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1. Introduction

Short-term load forecasting (STLF) is an essential procedure for effective and efficient real-
time operations planning and control of generation within a power system. It provides the
basis for unit-commitment and power system planning procedures, maintenance schedul‐
ing, system security assessment, and trading schedules. It establishes the generation, capaci‐
ty, and spinning reserve schedules which are posted to the market. Without optimal load
forecasts, additional expenses due to uneconomic dispatch, over/under purchasing, and reli‐
ability uncertainty can cost a utility millions of dollars [1].

Many approaches have been considered for STLF. The benefits of increased computational
power and data storage have enhanced the capabilities of artificial intelligence methods for da‐
ta analysis within the power industry [1]. Yet, even with the advancements of technology, in‐
dustry forecasts are often based on a traditional similar day forecasting methodology or rigid
statistical models with reduced variable modifiers for forecasting aggregated system load.

Power systems with a large spatial presence provide an increased challenge for load fore‐
casters, as they often face large diversity within their load centres as well as diverse weather
conditions. These geographically separated load centres often behave independently and
add considerable complexity to the system dynamics and forecasting procedure.

This chapter investigates forecasting of electrical demand at an electric utility within the
province of Saskatchewan, Canada and proposes a multi-region load forecasting system
based on weather-related demand variables. The control area examined consists of over
157,000 kilometres of power lines with transmission voltages of 72, 138, and 230KV. The
control area was apportioned into twelve load centres, consisting primarily of conforming
loads. These conforming loads were cities and rural load clusters not including large indus‐
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trial customers. Their demand profile conforms to seasonal and weather influences and,
thus, maybe referred to as conforming loads.

The chapter is organized as follows: Section 2 introduces the current load forecasting system
used at this utility and describes challenges associated with developing a new decision sup‐
port system. Section 3 discusses the weather diversity of the load centres and the load-
weather patterns observed. Section 4 presents the load diversity analysis of the load centres.
Section 5 identifies the methodology of the research as well as the load forecasting models
examined, which consist of (1) a similar day aggregate model developed in conjunction with
the utility’s load forecasting experts, (2) an ANN aggregate model, and (3) an ANN multi-
region model. Section 6 describes the modelling processes and the performance evaluation
methods. Section 7 presents the case study of predicting the hourly energy consumption
throughout the 2011 year. The predicted results generated from each of the three models are
also presented, which demonstrate the superior performance of the proposed multi-region
load forecasting system over the aggregate load forecasting models. Section 8 presents some
conclusions on the models examined.

2. Development and Implementation Challenges

Electric demand forecasting is a daily procedure required for efficient and effective grid op‐
erations, North American Electric Reliability Corporation (NERC) compliance, and planning
procedures. The current practice of making forecasts typically involves system operators
manually generating the forecast using similar day-based methodologies. The forecast meth‐
ods vary depending on the individual operator, and hence are highly inconsistent. There is a
tacit reluctance to embrace new technology among operators and the adoption of any new
tools, such as decision support systems, would not happen unless they have passed strin‐
gent benchmarking criteria and scrutiny. The challenges in developing and implementing a
new forecasting system are described in this section.

2.1. Load Forecasting Overview

Load forecasting is the science of predicting human energy usage in response to externali‐
ties. It is an essential procedure for effective and efficient real-time operations planning and
control of generation within a power system. It provides the basis for unit-commitment and
power system planning procedures (such as generation commitment schemes, contingency
planning procedures, and temporary operating guidelines), maintenance scheduling, system
security assessment (identifying stability concerns with unit-commitment and maintenance
schemes), and trading schedules (market-posted generation/interconnection plans). It estab‐
lishes the generation, capacity, and spinning reserve schedules which are posted to the mar‐
ket. Without optimal load forecasts, additional expenses due to uneconomic dispatch, over/
under purchasing, and reliability uncertainty can cost a utility millions of dollars. A one per‐
cent reduction in load forecast uncertainty can mean the difference between forecasting an
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energy emergency or efficient system operation. Therefore a reduction in load forecast un‐
certainty provides considerable economic, reliability, and planning benefits [2].

Electric  load is  the  demand for  electricity  by  a  population,  which  results  from cultural
and economic  biases  and is  influenced by externalities  [3].  Common drivers  for  electric
loads  include:  end  use  relationships  (appliances,  industries,  etc.);  time  of  day;  weather;
and econometric data.

The accuracy of the predicted demand can impact a variety of power systems operations,
such as:

• The dispatch plan of generation units may not be optimal, resulting in economic losses.

• Energy trading schedules may miss advantageous purchasing or selling options.

• Maintenance scheduling may suffer missed opportunities for preventative maintenance.

• System security may misidentify system stability on prospective generation plans.

