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1. Introduction 

For utilizing biological molecules as nanomachines, it is usually necessary to immobilize 

them on a solid surface of abiological materials. Covalent modification or physical 

adsorption is used for retaining the target molecules on the solid surface. The following 

four properties are required for successful immobilization: 1) the surface enables the 

immobilization with high enough surface density of the target molecules to exert their 

functions, unless an overly high density prevents interaction as in the case of 

hybridization; 2) such exerted functions are not significantly perturbed by non-target 

substances adsorbed on the same surface during use; 3) the surface is suitable for stable 

immobilization of many kinds of biological materials with high enough mechanical 

stiffness; 4) the perturbation caused by immobilization does not alter the functions of the 

immobilized molecules. Immobilization inevitably diminishes the accessibility to the 

immobilized molecules and changes the dynamic structure of water molecules 

surrounding the target biomolecules, affecting their structure and conformation as well as 

their interactions with other substances. Soluble proteins are generally much softer than 

structured nucleic acids, and thus some are easily flattened in the close vicinity of a 

hydrophobic surface due to the surface tension. In contrast to proteins, small molecules 

and structured nucleic acids tend to maintain their native structures, but the limitation of 

accessibility becomes significant in the close vicinity of the surface. The most problematic 

consequence of immobilization is the alteration of the function, while the loss of function, 

to a certain extent, is usually tolerable as long as a significant fraction of homogeneously 

active molecules is still present on the surface. Therefore, a direct fixing on a solid support 

often leads to denaturation of proteins due to the surface tension. To avoid these 
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detrimental perturbations, linkers and porous intervening layers may be introduced onto 

the solid support to buffer the surface effects.  

Here, we present an example of such an intervening layer, namely an aminosilane layer 

formed on a diamond surface. One of the useful characteristics of this layer is that its 

stiffness can be controlled by changing the solvent used for the deposition. To clarify the 

mechanism causing the varying stiffness, we used Atomic Force Microscopy (AFM) 

nanoindentation. Our method does not require sophisticated equipment and is suitable for a 

typical wet biochemical lab, which enables the immobilization to be easily performed in the 

same lab where biological material is purified and used. 

2.1. Functionalization of diamond surface 

The material for immobilization of biomolecules on its surface is selected according to its 

properties, such as mechanical, chemical, electrical, and optical properties, as well as 

availability. Diamond is at present drawing attention as a material for biological 

applications because of its hardness, absence of toxicity, and potential conductivity. It is 

now used for electrodes and biosensors, DNA and protein chips, and for coating of implants 

[1-3]. Though it is known to be chemically inert, there are many approaches, which allow 

modification of its surface [2,4,5]. The effects of immobilizing biomolecules on their 

activities have also been discussed [6,7].  

Diamond has always been an expensive material, but the chemical vapor deposition (CVD) 

method, developed several decades ago for the synthesis of nano- and polycrystalline 

diamond films on silicon and other substrates on a large scale and at a reasonable cost, 

increased the commercial availability of diamond and facilitated its use in research and 

development [2]. Nonetheless, diamond surface modification often requires sophisticated 

equipment and facilities. 

To introduce any chemical groups onto the diamond surface, at first, the entire surface must 

be either hydrogenated or oxidized, hereafter H- or O-terminated. The H2 plasma treatment, 

used in the CVD method in a diamond film synthesis, automatically results in H-

termination [5]. According to our observation, the water contact angle on an H-terminated 

surface gradually decreased at room temperature, probably because of the local oxidation to 

generate an inhomogeneous surface, or because of the contamination of the surface. The 

uniform oxidation of the diamond surface can be achieved by various processes, such as 

anodic polarization [8], treatment with oxygen plasma [9], treatment with thermally 

activated oxygen [10], UV irradiation in the presence of ozone [11], or treatment with acids 

[12-14].  

