of the Anderson theorem). Thus, the rising ξh/ξc2 implies more strong
growth of ξh than ξc2 (from GL theory one can expect ξh/ξc2 = Const). Qualitatively, it can
be explained by the strong temperature dependence of ξh(B, T/Tc), which is connected to the
Kramer-Pesch effect [67]. Increasing Γπ results in suppression of Tc, i.e. effective increasing of
T and ξh(T/Tc). ξc2(T/Tc) has not such a strong Tc dependence, thus leading to the increasing
of the ratio ξh/ξc2 with Γπ.

206 Superconductors – Materials, Properties and Applications
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Figure 4. (Color online) (a) The magnetic field dependence of cutoff parameter ξh/ξc2 at different
temperatures (T/Tc0 = 0.2, 0.3, 0.4, 0.5) for s± pairing with Γ0 = 3, Γπ = 0.04. (b) The magnetic field
dependence of ξh/ξc2 for s± model (Γ0 = 3, Γπ = 0.04, solid line) and s++ model (Γ∗ = 3, dotted line) at
T/Tc0 = 0.5.

The superfluid density in iron pnictides often shows a power law dependence with
theexponent, which is approximately equal to two at low temperatures [39, 74]. This law
was explained by s± model with parameters Γ0 = 3 and Γπ = 0.04 − 0.06. Fig. 4 (a) shows
ξh/ξc2(B/Bc2) dependence with Γ0 = 3 and Γπ = 0.04 at different temperatures. All curves
demonstrate rising behavior with values much less than one in the whole field range, i.e. they
are under the AGL curve of ξv. The small value of the cutoff parameter was observed in iron
pnictide BaFe1.82Co0.18As, where ξh/ξc2(∼ 0.4) < 1 [80]. Fig. 4 (b) shows ξh/ξc2(B/Bc2) for
Γ0 = 3, Γπ = 0.04 (s± pairing) and Γ∗ = 3 (s++ pairing). It can be seen from the graph that
ξh/ξc2 is strongly suppressed in s± pairing with comparison to the s++ pairing. This can be
explained by the fact that in superconductors, without interband pair breaking, the increase
in high field is connected with the field-dependent pair breaking, as the upper critical field
is approached. The physics of unconventional superconductors depends on impurity pair
breaking and introducing characteristic field B∗ in the field dependence by the substitution
B/Bc2 → (B + B∗(Γπ))/Bc2(Γπ). The crossing point between s± and s++ curves depends on
Γπ and it shifts to the lower field in comparison with case Γπ = 0.02 shown in Fig. 3 (a).

Figure 5. (Color online) The magnetic field dependence of the cutoff parameter at T/Tc0 = 0.15 with the
same values of intraband Γ0 and interband Γπ scattering rate Γ (Γ = 0 for "clean" case and
Γ = 0.05, 0.06, 0.065 for the s± pairing). Dotted line shows result for s++ model (Γ∗ = 0.25).

207Eilenberger Approach to the Vortex State in Iron Pnictide Superconductors
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The case of weak intraband scattering was also studied. This case can be realized in
stoichiometrical pnictides such as LiFeAs. Fig. 5 presents the magnetic field dependence of
ξh/ξc2 with scattering parameters Γ0 = Γπ = Γ equal to 0, 0.05, 0.06 and 0.065 at T/Tc0 = 0.15.
The dotted line shows the result for s++ model (Γ∗ = 0.25). The ξh(B) dependence shifts
upward from the "clean" curve and has a higher values in s± model. In contrast, the ξh/ξc2

curve shifts downward with impurity scattering in s++ model. The high values of ξh observed
in μSR measurements in LiFeAs [81] supports the s± pairing.

3. The cutoff parameter in the mixed state of dx2−y2-wave pairing

symmetry

A nontrivial orbital structure of the order parameter, in particular the presence of the gap
nodes, leads to an effect in which the disorder is much richer in dx2−y2-wave superconductors
than in conventional materials. For instance, in contrast to the s-wave case, the Anderson
theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking effect.
In addition, a finite concentration of disorder produces a nonzero density of quasiparticle
states at zero energy, which results in a considerable modification of the thermodynamic and
transport properties at low temperatures. For a pure superconductor in a d-wave-like state
at temperatures T well below the critical temperature Tc, the deviation Δλ of the penetration
depth from its zero-temperature value λ(0) is proportional to T. When the concentration ni of
strongly scattering impurities is nonzero, Δλ ∝ Tn, where n = 2 for T < T∗ ≪ Tc and n = 1
for T∗ < T ≪ Tc [24]. Unlike s-wave superconductor, impurity scattering suppresses both the
transition temperature Tc and the upper critical field Hc2(T) [82].