Since electrical energy cannot yet be efficiently stored in bulk quantities, reliable forecasts
are essential to provide efficient scheduling for an electric utility. The increasing regulatory
presence in the electricity industry places increased importance on the need for accurate and
efficient demand forecasting [4].

Load forecasting is traditionally divided into three categories: long term forecasts, predict‐
ing several months to several years into the future; medium term forecasts, predicting one
or more weeks into the future; and short term forecasts, predicting several minutes to one
week into the future. The focus of this chapter is on short term load forecasting.

Short term load forecasting is conducted not only for efficient operations and planning, but
also to comply with regulations imposed by NERC. These forecasts predict either power de‐
mand, for real-time forecasting or peak forecasting in megawatts, or energy demand, for
hourly or daily forecasting in megawatt-hours. Regardless of the class of load forecasting
model utilized, understanding the relationship between electric demand and forecast driv‐
ers is essential for providing accurate and reproducible load forecasts.

Recent findings from NERC’s Load Forecasting Working Group have identified substantial
inconsistencies in forecasting methodologies such that the reported data are not comparable
[4]. While it is difficult to standardize forecasting methods across all regions, NERC has en‐
couraged the collection and reporting of load data to include greater detail with respect to
demand-side management in terms of regional diversity factors and non-member loads in
forecasts. These suggestions indicated weaknesses in current practices of load forecast re‐
porting, specifically, consideration for regional diversity and mixed aggregation methods
were acknowledged as high-priority issues.

2.2. Existing Industry Model

Within the utility examined, load forecasting has been conducted based on a similar day ag‐
gregate load model, which was constructed based on expert knowledge elicited from opera‐

Towards Developing a Decision Support System for Electricity Load Forecast
http://dx.doi.org/10.5772/51306

249



tors, engineers, and/or analysts. The model supports forecasting future demand by
comparing the demand of historically similar days. It exploits common electric load perio‐
dicity of three fundamental frequencies: (1) diurnal, in which the minima are found in the
early morning and midday and maxima at mid-morning and evening; (2) weekly, in which
demand is lowest during the weekends and approximately the same from Tuesday to
Thursday; and (3) seasonal, in which heating and cooling needs increase electrical demand
during the winter and summer months [5]. Furthermore, holidays and special events are
treated as aberrant occurrences and modelled separately. These periodic load behaviours
were analyzed and provided the basis for a sequence of representative days, which are ad‐
justed for load growth and predicted weather phenomena.

The model consists of three components: base load, weather-influenced load, and special
load. Base load considers the minimal load experienced throughout a day: an example of a
base load application is lighting systems, whose usage is determined by the time of day.
Weather-influenced load is the specific deviation from the averaged climactic conditions of
the historically representative days. Common weather-influenced load typically pertains to
heating and cooling devices such as furnaces and air conditioners. Special load includes the
residual load use unaccounted for in the other load categories and is the most difficult to
model. For example, special loads include the use of Christmas lights in winter or the outage
of a major industrial customer. The weather-influenced loads usually rely on temperature
variables, but a variety of forecast approaches exist from utility to utility [4].

Similar day models for load forecasting are often preferred for their simplicity. Operators
are able to construct a forecast without a custom-made interface and manipulate data to ex‐
amine the sensitivity of the system to simulated changes in weather. The models tend to be
intuitive to even the most novice operators and can be easily adjusted when unforeseen
weather changes occur.

While simple and easy-to-construct, similar day models are often poor at reflecting diversity
among regional load forecasts. The diversity of metering infrastructure complicates this
model’s accuracy as behind-the-meter generation often involves an aggregate estimate. This
aggregate estimate ignores specific load details which may be unavailable. Furthermore,
similar day models tend to use actual loads instead of weather-normalized loads; thereby
reducing the ability of the model to predict electrical usage in a diverse weather environ‐
ment. An additional weakness of the approach is that load uncertainty is difficult to model.
Uncertainty in metering cannot be assessed as system load is an aggregate calculation and
masks individual metering errors.

Despite the massive advancements of technology, many power utilities have yet to embrace
the  new opportunities  available  in  enhanced metering,  process  automation,  and control
schemes based on artificial intelligence techniques. Within the grid control centre, short term
load forecasting remains a manual procedure, which makes use of similar day-based models
for aggregate load forecasting. Every day the tagging desk operator manually prepares a day-
ahead forecast,  which consists of hourly electric demand forecasts.  The operator can use
weather forecasts for multiple regions, or forecast as many as four major load regions to pro‐
duce an aggregate system load. When a complete forecast has been generated, it is compared

Decision Support Systems250



against similar competing models. The power system supervisor selects the best model based
on his or her subjective criteria, and the forecast is posted to the market. Figure 1 illustrates the
procedure of STLF based on the traditional similar day model. The operator accesses the his‐
torical loads database, runs a pre-processing command to normalize the loads (e.g. by elimi‐
nating factors of load growth year-over-year), filters the dataset according to weather variables
and load modifiers, and applies data transforms and regression analysis to the dataset filtered
by operator-selected input dates. Finally, the output forecast is produced.