An H-terminated surface can be directly functionalized, either photochemically by UV 

irradiation in halogen gases or alkenes [15-17], or chemically by thermal decomposition of 

benzoyl peroxide, activated by argon gas [18], or by electrochemical diazonium salts 

reduction in an inert atmosphere [19,20]. In contrast, an O-terminated surface can be 

chemically modified by silanization or by esterification [4], or, as recently reported, 

aminated by NH3-plazma treatment [1]. 
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Biological molecules can be covalently immobilized on a diamond surface either directly, or 

indirectly through an intervening layer. The former may be suitable for structured nucleic 

acids, if their lying down in parallel to the surface is prevented. Alternatively, their 

unstructured part can play as a linker, increasing the accessibility of the rest of the part of 

the molecule. In contrast, direct attachment is generally unadvisable for proteins, especially 

enzymes, which tend to lose their activities due to deformation caused by immobilization, 

though it has been actualized for particular proteins in several studies [1,21]. Diamond may 

be more biocompatible for direct protein immobilization than, for example, metal surfaces 

[22]. However, from our experience of single-molecule dynamics [23,24], as well as that of 

others’ [10,25-30], we still recommend the use of an intervening layer for preserving 

enzymatic activities. Polymer layers have a distinct advantage compared with flat solid 

surfaces in terms of retaining protein activity. Their porous or mesh-like structure allows an 

easier access of water to the immobilized biological molecules, maintaining their 

conformations and accessibilities. 

Diamond technology is still immature, and the biologically active interfaces on a diamond 

have not yet been extensively studied. Several pioneering works, reporting the properties of 

polymer layers, formed on a diamond surface, describe testing of the layers on H-

terminated diamond by scratching with an AFM cantilever [28,29,31,32]. Since different 

proteins require different treatments for maintaining their activities, an intervening layer 

needs the adjustment of thickness, roughness, and stiffness. Therefore, control over the 

properties of the layer is important. 

2.2. Deposition of aminosilane on the diamond surface 

The most common functionalization used for immobilizing biological molecules is the 

introduction of amine residues on the surface or the use of an amine-rich intervening layer, 

which is fixed on the surface. The utility of amine residue arises from its activity as a 

nucleophile in coupling chemistries under moderate aqueous conditions [29,33]. Silanization 

is commonly used in a wide variety of both industrial and research-oriented applications as 

a coupling agent for creating intervening silane layers on different kinds of surfaces. The 

chemical formula of a typical silane molecule is X3Si-R, where X is the group leaving during 

its polymerization, and R is the hydrocarbon-containing functional group, which remains 

after the reaction. A wide range of various silanes, such as aminosilanes (-NH2), 

mercaptosilanes (-SH), and glycidoxytrimethoxysilanes (epoxide), is commercially available, 

allowing different chemical functionalities to be incorporated on the surfaces [34]. 

Formation of aminosilane layers on a diamond surface has been reported in several studies 

[10,26,27]. In our work, we used 3-aminopropyltriethoxysilane (APTES), which is one of the 

commonly used aminosilanes. 

Some silanes form uniform monolayers, while APTES tends to form multilayers on various 

substrates, and the layer’s thickness increases during deposition [35,36]. In several studies, 

APTES monolayers have been reported, including those on GaN [37], silicon oxide [38], and 

porous silicon [39]. However, it is difficult to distinguish a monolayer from dispersed 
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molecules of APTES deposited in a limited time [40,41]. Thus, in a long enough time period, 

a multilayer is expected to be formed. Such a multilayer is likely to have a disordered mesh-

like structure as a consequence of the flexibility of APTES polymer molecules, which is 

suitable for protein attachment as it is. 

It is generally recognized that aqueous conditions and a sufficient accessibility of water 

molecules to the protein are important for the functions of many soluble proteins which 

tend to be adsorbed on hydrophobic surfaces [42]. Therefore, the rough and disordered 

surface of an APTES multilayer is suitable for protein attachment as it creates an 

environment of high water accessibility for protein molecules. Using APTES for protein 

immobilization is also often considered to be a means of introducing linkers, intended to 

reduce steric hindrance, thus providing a greater freedom of movement to immobilized 

biological molecules [34]. Thus, the introduction of the APTES multilayer to the diamond 

surface contributes to keeping immobilized molecules active. The disordered mesh-like 

structure might not be the best choice in all cases. For example, in microfabrication of 

arrays for DNA attachment, a regular array could not be prepared with the mesh-like 

structured APTES, whereas another silane gave much better regularity and spatial 

resolution [35]. 

To model the reaction of protein immobilization, we attached biotin and then streptavidin 

onto the APTES layer (Fig. 1), which has formed on the O-terminated diamond surface by a 

wet method, which is described later. To enhance specificity of binding, we pretreated the 

surface with a mixture of polyethylene glycol (PEG) with different chain lengths according 

to a previously established method for preventing non-specific adsorption [43]. The best 

specificity of attachment was achieved, when APTES was consequently treated first with a 

long NHS-PEG-biotin and then with a short NHS-PEG.  