The presence of the nodes in the superconducting gap can also result in unusual properties of
the vortex state in dx2−y2-wave superconductors. At intermediate fields Hc1 < H ≪ Hc2,
properties of the flux lattice are determined primarily by the superfluid response of the

condensate, i.e., by the relation between the supercurrent�j and the superfluid velocity �vs. In
conventional isotropic strong type-II superconductors, this relation is to a good approximation
that of simple proportionality,

�j = −eρs�vs, (16)

where ρs is a superfluid density. More generally, however, this relation can be both nonlocal
and nonlinear. The concept of nonlocal response dates is a return to the ideas of Pippard [83]
and is related to the fact that the current response must be averaged over the finite size of the
Cooper pair given by the coherence length ξ0. In strongly type-II materials the magnetic field
varies on a length scale given by the London penetration depth λ0, which is much larger than
ξ0 and, therefore, nonlocality is typically unimportant unless there exist strong anisotropies in
the electronic band structure [84]. Nonlinear corrections arise from the change of quasiparticle
population due to superflow which, to the leading order, modifies the excitation spectrum by
a quasiclassical Doppler shift [85]

εk = Ek +�v f�vs, (17)

where Ek =
√

ǫ2
k + Δ2

k is the BCS energy. Once again, in clean, fully gapped conventional

superconductors, this effect is typically negligible except when the current approaches the pair
breaking value. In the mixed state, this happens only in the close vicinity of the vortex cores
that occupy a small fraction of the total sample volume at fields well below Hc2. The situation
changes dramatically when the order parameter has nodes, such as in dx2−y2 superconductors.
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Nonlocal corrections to Eq. (16) become important for the response of electrons with momenta
on the Fermi surface close to the gap nodes, even in strongly type-II materials. This can be
understood by realizing that the coherence length, being inversely proportional to the gap
[85], becomes very large close to the node and formally diverges at the nodal point. Thus, quite
generally, there exists a locus of points on the Fermi surface where ξ ≫ λ0 and the response
becomes highly nonlocal. This effect was first discussed in Refs. [72, 86] in the mixed state.
Similarly, the nonlinear corrections become important in a d-wave superconductors. Eq. (17)
indicates that finite areas of gapless excitations appear near the node for arbitrarily small vs.

Low temperature physics of the vortex state in s-wave superconductors is connected with
the nature of the current-carrying quantum states of the quasiparticles in the vortex core
(formed due to particle-hole coherence and Andreev reflection [87]). The current distribution
can be decomposed in terms of bound states and extended states contributions [88]. Close
to the vortex core, the current density arises mainly from the occupation of the bound
states. The effect of extended states becomes important only at distances larger than the
coherence length. The bound states and the extended states contributions to the current
density have opposite signs. The current density originating from the bound states is
paramagnetic, whereas extended states contribute a diamagnetic term. At distances larger
than the penetration depth, the paramagnetic and diamagnetic parts essentially cancel out
each other, resulting in exponential decay of the total current density. The vortex core
structure in the d-wave superconductors can be more complicated because there are important
contributions coming from core states, which extend far from the vortex core into the nodal
directions and significantly effect the density of states at low energy [89]. The possibility of
the bound states forming in the vortex core of d-wave superconductors was widely discussed
in terms of the Bogoliubov-de Gennes equation. For example, Franz and Teŝanoviĉ claimed
that there should be no bound states [90]. However, a considerable number of bound states
were found in Ref.[91] which were localized around the vortex core. Extended states, which
are rather uniform, for |E| < Δ where E is the quasiparticle energy and Δ is the asymptotic
value of the order parameter, were also found far away from the vortex. In the problem of
the bound states, the conservation of the angular momentum around the vortex is important.
In spite of the strict conservation of the angular momentum it is broken due to the fourfold
symmetry of Δ(k), however, the angular momentum is still conserved by modulo 4, and this
is adequate to guarantee the presence of bound states.