Figure 1. Traditional Similar Day Procedure.

Grid personnel tend to be reluctant to adopt new tools or models due to the long-standing
process for creation and evaluation of forecasts. It seems that a surprisingly high-degree of
statistical accuracy and simulation evidence is required for grid personnel to consider imple‐
mentation of new models. Hence, a central challenge in developing a new load forecasting
model is to supply substantial evidence to support its claims of accuracy, which is not limit‐
ed to model performance. In this chapter, we propose that empirical evidence to support the
case for multi-region forecasts is essential for grid operations personnel to adopt new mod‐
elling techniques. This evidence for the weather and load diversity in the control area will be
presented in sections 3 and 4, while section 7 will provide evidence in terms of assessment
results on model performance for the case study.

3. Analysis of Regional Weather

Given its large geographic area, northerly latitude, and distance from any major body of wa‐
ter, the province of Saskatchewan is prone to considerable weather diversity. The province
transitions its climates from humid continental in the south to subarctic in the north. Precipi‐
tation patterns vary considerably, typically decreasing from northeast to southwest. The
summers are hot and dry while the winters are frigid.

Wind chill statistics for each of the twelve load centres examined in this chapter were analyzed
and compared. Regional weather data were recorded and analyzed from January 2005 to No‐
vember 2011. Sufficient weather diversity was identified within the analysis for all the load
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centres to warrant adopting a multi-region approach to modelling. Thirteen weather variables
were analyzed, which included: temperature (°C), relative humidity (%), pressure (millibars),
wind direction (compass degrees), wind speed (km/hr), wind gust (km/hr), cloud cover (%),
normal cloud cover (%), cloud ceiling (metres), visibility (km), low-lying cloud coverage (%),
middle-lying cloud coverage (%), and high-lying cloud coverage (%). Based on sensitivity and
statistical analysis conducted independently on the thirteen quantitative weather variables,
only the variables of temperature, humidity, and wind speed were identified as statistically
significant factors for explaining load variation due to weather. These three variables were in‐
cluded in the prediction models and the other weather-related variables were ignored because
insignificant improvement was found from their inclusion in the model.

3.1. The Weather of Saskatchewan

Saskatchewan is a land-locked prairie province, bordered east and west by the provinces of
Manitoba and Alberta, respectively. Its northern border connects with that of the Northwest
Territories and its southern border is divided between the American states of Montana and
North Dakota. Saskatchewan is a land of geographic diversity.

Containing an area of 651,900 square kilometres [6], Saskatchewan is immense. Much of Sas‐
katchewan lies within the Great Plains and Interior Plains regions of North America, which
comprise nearly half of the area of Saskatchewan, while the Canadian Shield dominates the
northern half of the province.

Over 52% of Saskatchewan is covered by boreal forest, largely in the north, while arable
land in the south represents roughly half of Saskatchewan’s total land area [6]. Due to its
geography and location, Saskatchewan is further differentiated by its climate.

The dominant climates of Saskatchewan include: semi-arid in the southwest, humid conti‐
nental in the south and central, and sub-arctic in the north [6]. The south is typically drier
and the north is typically colder. Due to its northern location, distance from any major bod‐
ies of water, and relatively flat topography, Saskatchewan has a radical climate.

Summers are hot and short, though temperatures exceeding 32°C are not uncommon during
the day, but the nights may quickly cool to near freezing. Humidity decreases from north‐
east to southwest due to the pacific westerlies. Winters are cold and long; often tempera‐
tures do not exceed -17°C for weeks at a time. The average summer temperature for the
cities of Saskatchewan see highs of 25°C and lows of 11°C; while the average winter highs
and lows are -12°C and -23°C respectively [6].

3.2. Weather-Diversity Analysis

To assess weather-diversity across Saskatchewan, climactic differences across the regions ex‐
amined were empirically identified. Wind chill statistics for each of the twelve load centres
were analyzed and compared. Table 1 contrasts the mean, maximum, and minimum tem‐
peratures observed in each of the load centres throughout the period of investigation, which
is from January 2005 to December 2011.
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Region Code Mean (°C) Maximum (°C) Minimum (°C)

Area01 -1.48 36.66 -53.88

Area02 -1.59 36.89 -52.77

Area03 -1.48 36.53 -53.89

Area04 -1.52 34.46 -51.66

Area05   0.11 38.33 -50.23

Area06 -1.58 36.61 -52.85

Area07 -1.67 35.09 -51.11

Area08  2.56 41.66 -46.66

Area09 -2.68 33.89 -52.22

Area10 -2.65 33.88 -52.28

Area11 -1.51 34.44 -52.77

Area12 -2.04 32.77 -52.23

Regional Average -1.29 35.93 -51.87

Table 1. Wind Chill Temperature Statistics Across Load Centres.