We then immobilized fluorescently labeled streptavidin on an APTES layer and measured 

the density of its immobilization. By the measured density, we estimated the average 

distance between flanking streptavidin molecules. On the two layers with the highest 

densities this distance was estimated to be 5.6 and 5.3 nm. Since the size of the streptavidin 

tetramer, derived from the crystallographic data, was 5.4 × 5.8 × 4.8 nm3 [44], the 

streptavidin on these layers was immobilized in a state proximate to the hexagonal closest 

packing, if streptavidin molecules were assumed to distribute in a flat plane.  

There is a strategic problem as to whether one should use the most refined methods or 

the just-satisfactory methods in an experiment. For the combination of two or more 

lineages of technologies, we chose the latter strategy, because preparing a new pure 

protein in the lab already requires a number of techniques. In this way, rather than 

absolute accuracy of the measurements by sophisticated instruments, we preferred 

familiar and common technologies giving a sufficient accuracy: we formed an APTES 

layer in a wet process and performed nanoindentation by AFM. Therefore, the developed 

method can be performed in a standard biological laboratory where target biomolecules 

are prepared, and does not require any commercially unavailable reagents or 

sophisticated equipment. 
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Figure 1. Immobilization of streptavidin on an APTES multilayer. A. The steps of the PEG treatment. B. 

Elution of streptavidin from the multilayer for measuring the immobilization density. C. The 

immobilization densities observed for the multilayer deposited in one or more steps in different 

solvents. 

There is a consensus on the basic mechanisms of APTES polymerization. The reaction 

begins with the hydrolysis of silane molecules, resulting in siloxane bonds forming and 

attaching APTES molecules to the surface. Hydrolysis may occur both at the surface of the 

substrate, or in solution, depending on the water concentration. If water is predominantly 

present in solution, the polymerization will occur predominantly in the solution, resulting 

in formation of aggregates of APTES, which otherwise form covalent bonds with the 
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substrate [40,41]. Therefore, a distribution of water can determine the size of aggregates 

and the degree of covalent linking to the surface. In our study, we used several solvents 

with different isoelectric constants for APTES deposition and found that the layers, formed 

in different solvents, showed various morphology and nanoscopic hardness, which is 

discussed below. 

2.3. Nanoindentation 

Nanoindentation is a powerful and useful method for assessing the mechanical properties of 

a material. In a typical indentation test, a load is applied to the sample examined with a 

hard indenter, and the analysis of the load-depth curve and the morphological changes in 

the indented material allow the measurement of such properties as hardness, Young’s 

modulus, and stress relaxation data [45-47]. 

Over the recent few decades, AFM, initially invented as an imaging tool, has been 

extensively used for nanoindentation, especially on soft materials. The conventional 

nanoindention instruments, which utilize the Oliver and Pharr’s procedure [48], are 

preferentially used for hard materials. However, they cannot offer a wide enough range of 

loads necessary for soft materials, which must be indented with less force [49]. AFM is a 

very useful tool to study the properties of biologically relevant materials [50,51]. By using 

AFM cantilevers as indenters, it is possible to measure nanomechanical properties with high 

force and depth resolutions. Imaging can be performed with the same tool right after the 

indentation, without resetting the sample. Furthermore, AFM can detect pile-up or sink-in 

effects, which conventional indenters cannot [52-54].  

Several serious reservations have been asserted regarding the problem of whether or not 

AFM measurements are sufficiently quantitative in indentation [55]. Because the cantilever’s 

apex is deformed in the indentation process, and may not be exactly vertical, the AFM 

cantilever requires more corrections of measurements compared with conventional 

indenters [54]. However, we still hold the view that AFM is usable for our purpose, 

according to our strategy, by taking into account the distortion of the apex.  

2.4. Scratching manipulation and AFM nanoindentation 

In our experiments, single-crystalline synthetic (100) type Ib diamond (Sumimoto Electric 

Industries) was etched with acids to prepare an O-diamond surface and then APTES was 

deposited. Then we performed the imaging with scratching manipulation [29] on ous 

APTES layers (Fig. 2), prepared under different deposition conditions. We used AFM 

(SPI3700, Seiko Instruments) for both topographic imaging and nanoindentation. We 

calibrated silicon AFM cantilevers (SI-DF-3) with the Cleveland method [56] and selected 

tips with a spring constant of 1.2-1.4 N/m. 

We found that one can control the roughness of the layer by changing the polarity of the 

solvent. Deposition of APTES in the nonpolar solvents resulted in a rougher surface, and the 

use of polar solvents resulted in a smoother surface. 
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Figure 2. Scratching manipulation (Modified from [57]). 