Taking into account all these effects, the applicability of EHC theory regarding the description
of the vortex state in dx2−y2-wave superconductors is not evident apriori. In this chapter, we
numerically solve the quasiclassical Eilenberger equations for the mixed state of a dx2−y2-wave

superconductor for the pairing potential Δ(θ, r) = Δ(r) cos (2θ), where θ is the angle between
the k vector and the a axis (or x axis). We check the applicability of Eq. (1) and find the cutoff
parameter ξh. The anisotropic extension of Eq. (1) to Amin-Franz-Affleck will be discussed in
chapter 4.

To consider the mixed state of a d-wave superconductor we take the center of the vortex as the
origin and assume that the Fermi surface is isotropic and cylindrical. The Riccatti equations
for dx2−y2-wave superconductivity are [92]

u · ∇a = −a [2(ωn + G) + iu · As] + Δ − a2Δ∗, (18)

u · ∇b = b [2(ωn + G) + iu · As]− Δ∗ + b2Δ, (19)
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where G = 2π 〈g〉Γ with d-wave pairing potential Δ(r)

Δ(θ, r) = VSC
d

x2−y2
2πT cos (2θ)

ωc

∑
ωn>0

∫ 2π

0

dθ̄

2π
f (ωn, θ̄, r)cos(2θ̄), (20)

where VSC
dx2−y2

is a coupling constant in the dx2−y2 pairing channel. The obtained solution is

fitted to Eq. (1) giving the value of cutoff parameter ξh for dx2−y2-wave pairing symmetry.

Figure 6. (Color online) (a) The temperature dependence of superfluid density ρS(T)/ρS0 with different
values of impurity scattering Γ. (b) The temperature dependence of the upper critical field Bc2 with
different values of impurity scattering Γ.

In dx2−y2-wave superconductor λ(T) in Eq. (1) is given as [85]

λ2
L0

λ2(T)
= 2πT

∮

dθ

2π ∑
ωn>0

|Δ̃(θ)|2
(ω̃2

n + |Δ̃(θ)|2)3/2
, (21)

where

ω̃n = ωn + Γ〈 ω̃n
√

ω̃2
n + |Δ̃(�p′

f ; ωn)|2
〉
�p
′
f
, (22)

Δ̃(�p f ; ωn) = Δ(�p f ) + Γ〈
Δ̃(�p

′
f ; ωn)

√

ω̃2
n + |Δ̃(�p′

f ; ωn)|2
〉
�p
′
f
, (23)

Δ(�p f ) =
∫

d�p
′
f V(�p f ,�p

′
f )πT

|ωn|<ωc

∑
ωn

Δ̃(�p
′
f )

√

ω̃2
n + |Δ̃(�p′

f )|2
. (24)

Because of the symmetry of dx2−y2-wave pairing the impurity induced corrections for the

pairing potential in Eq. (23) are zero and Δ̃ = Δ. This is different from the s±- and s++ cases,
where the corrections are not zero. Fig. 6 (a) shows the calculated temperature dependence of
the superfluid density ρS(T)/ρS0 = λ2

L0/λ2(T) with different values of impurity scattering Γ

for dx2−y2-wave pairing symmetry.

To study high the field regime we need to calculate the upper critical field Bc2(T). For
dx2−y2-wave Bc2(T) is given as [82]

ln(
T

Tc
)− Ψ(

1

2
+

v

2tc
) + Ψ(

1

2
+

v

2t
) =

3

2

∫ ∞

0

du

shu

∫ 1

0
dz(1 − z2)[e−x(1 − 2xc)−1]e−

v
t u, (25)
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Figure 7. (Color online) Normalized differences between the fields calculated with the London model
and the Eilenberger equation for dx2−y2 -wave pairing with Γ = 0.03, B/Bc2 = 0.1 and T/Tc0 = 0.3.

c[ln(
T

Tc
)− Ψ(

1

2
+

v

2tc
) + Ψ(

1

2
+

v

2t
)] =

=
3

2

∫ ∞

0

du

shu
x
∫ 1

0
dz|(1 − z2)[e−x(−x + c(1 − 4x + 2x2))− c]e−

v
t u, (26)

where v = 2Γ, t = T/Tc0, tc = Tc/Tc0 and x = ρu2(1 − z2), ρ = B/(4πt)2. Fig. 6 (b)
depicts the temperature dependence of the upper critical field Bc2 with different values of
impurity scattering Γ. Figs. 6 (a) and (b) are similar to those in s±-wave superconductors.
Tc is suppressed by impurity scattering resulting in the same expressions for s± and d-wave
superconductors with replacing Γπ → Γ/2.