Summer Average Daily Wind

Chill

Winter Average Daily Wind

Chill

Region Code Max (°C) Min (°C) Max (°C) Min (°C)

Area01 18.77 5.05 -11.11 -23.92

Area02 19.66 4.68 -11.21 -24.75

Area03 19.87 5.02 -11.38 -24.95

Area04 17.71 4.83 -10.51 -23.21

Area05 20.35 5.69   -8.56 -21.47

Area06 20.71 4.14 -11.17 -24.53

Area07 18.38 5.98 -11.87 -23.92

Area08 22.84 7.84   -5.26 -18.89

Area09 16.70 7.04 -13.32 -25.16

Area10 17.16 6.88 -13.45 -25.05

Area11 19.52 5.85 -11.81 -24.91

Area12 17.06 4.28 -11.25 -23.01

Regional Average 19.06 5.61 -10.89 -23.64

Table 2. Average Daily Wind Chill Temperatures During Summer and Winter Months (Jan. 2005 – Nov. 2011).
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It can be observed from the dataset that the regions experience different weather conditions at
different times such that the temperature distributions and the variances in temperature are
not the same. Table 2 lists the seasonal average daily variation of wind chill temperatures expe‐
rienced by each of the twelve load centres during the period of investigation from January 2005
to December 2011. Significant temperature variation exists among the twelve regions and indi‐
vidual load centres experience a considerable range of temperatures in an average day.

Thus, it can be seen from Tables 1 and 2 that the weather experienced in each of the twelve re‐
gions vary considerably. Weather diversity was evidenced by the seasonal differences, daily
wind chill ranges, and distribution of wind chill temperatures among the regions. The evidence
for weather diversity supports our proposal for the development of a multi-region model.

4. Analysis of Load-Diversity

Since load centres in diverse regions experience different weather conditions throughout a
day, the electrical demands of these load centres, which are dependent on weather, also
vary. Hence, the electricity demand of the load centres cannot be analyzed with a single ag‐
gregate model. Instead, the aggregate demand for electricity is best explained using multi-
region modelling. This section presents an analysis of the twelve conforming load centres
and weather data of the control region.

4.1. Aggregate and Multi-Region Load Modelling

The two approaches for developing load forecasting models include building aggregate
models and multi-region models. An aggregate model does not differentiate between load
sectors or physical locations. The strength of this approach is that it provides better analysis
for load growth trends and is easier to use. An aggregate model performs well for a small
geographic area which can include dense and undifferentiated load categories, such as in a
suburb. This model type does not support assessing where and when electrical demand will
occur throughout the system. As a consequence, aggregate models do not provide adequate
inputs for analysis of grid integrity, and statistical modifiers are often applied on the model
outputs so as to provide an average assessment of system response [7].

A multi-region model offers a more discrete analysis for distinct loads or load clusters. This
model type is useful for large geographic areas where regionalized load profile trends differ
considerably, which often results from economic or weather diversity within the forecast
area. The benefit of these models is their ability to provide higher resolution prediction re‐
sults within the grid, contributing to analysis of grid integrity. However multi-region mod‐
els are more difficult to construct and operate, as the number of inputs grows with each
additional region to the model. Irrespective of whether the aggregate or multi-region ap‐
proach is adopted, constructing a load forecasting model involves considerations of four as‐
pects: trend, cyclicality, seasonality, and a random white noise error [8].
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To  illustrate  the  load  diversity  among  the  regions,  the  region  code,  average  load,  and
peak load for the twelve load centres from the period of January 2005 to December 2011
are listed in Table 3.

Region Code Average Load (MW-hour) Peak Load (MW-minute)

Area01 205.73   345

Area02 181.46   349

Area03   35.59     60

Area04   36.54     71

Area05   36.48     67

Area06   71.33   221

Area07   25.34     45

Area08   23.86     65

Area09   17.04     74

Area10   14.23     65

Area11   43.93   154

Area12     9.44     16

Aggregate System Load 700.97 1154

Table 3. Region Code, Average Load, and Peak Load (January 2005 to December 2011).

It can be seen from Table 3 that the peak load for most load centres tends to be twice the
average load, which indicates that considerable load swings are possible within each load
centre. The aggregate load model approach would not be able to represent the possible load
swings within each centre.