In the scratching manipulation, the stiffness was indexed by the minimum force essential to 

disrupt the layer and to remove it from the diamond support. The lower the dielectric 

constant of a solvent, the greater the force had to be applied to remove the layer: only 1 nN 

for the layers prepared in ethanol mixture or acetone, 100 nN for octanol, and even greater 

forces for more nonpolar solvents. In this way, we could draw arbitrary nanopatterns 

composed of lines and squares on softer layers, though we could not scratch the harder 

layers even at forces greater than 500 nN (Fig. 3). The composed patterns remained stably on 

the diamond surface. Therefore, both roughness and stiffness increased relative to the 

decreasing polarity.  

It is important to clarify the relationship between scratching, which is terminologically a 

macroscopic examination, and microscopic nanoindentation. In the macroscopic world, 

scratching means scraping or removing a part of a substance by disrupting it with a sharp 

edge, which is a macroscopic process and is on a different level from molecular events. 

Therefore, the force, essential to break the APTES layer with the edge, is dependent on the 

sharpness and the shape of the edge, as well as its velocity and moving direction. 

However, the scratching manipulation in our experiment includes breaking molecular 

bonds between APTES and the diamond by vertical pressing with the cantilever, which we 

consider to be close to nanoindentation and a microscopic process. In the microscopic 

model, the break should be independent of the shape of the apex and dependent solely on 

the work of the pressing force. In other words, the macroscopic model predicts that the 

force breaking the layer depends on the sharpness of the edge and, thus, the horizontal 

movements in case of a pyramidal cantilever. Alternatively, the microscopic model asserts 

the independence of the cantilever used, its shape, and the horizontal direction of its 

movement (Fig. 4). 

The experimental results demonstrated that an APTES layer could be scratched and 

removed from the diamond surface with a common pressuring force within one  

order of magnitude in different examinations and was independent of cantilevers used 

(Seiko SI-DF-3, SI-DF-20S, and Olympus OMCL-AC240TS-C3), the velocity of 

scratching, and the horizontal direction of scratching. These results indicate that the 

microscopic model is more accurate in describing the mechanism of scratching of the 

APTES layer. 
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Figure 3. The results of the scratching manipulation of APTES multilayers formed in various solvents 

(Modified from [57]). 

As a control for checking whether or not the result is independent of AFM instruments, we 

performed a scratching manipulation with our instrument on a layer of ω-unsaturated 10-

trifluoroacetic amide-dec-1-ene (TFAAD), photo-chemically attached to the diamond 

surface, which had been inspected with the same manipulation [29]. The measured force 

was well aligned with the value (~100 nN) previously obtained. When toluene was used for 

the APTES deposition, the forces obtained in the scratching manipulation were greater than 

500 nN, the upper limit of our instrument. The attachment of APTES to the diamond, 

therefore, is stronger than that of TFAAD, which is generally recognized to be covalently 

bound to diamond [29], suggesting that APTES is also covalently bound to the diamond. 

This circumstantial evidence for the microscopic model led us to compare the results of the 

scratching manipulation and the AFM indentation. The nanoindentation with no horizontal 

movements was performed by pressing the APTES layer in the contact mode. The image of 

the contact area was then obtained in the noncontact mode. 

The results of nanoindentation showed an agreement of forces with the scratching 

manipulation within the same order of magnitude. The layer could not be scratched even at 

500 nN, showing no trace after the indentation at 500 nN. Indentation of the softest and 

smoothest layer, which had been formed in the ethanol mixture, showed a force < 1 nN in 

the scratching manipulation. This semi-quantitative agreement again suggests that the 

microscopic model is more appropriate than the macroscopic one. Therefore, the force 
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measured in the indentation test can be used for scratching and nanopatterning of the 

surface of a material. The indentation test sometimes required pressing for up to 10 min to 

yield reproducible results. This hysteresis indicates that the APTES layer is elastic in 

nanoscale when a force is rapidly removed. 

2.5. Interpretation of the results 

As discussed above, the result of the scratching manipulation suggests the existence of 

covalent bonds between APTES and diamond, at least for the multilayers deposited in 

nonpolar solvents. If APTES were physically adsorbed on the surface, the changes of the 

breaking force of more than 100-fold could not be explained, since more than a 100-fold 

change of the contacting area is unlikely for such a soft material as APTES polymer which is 

easily flattened. The likely explanation is the change in the surface density of the covalent 

bonds between APTES and diamond, although its evidence is required. Since the shape of 

the apex of the silicone cantilever used in the indentation should be deformed significantly 

at forces in the order of magnitude of 100 nN as shown in Fig. 4, a detailed analysis of the 

force curve of AFM indentation is not very informative.  