Figure 8. (Color online) (a) The magnetic field dependence of the cutoff parameter ξh/ξc2 with different
temperatures (T/Tc0 = 0.2, 0.3, 0.4, 0.5, 0.7, 0.8) for dx2−y2 pairing with Γ = 0. (b) The impurity scattering
Γ dependence of ξh/ξc2 at different temperatures for dx2−y2 pairing with B = 5.

Fig. 7 shows the normalized differences between the fields calculated with the London model
and the Eilenberger equations for dx2−y2-wave pairing symmetry for the values of Γ = 0.03,
B/Bc2 = 0.1 and T/Tc0 = 0.3. The accuracy of the fitting is better than 2%.

Fig. 8 (a) demonstrates the magnetic field dependence of cutoff parameter ξh/ξc2 at different
temperatures (T/Tc0 = 0.2, 0.3, 0.4, 0.5, 0.7, 0.8) for dx2−y2 pairing with Γ = 0. Fig. 8 (b)
shows the impurity scattering Γ dependence of ξh/ξc2 at different temperatures for dx2−y2
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pairing with B = 5. For clean superconductors (Fig. 8 (a)) ξh/ξc2 has a minimum in
its field dependence similar to usual s-wave superconductors [93]. However, this ratio
decreases with temperature due to Kramer-Pesch effect. It was demonstrated theoretically and
experimentally that the low energy density of states N(E) is described by the same singular
V-shape form N(E) = N0(H) + α|E|+ O(E2) for all clean superconductors in a vortex state,
irrespective of the underlying gap structure [94]. This explains the similarity in the behavior
between s- and d-wave pairing symmetries.

The difference between pairing symmetries reveals itself in impurity scattering dependence
ξh/ξc2. In s++ symmetry ξh/ξc2 always decreases with impurity scattering rate Γ (Fig. 3
(a)), in s± symmetry its behavior depends on the field range and relative values of intraband
and interband impurity scattering rates: it can be a decreasing function of Γπ (Fig. 4 (b)) or an
increasing function of Γπ (Fig. 3 (b)). In d-wave superconductors ξh/ξc2 always increases with
Γ (Fig. 8 (b)) similar to the case of s± symmetry with Γ0 = Γπ ( Fig. 5). This can be understood
from the comparison of the Ricatti equations of the s± and d-wave pairing. In both cases the
renormalization factor F = 0 due to a cancelation of the intraband and interband impurity
scattering rates in s± pairing or symmetry reason 〈 f 〉 = 0 for d-wave pairing.

4. The quasiclassical approach to the Amin-Franz-Affleck model and the

effective penetration depth in the mixed state in dx2−y2-wave pairing

symmetry

In this chapter, we construct a model where the nonlinear corrections arising from the Doppler
energy shift of the quasiparticle states by the supercurrent [85] and effects of the vortex
core states are described by an effective cutoff function. Nonlocal effects of the extended
quasiparticle states are included in our model explicitly, i. e. instead of λ(T) in Eq. (1)
we use an analytically obtained anisotropic electromagnetic response tensor [70, 72, 73].
Because the nonlocal effects are assumed to be effective in clean superconductors we limit
our consideration to the case Γ = 0.

For a better comparison with the nonlocal generalized London equation (NGLE) and the AGL

theory we used another normalization of the cutoff parameter in Eq. (1), u = k1

√
2ξBCSG.

This form of F(G) correctly describes the high temperature regime. We compare our results
with those obtained from the NGLE theory in a wide field and temperature range considering
k1 as the fitting parameter.