To demonstrate the seasonal trends in electricity demand of the load centres, the hourly
aggregate electricity demands of the load centres over four years are shown in Figure 2.
In  this  figure,  it  can  be  seen  that  these  seasonal  patterns  correspond to  periodic  daily,
weekly,  and  monthly  variations.  Peaks  are  found  in  the  winter  and  summer  months,
while troughs are found in the spring and autumn months. Limited load growth is found
during this period, but a considerable variance is possible within each season, which usu‐
ally results from significant weather diversity.

The dark black line in Figure 2 indicates the seasonal trends of the system. Peaks are found
in the winter and summer months and troughs in spring and autumn. These seasonal pat‐
terns correspond to periodic daily, weekly, and monthly variation. Limited load growth is
found during this period, but a considerable variance is possible within each season, which
usually results from considerable weather diversity.
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Figure 2. Hourly Aggregate Electricity Demands of Load Centres from January 1, 2005 to December 31, 2008.

4.2. Regional Peaking Responses Versus System Peaking Response

Demand for electricity is not static and varies according to a multitude of variables. Load
centres will peak at certain periods during the day, usually conforming to business cycle
and weather-related influences. The system peak response is the aggregate peak of the val‐
ues of all the load centres within a control area, which may occur at a different time from the
peak response of an individual load centre. A significant difference in peak response be‐
tween regions and the system constitutes evidence for a diverse load environment. This evi‐
dence can provide motivation for the development of multi-region models.

To determine whether the observed load swings of the studied load centres occurred within
the same time frame of the aggregate system response, the coincidence factor C [7, 9] is
adopted, which is defined as,

i
i

A

P
C

P
=
å

(1)

Where, Pi is the peak load of a single load centre, and PA is the system peak load.

The coincidence factor describes the degree of discrepancy between regional peaking re‐
sponses versus system peaking response. If C is greater than 1 and continues to appreciate
across an increasing timeline, the load centres peak at different times than the aggregate sys‐
tem load, which provides evidence for the existence of load diversity among the regions. If
C is greater than 1 but remains consistent, an aggregate model can be used to accurately pre‐
dict load swings. In a somewhat consistent or non-diverse system, C will oscillate about 0
and a multi-region model is likely to be of little value in predicting load swings.
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The load diversity among the twelve load centres was calculated by comparing the peak
load of each load centre to the system peak load across an increasing time interval: begin‐
ning with a daily peak to a thirty-one day peak for the period of January 1, 2011 to January
31, 2011. The results of this calculation are shown in Figure 3.
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Figure 3. Average Load Diversity Factor Applied to an Increasing Time Interval (January 1, 2011 to January 31, 2011).

It can be seen from Figure 3 that the results of the diversity factor calculation are greater than 1
and its value increases over greater calculation time intervals. Both facts provide evidence for
the existence of load diversity amongst the load centres examined. Considering the data pre‐
sented in Table 3 and Figure 3, it is reasonable to conclude significant load diversity exists
throughout the control region. Therefore, both the weather and load diversity observed within
the control area provide justification for the development of multi-region forecasting models.
The performance of both aggregate and multi-region models will be statistically benchmarked
to identify the best model type and structure for STLF in Saskatchewan.

5. Load Forecasting Models

Three load forecasting models were developed: (1) Similar Day Aggregate Load Model, (2)
ANN Aggregate Load Model, and (3) ANN Multi-Region Load Model. The similar day ag‐
gregate load model provides the industry benchmark. The ANN aggregate load model
serves as the baseline to show the performance enhancement achieved by the ANN ap‐
proach. The ANN multi-region load model demonstrates the performance enhancement
achieved by the multi-region approach. All models were evaluated according to the same
performance evaluation methods, which will be described in section 6. The models were
tested with the same case study, which will be presented in section 7. A comparison of the
characteristics of the models is presented in Table 4 and a comparison of the input variables
to the models is presented in Table 5. The research methodology and modelling process for
each of the three models will be described in this section.
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Model Name Model Type Methodology Model Output Training Type

Aggregate Similar

Day Model

Similar Day Aggregate Aggregate

electrical demand

Knowledge Discovery in

Databases

Aggregate ANN

Model

ANN Aggregate Aggregate

electrical demand

Supervised training

Multi-Region ANN

Model

ANN Multi-Region Aggregate

electrical demand

Supervised training

Table 4. Summary of Model Properties and Methodologies.
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Aggregate

Similar Day

Past Hour Load X

Air Temp. X X

Rel. Humidity

Wind Speed

Aggregate

ANN

Past Hour Load X

Air Temp. X X

Rel. Humidity X X

Wind Speed X X

Multi-Region

ANN

Past Hour Load X X X X X X X X X X X X

Air Temp. X X X X X X X X X X X X

Rel. Humidity X X X X X X X X X X X X

Wind Speed X X X X X X X X X X X X

Table 5. Summary of Model Inputs.