 

Figure 4. Schematic illustration of a force-position curve during AFM indentation. 

However, the following consideration of energetics is still possible. The force giving the 

plateau (Fig. 4) is about 500 nN for chloroform and greater than 500 nN for heptane and 

toluene. The distance D is the thickness of the compressed multilayer and is close to 1 nm. 

This value was obtained from the AFM imaging of the surface with uncoated holes with 

exposed diamond. During this period when the force is constant, the energy is used for 

breaking the covalent bonds connecting between APTES and diamond for squeezing the 

layer out of its original position. Since a Si-O bond is stronger than a C-O bond, the energy is 

used for breaking the C-O bonds, which costs 6 x 10-19 J/bond [58]. A part of the energy may 

be used for frictional dissipation and eventual bond breakage within the APTES multilayer, 

too. Therefore, the work done by the force F is FD, and FD must satisfy Eq. 1, where S is the 

area of the place where APTES was removed. 
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Since F = (strain) x ES 
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where E is Young’s modulus of silicone, 150 Gpa. It is noted that Eq. 2 is independent of F 

and S, which indirectly contribute through the strain.  

As illustrated in Fig. 5, the strain is overestimated if the shape of the apex is substituted by 

an inscribing pyramid with the same base, while the strain is underestimated if it is 

substituted by another circumscribing pyramid with the same base. Therefore, the two 

pyramids give the maximum and the minimum values of the strain, respectively. If their 

values are within the same magnitude, the actual one should also be within it. Therefore, 

this approximation is sufficient in estimating the order of the strain and the density. 

Therefore, we consider the distortion of a pyramidal cantilever (Fig. 6). 

 

Figure 5. The relationship among the actual shape of the apex, the maximum pyramid, and the 

minimum pyramid. If the heights of two pyramids agree within the factor of 3.2, the actual value of the 

strain also agrees within the factor. Because a force is parallel to the square of the height, the factor 3.2 

maintains the value of the force or the density within a factor of 10. This condition is likely to be 

established because of the use of different cantilevers and because of the loss of sharpness of the apexes 

used repeatedly. 
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The strain obtained for the present parameters (L=4.5 µm, l=10 µm, and F=500 nN) is the 

order of magnitude of 10-4, leading to the order-estimated maximum value of the density to 

be 3 C-O bonds in a square of 10 nm x 10 nm. Since there are about 10 carbon atoms per 

(nm)2 of (100) plane, APTES is covalently linked to a maximum 0.3 % of the surface carbon. 

This value is for the APTES multilayer deposited in chloroform, while the one in toluene is 

more densely bound to the diamond surface. 

These sparse covalent bonds on diamond can be explained by the sparseness of the reactive 

carbon of the diamond surface. The diamond surface used in this experiment is (100) crystal 

plane, and the carbon atoms on (100) plane have two dangling bonds. On the O-terminated 

surface, they form bridge-bonded ether bonds with their nearest surface carbon atoms, or 

become carbonyl carbon atoms [10]. The reactive carbon atom must have a single dangling 

bond, which is converted into the hydroxyl form during the O-termination [27,59]. Such 

carbon atoms will exist at defects of (100) plane, the edge of steps between two (100) planes, 

for example. The steps can be seen in Fig. 2 as stripes on the surface of uncoated O-diamond. 

Since APTES is known to react with a hydroxyl residue [40], a covalent bond between 

APTES and the O-diamond surface is limited to the carbon atoms with single dangling 

bonds. 

 

Figure 6. Pyramidal approximation of the apex of the cantilever.  

In the above consideration, we assumed that the effect of different shapes of apexes is 

smaller than an order of magnitude. Such a difference was reported to be 2-3 fold in the 

scratching manipulation using dull apexes at 10-40 nN [62]. Since the effect becomes smaller 

at a larger force, the assumption is likely to be reasonable at a force larger than 100 nN. The 

estimation by an order of magnitude, therefore, is a productive criterion almost independent 

of the shape of the apex.  
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In our consideration, we took into account only C-O bond between diamond and APTES, 

but not the Si-O bonds crosslinking between APTES molecules. The contribution of the Si-O 

bonds could be significant in the scratching manipulation but not in the nanoindentation, 