The magnetic field distribution in the mixed state in the NGLE approximation is given by [72]

hNGLE(r) =
Φ0

S ∑
G

F(G)eiGr

1 + Lij(G)GiGj
, (27)

where

Lij(G) =
Qij(G)

detQ̂(G)
. (28)

The anisotropic electromagnetic response tensor is defined by

Qij(G) =
4πT

λ2
L0

∑
ωn>0

∫ 2π

0

dθ

2π

Δ(θ)2v̂Fi v̂Fj
√

ω2
n + |Δ(θ)2|(ω2

n + |Δ(θ)2|+ γ2
G)

, (29)

212 Superconductors – Materials, Properties and Applications



Eilenberger Approach to the Vortex State in Iron Pnictide Superconductors 15

Figure 9. (Color online) The temperature dependence of the coefficient k1 in the NGLE model obtained
at κ = 10 and B = 0.1, 1, 2, 3, 5 from a fitting made with the solution of the Eilenberger equations.

where γG = vF · G/2. In Eq. (29) the term with γG describes the nonlocal correction to the
London equation. Putting γG = 0 we obtain the London result Lij(G) = λ(T)2δij. We use
the same shape of the cutoff function as in Eq. (1) but the values of the cutoff parameters are
different because of fitting them to the various field distributions. In presentation of hNGLE

the anisotropy effects of the Eilenberger theory remain.

Figure 10. (Color online) Field dependence of k1 at T = 0.75 and 0.8 obtained from the fitting to the
Eilenberger equations. The inset shows k1(B) calculated from the Hao-Clem theory at T = 0.95.

Fig. 9 shows the k1(T) dependence in the NGLE model obtained at κ = 10 and B =
0.1, 1, 2, 3, 5 from the fitting to the solution of the Eilenberger equations. As can be seen
from Fig. 9 the coefficient k1 is strongly reduced at low temperatures. This is a reminiscent
of the Kramer-Pesch result for s-wave superconductors (shrinking of the vortex core with
decreasing temperature) [95]. It is also found that k1 is a decreasing function of B. This
can be explained by reduction of the vortex core size by the field [68]. The topmost curve
in Fig. 9 gives the values of k1 calculated for a single vortex [96]. At high temperatures the
Ginzburg-Landau theory can be applied. Using the values of the parameters of this theory

for d-wave superconductors [97] ξGL = ξBCSπ/
√

3 is obtained. A variational approach of

the Ginzburg-Landau equations for the single vortex [62] gives k1 = π/
√

3 ≈ 1.81 is in
reasonable agreement with the high temperature limit of k1 for a single vortex in Fig. 9.
Another interesting observation is the nonmonotonic behavior of k1(B) in low fields at high
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Figure 11. (Color online) Normalized differences between the fields calculated with the London model
(NGLE) and the Eilenberger equation (ELENB) for B = 1 and T = 0.6. The scales of lengths are those of
the flux line lattice unit vectors.

temperatures. Fig. 10 depicts the field dependence of k1 at T = 0.75 and 0.8 showing a
minimum which moves to lower fields with increasing of the temperature. This result agrees
qualitatively with the Hao-Clem theory [63] which also predicts a minimum in the k1(B)
dependence. This is demonstrated in the inset to Fig. 10, where k1(B) is shown at T = 0.95.

Figure 12. (Color online) Temperature dependence of the ratio of the second moment of the magnetic
field distributions obtained from the NGLE model with the fixed and fitted parameter k1 (see the text
below). The inset shows the mean-square deviation of the magnetic field distribution from the origin for
parameter k1 set to unity (solid line) and fitted (dotted line).

The quality of the fitting can be seen from Fig. 11 where the normalized difference between
the fields calculated in the NGLE model and the Eilenberger equations at B = 1, T = 0.6 and
κ = 10 is shown. The accuracy of the fitting is about 1 percent. Thus, there is only a little
improvement in the Eilenberger equations fitting to NGLE theory in comparison with local
London theory (Eq. (1)). The similarity of the field and temperature dependences of the cutoff
parameter in these theories are shown in Fig. 9 and Fig. 10.