5.1. Development of a Similar Day Model

The domain expertise for this research project was drawn from the grid control operating
staff of the Saskatchewan utility, including the power system supervisors, capacity man‐
agement engineers, and system operators. They were consulted to identify load patterns,
select  predictive  parameters,  and  assist  in  development  and  pre-processing  of  both  the
load and weather datasets.

The load history of the control area and temperature variables from Area01 and Area02 are
the generalized inputs to the automated similar day model. These variables are used as in‐
dex for searching a Supervisory Control and Data Acquisition (SCADA) database to obtain
the best-fit days, weighted according to the temporal distance from the forecasted day. Most
similar day models are aggregated load models, driven by one or more regional tempera‐
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ture forecasts, typically corresponding to the weather of the largest load centres. They do
not require training data in the sense that the model learns automatically. Instead the system
combines historical data with expert predictions. Figure 1 illustrates the traditional forecast
procedure based on the similar day model.

After consultation with experts including system operators and capacity management engi‐
neers, a similar day-based load forecasting model was developed. An examination of the
hourly observations of system load over the period of 2005 – 2010 revealed that the data pat‐
terns can be summarized into four day types. The four day types with their associated elec‐
tric demand behaviour and external influencing variables were represented in a
parameterized rule base, shown in Table 6. This rule base can be used in conjunction with a
database that consists of parameter values derived from the SCADA database so as to obtain
the best-fit days, weighted according to the temporal distance from the target day for which
the load is predicted. The weather variables were further subjected to sensitivity analysis to
quantify each parameter’s influence on the aggregate load. The sensitivity analysis served to
confirm significances of the parameters identified by the experts and the less significant
ones were omitted from the input dataset.

Data Module Controller Module View Module

Updates and processes knowledge

databases;

Communicates with SCADA database,

updating data entries and database

filtering;

Responds to data requests issued by

controller module with ADO

Recordset; and

Pre-filters data requests initiated by

controller module.

Provides interface between user and

data module;

Accepts input from user;

Translates user forecast queries into

well-formatted SQL, which is then sent

to the data module;

Instructs data module and view to

perform actions based on user input;

Initiates data requests to the data

module;

Retrieves data from the data module;

Negotiates weighting of best-fit days

with the data module through

parameterized rule base;

Transforms data from data module and

sends results to the view module; and

Creates, opens, closes, and deletes

projects.

Receives data and commands from

the controller module;

Modifies the user interface to

accommodate new data or

applications requested by the user;

and

Acts as the graphical user interface,

while hiding non-essential

information from the user.

Table 6. Functions of Similar Day System Modules.

The input variables filtered the dataset to select normalized aggregate load which was further
modified to correspond with the user-defined load pattern logic. The load pattern logic was
generalized from the parameterized rule base. The implemented similar day model consists of
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three modules: data, control, and view. The functions of the similar day modules are listed in
Table 6, while Figure 4 provides a screenshot of the application as viewed by the user through
the view module. An example of the similar day model rule base is provided in Figure 5.

Figure 4. Screenshot of Similar Day Load Forecast Application.

The data module leverages a database of normalized aggregated loads, pre-filtered to corre‐
spond with identified hourly and weekday groups. The module encapsulates the data stor‐
age and interface between the application and the database. The responsibilities of this
module are: responding to data requests issued by the control module, updating and proc‐
essing data entries within the database, and performing data filtering.

The control module provides the interface between the user and the data. The controller ac‐
cepts input from the user and instructs the data and view to perform actions based on those in‐
puts. Its responsibilities include: initiating data requests to the data model from the user,
retrieving data from the data model, and outputting the data to the view module. The control‐
ler translates the user’s input into a well-formatted SQL query, which is then applied to the da‐
tabase. The database responds with an ActiveX Data Object (ADO) Recordset, which is then
translated by the control module and output to the view module. The control module also cre‐
ates, opens, closes, and deletes projects, including load pattern changes instigated by the user.

The view module receives data and commands from the control module, which directs the
view module to modify the user interface to accommodate new data or applications request‐
ed by the user. All data transactions outside of this module are opaque to the user. The view
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module constitutes the graphical user interface of the aggregate similar day forecasting sys‐
tem, outputting data to the user for consideration.

In order to evaluate and modify the pattern set chosen by the user, a training dataset was
used as initial testing data for model tuning. Initial results obtained during preliminary test‐
ing approximated those of the experts. However to further improve predictive accuracy, ex‐
perts can be given the option to modify the model if a weather phenomenon such as a heat
wave or a cold snap is forecasted. When the pattern set has been configured and stored in
the data model module, the user can view the results of the pattern set against the test set.

Figure 5. Example of Similar Day Model Represented in a Decision Tree Structure.