because scratching may rip the APTES layer. However, the work consumed in ripping the 

layer must be done by a horizontal force, which is the driving force of the AFM stage, and 

would not be included in the vertical force required. Actually, the results of the scratching 

manipulation and the nanoindentation agreed with each other at the accuracy of an order of 

magnitude. Furthermore, we observed that a similar ripping happens also after the 

measurement of nanoindentation, namely when the force applied to the cantilever is 

removed. As Fig. 7 shows, a hole much larger than the apex of the cantilever was formed on 

the APTES layer deposited in ethanol. The APTES layer, which had been covering the hole, 

was ripped from the surface and remained around the hole. In conclusion, these results 

indicate that the observed variation of the stiffness is due to the various densities of the 

covalent bonds between APTES and diamond. 

 

Figure 7. The trace after AFM nanoindentation of a multilayer deposited in ethanol at 500 nM. The trace 

is as great as 50 nm, which is much greater than the apex of the cantilever, ~ 10 nm.  

2.6. Mechanism yielding the dependence of the stiffness on solvent polarity 

The last problem to be addressed is why the density of the covalent bonds varies by 100-fold 

depending on the solvent used in the deposition. As already mentioned above, the 

polymerization of the APTES layer proceeds by reacting with water, indicating that there 

are two places for the polymerization as shown in Fig. 8: in the solvent and on the surface 

where water molecules are trapped. In a polar solvent like ethanol, water is homogeneously 

dispersed in the solvent but there is less water distributed on the surface. Therefore, 

homogeneous polymerization occurs in the bulk, while infrequent polymerization occurs on 
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the surface. Thus, the size of aggregates is uniform, which makes a smooth surface of the 

multilayer, but it is sparsely bound to the diamond surface, making the stiffness less. In 

contrast, in a nonpolar solvent, water content is small and with water tending to exist as 

water clusters or small droplets. Since the C-OH is more hydrophilic than the solvent, it 

holds a water droplet. Therefore, APTES aggregates are much fewer, and their size is 

inhomogeneous, making a rough surface of the multilayer. Instead, more C-OH carbons are 

covalently bound to APTES, making the stiffness greater. In this case, a longer period would 

be required for deposition. In fact, the deposition in ethanol-water mixture lasts for 1 h, 

while the deposition in toluene requires longer than 10 h to cover the surface. This proposed 

mechanism [57] explains not only the variation of the stiffness but also the roughness and 

the required time period for deposition.  

 

Figure 8. Mechanism yielding the dependence of stiffness on the solvent polarity. 

Thus, when a stiff multilayer is required, we must deposit APTES in a nonpolar solvent, a 

time-consuming process. The proposed mechanism suggests that the time required will be 

shortened if we increase the number of water droplets in a nonpolar solvent. Therefore, we 

used water-saturated toluene, which may be a rare treatment of a nonpolar solvent in 
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chemistry. In this way, we accelerated the deposition in toluene from overnight to an hour. 

This success supports our proposed model for APTES deposition. If the second deposition is 

made in ethanol-water, a smoother multilayer is obtained. 

2.7. Efficient deposition of APTES multilayer with a great stiffness and on 

diamond 

According to the described mechanism, a method for preparing a stiff APTES multilayer on 

a diamond surface has been developed. The 2-step deposition in toluene and ethanol has 

been repeated in quick steps, followed by baking to remove the water remaining inside the 

layer after each step. This procedure has yielded the best results so far of any tried in our lab 

in terms of stiffness, which is essential for long-term stability in practical use (Fig. 9). 

 

Figure 9. An efficient procedure forming a stiff APTES multilayer on diamond. 

3. Conclusions 

We have developed a new method for forming a bioactive APTES multilayer on an O-

diamond surface with a controlled stiffness, roughness, and capacity for immobilizing 

streptavidin. This method does not require sophisticated machinery or expensive materials, 

and thus, it can be adopted for use in many biological laboratories where proteins and 

nucleic acids are prepared and immobilized. 

Using AFM nanoindentation, the scratching manipulation with AFM, and AFM imaging, we 

examined the stiffness and morphology of the APTES multilayers formed on a CVD diamond. 

The results of nanoindentation and the scratching manipulation were interpreted semi-
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quantitatively rather than fully quantitatively. This interpretation enables us to propose a model 

which explains the various levels of stiffness of APTES multilayers, its correlation with polarity 

of the solvent, and the time required for covering the surface with an APTES multilayer. The 

model also allows us to improve the method to make a stiff and smooth APTES surface.  
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