To show the influence of the magnetic field and temperature on k1 dependence, we calculate
the values of 〈δh2

NGLE〉 using the field distribution obtained in the Eq. 27. Fig. 12 shows
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the temperature dependence of the ratio 〈δh2
NGLE〉 with the cutoff parameter obtained from

the solution of the Eilenberger equations to that with k1 = 1. From the data presented in
Fig. 12, it can be sen that this ratio deviates considerably from unity when the temperature
is lowered, which points to the importance of the proper determination of the value for the
cutoff parameter. For the magnetic field distribution, obtained from solving the NGLE, we
also calculate the mean-square deviation of this distribution from the origin (the Eilenberger
equations solution). The inset demonstrates this deviation for fixed and fitted parameter k1.

Figure 13. (Color online) The ratio of λ0 to λe f f calculated from the NGLE equation with k1 = 1 and k1

from Fig. 9.

This consideration proves that the nonlocal generalized London model with hNGLE(r)
distribution also needs the properly determined cutoff parameter k1, i.e. introducing only
nonlocal extended electronic states does not allow the avoidance of the problem of vortex
core solving.

In the analysis of the experimental μSR and SANS data the field dependent penetration depth
λe f f (B) is often introduced [56]. It has physical sense even if it is not dependent on the core
effects, i.e. it should be an invariant of the cutoff parameter. One such way of doing this was
suggested in the AFA model [70, 73]:

λe f f

λ
= (

|δh2
0|

|δh2
NGLE|

)1/4. (30)

Here, |δh2
0| is the variance of the magnetic field h0(r) obtained by applying the ordinary

London model with the same average field B and λ and with the same cutoff parameter as
in the field distribution hNGLE(r).

In Fig. 13 establishes the temperature dependence of the ratio λ2
0/λ2

e f f calculated from the

hNGLE distribution with k1 = 1 and with Fit k1 from the solution of Eilenberger equations
for the different field value. The obtained λe f f (B) dependences are quite similar in these
cases. The low-field result (B/B0 = 0.1) for λe f f is close to λ(T) in the Meissner state. This
demonstrates that λe f f is determined by a large scale of the order of FLL period and is not
very sensitive to details of the microscopical core structure and the cutoff parameter [98]. The
AFA model was originally developed in order to explain the structural transition in FLL in
d-wave superconductors where anisotropy and nonlocal effects arise from nodes in the gap
at the Fermi surface and the appearance there of the long extending electronic states [72].
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The obtained anisotropy of superconducting current around the single vortex in AFA theory
agrees reasonably with that found from the Eilenberger equations [96]. Extending electronic
states also results in the observed field dependent flattening of λe f f (B) at low temperatures
[73]. Thus, our microscopical consideration justifies the phenomenological AFA model and
the separation between localized and extended states appears to be quite reasonable.

5. Conclusions

The core structure of the vortices is studied for s±, dx2−y2 symmetries (connected with
interband and intraband antiferromagnetic spin fluctuation mechanism, respectively) and
s++ symmetry (mediated by moderate electron-phonon interaction due to Fe-ion oscillation
and the critical orbital fluctuation) using Eilenberger approach and compared with the
experimental data for iron pnictides. It is assumed [99] that the nodeless s± pairing state
is realized in all optimally-doped iron pnictides, while nodes in the gap are observed in the
over-doped KFe2As2 compound, implying a dx2−y2-wave pairing state, there are also other
points of view [10, 13]. The stoichiometrical LiFeAs, without antifferomagmetic ordering, is
considered as a candidate for the implementation of the s++ symmetry. Different impurity
scattering rate dependences of cutoff parameter ξh are found for s± and s++ cases. In the
nonstoichiometric case, when intraband impurity scattering (Γ0) is much larger than the
interband impurity scattering rate (Γπ) the ξh/ξc2 ratio is less in s± symmetry. When Γ0 ≈ Γπ

(stoichiometric case) opposite tendencies are found, in s± symmetry the ξh/ξc2 rises above the
"clean" case curve (Γ0 = Γπ = 0) while it decreases below the curve in the s++ case. In d-wave
superconductors ξh/ξc2 always increases with Γ. For dx2−y2 pairing the nonlocal generalized
London equation and its connection with the Eilenberger theory are also considered. The
problem of the effective penetration depth in the vortex state for d-wave superconductors
is discussed. In this case, the field dependence of λe f f is connected with the extended
quasiclassical state near the nodes of the superconducting gap.
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