5.2. Limitations of a Similar Day Model

While extensively used, similar day models are susceptible to the following limitations:

• As they are based on expert knowledge, similar day models may be difficult to develop
given the possibility of expert contradictions and bias [10];

• Similar day models rely on the expert to be correct in the knowledge engineering and
training stages;

• Linear models tend to be produced by similar day models that do not account for dynam‐
ic environments [10];

• The prediction capabilities of a similar day model are only as good as the historical data
and degree of specificity in the operators’ reasoning knowledge, which has been captured
and represented in the similar day model; and

• For the same reason, similar day models tend to be restricted to aggregate models due to
the extensive knowledge acquisition required for developing a multi-region model [10].

5.3. Development of ANN Models

In order to deal with the considerable load diversity presented in Table 3 and Figure 3, as
well as the weather diversity presented in Tables 1 and 2 and Figure 1, a new modelling
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structure consisting of individual load centre models fed by many weather region specific
weather variables was developed. The multi-region model is used to forecast regional loads
individually, then the results may be aggregated to forecast system load.

The ANN models were all  created and evaluated using the Weka data mining software
package. Weka, version 3.75, is a data mining tool, written in Java, and produced by the
University  of  Waikato  under  the  Waikato  Environment  for  Knowledge Analysis.  It  is  a
collection of  machine learning algorithms,  statistical  tools,  and data  transforms for  data
mining tasks, including: data pre-processing, classification, regression, clustering, associa‐
tion rules, and visualization.

Figure 6. (Left) Topology of Aggregate ANN Model.

Figure 7. (Right) Topology of Multi-Region ANN Model.
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The ANN models utilize the three weather variable categories of: ambient air temperature,
relative humidity, and wind speed. Each of the implemented ANN models holds a unique
topology. This topology was manually configured for each of the models using the Weka
Perceptron GUI. Figure 6 shows the topology of the Aggregate ANN model and Figure 7
shows the topology of the Multi-Region ANN model.

Each ANN model utilized a common training history and the same weather inputs; howev‐
er, the Aggregate ANN model only used weather variables from the two largest regions,
whereas the multi-region model used weather variables from all twelve regions.

In this research, a multi-layer (3 layered) perceptron classifier was chosen for the ANN mod‐
el. This network architecture was chosen due to its conceptual simplicity, computational ef‐
ficiency, and its ability to train by both supervised and unsupervised learning. The classifier
uses backpropagation, binary classification, and a sigmoid activation function. The Aggre‐
gate ANN model used 7 inputs, while the multi-region model used a total of 48 inputs. The
ANN model inputs are summarized in Table 5.

After the architecture and topology of the neural networks were determined, optimization
of model coefficients was achieved by systematically varying model parameters and observ‐
ing the response of each network. Both the Aggregate ANN model and the Multi-Region
ANN model provided the single output of the forecasted system load, and the inputs were
the conditional variables of weather and system load. Through a process of trial and error,
the model configurations were updated until optimum values were realized.

5.4. Limitations of an ANN Model

Despite their learning capabilities, ANNs are subject to a number of limitations, including:

• The size of the training set tends to be proportional to the accuracy of predictions, and a
large training set is required. Since the network can become over-trained, care must be taken
by the designer to tune the network and terminate the training at appropriate moments.

• The training set must cover the range of all possible events which the network is expected
to predict. Common events may dampen the response to critical, yet rare, scenarios. Yet
in order to respond appropriately to these critical scenarios, transformations of the data‐
set may be required. Unfortunately the insufficient exposure to scenarios is only revealed
after the network has been trained and tested. Therefore the designer must be cognizant
of the contents of the training set.

• Benchmarking efforts for neural network performance are difficult since the model may
be optimized to locate local, rather than global, minima/maxima [8].

• Network layers and connections are often implemented on a trial and error basis. While
domain knowledge is an important aspect of any modelling efforts, neural networks often
expose unconventional connections which lead to significant performance enhancements.
Linear connections are often redundant when using an ANN [8].
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The ANN models developed during this research were subject to the aforementioned limita‐
tions; however, efforts were taken to mitigate these impediments. The training set met or ex‐
ceeded the size of similar STLF ANN models [1, 3, 7, 9, 10] and contained a number of
scenarios, both common and diverse with respect to weather conditions and load response.
The benchmarking process considered a case study of the 2011 year across all hours and
weekdays, which exceeded the evaluation events used in similar STLF ANN models [1, 3, 7,
9] and utilized five statistical measures for model benchmarking, further described in sec‐
tion 6. Finally a systematic analysis of model optimization was enacted. Parameters were
changed methodologically and performance was noted. Ultimately, the best modelling pa‐
rameters were chosen based upon the analytical review of the model configurations.

6. Modelling Process and Performance Evaluation Methods

The three models were supplied with datasets for training/knowledge elicitation. No statutory
holidays and adjacent days were used in either the training or testing processes of the model
application. The testing dataset was not included in the modelling process and was kept entire‐
ly separate from the training sets. The weather data was not the forecast data, but the actual
hourly-averaged weather recordings, so as to minimize error due to weather forecasts.

Energy and peak load forecasting was performed for weather-induced demand and profile-
conformance. Aggregated versus individual load forecasting were evaluated and contrasted.
Load and weather trends were identified and amalgamated into load forecasting methods
for further optimization.

Databases of weather and electric loads were constructed and backfilled to January 1, 2005.
Load calculations were created, monitored, and evaluated for integrity. A total of 12 con‐
forming load centres were analyzed. Real time and historical weather reports were stored
and updated for 10 weather stations.

Load variables were assessed according to their weather-sensitivity and profile-conform‐
ance. Sensitivity analysis combined with statistical methods was used to identify weather-
induced demand variables. Load forecasting was evaluated with an expert-based Aggregate
Similar Day model, an aggregate artificial neural network model, and a multi-region artifi‐
cial neural network model.

For the purposes of this research, assessments of performance using the following statistical
methods: correlation, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Rela‐
tive Absolute Error (RAE), and Root Relative Squared Error (RRSE). These methods as‐
sessed the forecasting models by the overall prediction accuracy and consistency.

Correlation performance was calculated by computing the correlation coefficient, which is a
measurement of the statistical similarity of the predictor to the prediction. The coefficient is
defined from 1, indicating perfectly correlated results, to 0, indicating no correlation present,
to -1, indicating perfectly negatively correlated results. Correlation assesses errors different
than any other method used in this research for benchmarking. Its scale is independent and
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untransformed, even if the output is scaled. Its assessment tracks the behaviour of the mod‐
el, rather than its error [11]. Thus, a large correlation value is desirable, whereas a low error
value is also desirable.

Correlation is defined as:
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Where ai is the actual value; pi is the predicted value; ā is the mean value of the actual; and n
is the total number of values predicted.

Accuracy performance of the three load forecasting systems was established by comparing
MAE and RMSE results.

MAE is defined as:
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Where ai is the actual value; pi is the predicted value; and n is the total number of values
predicted. MAE is the magnitude of individual errors, irrespective of their sign. MAE does
not exaggerate the effect of outliers, treating all errors equally according to their magnitude.
MAE, however, does mask the tendency of a model to over or under predict values.

RMSE is defined as:
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Where ai is the actual value; pi is the predicted value; and n is the total number of values
predicted.

RMSE, like MAE, does not exaggerate large errors as is the case in squared error and root
squared error measurements. By computing the square root in RMSE, the dimensionality of
the prediction is reduced to that of the predictor [11]. These two methods equally consider
all prediction errors.

In order to evaluate the consistency of the predictions, RAE and RRSE are utilized. RAE nor‐
malizes the total absolute error of the predictor against the average results to provide a dis‐
tance-weighted result.
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RAE is defined as:
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Where ai is the actual value; pi is the predicted value; ā is the mean value of the actual; and n
is the total number of values predicted.

The RRE, like RAE, evaluates the relative distance of magnitude errors. Outliers are empha‐
sized and, like RMSE, the dimensionality of the prediction equals that of the predictor.

RRSE is defined as:
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Where ai is the actual value; pi is the predicted value; ā is the mean value of the actual; and n
is the total number of values predicted.

The best model is one that has the highest correlation and the lowest error rates. The success
rate must be evaluated according to each of the aforementioned benchmarking methods.
Consistency is equally important to accuracy, a highly variable model may be correct some‐
times, but has considerable uncertainty for future planning efforts. In the next section, the
case study and the performance results are discussed with reference to the statistical per‐
formance indicators of: correlation, MAE, RMSE, RAE, and RRSE.

7. Case Study

Each of the models was evaluated according to the same testing dataset consisting of non-
holiday loads from January 2nd, 2011 to December 30th, 2011. Each model had access to a
training dataset (see Table 5 for a summary of model inputs) using the same hourly and
weekday groups for modelling. The aggregate models were restricted to historical aggregate
loads rather than regional loads, and the weather from the two largest load centres, whereas
the multi-region model had full access to the training dataset.

This section presents the case study of predicting the hourly energy consumption throughout
the 2011 year and an analysis of the prediction results generated from each of the three models.
For the purposes of evaluation, historically recorded weather variables were used, rather than
predicted weather variables such as a forecaster would use in reality. A summary of the predic‐
tion results, assessed with the benchmarking methods identified in section 6, and grouped by
classification period (next day and next hour) are presented in Tables 7 and 8.
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Similar Day Aggregate ANN Multi-Region ANN

Correlation 0.7282 0.7819 0.8131

MAE (MWhr) 33.1111 31.3465 32.2332

RMSE (MWhr) 43.8135 41.0459 41.2891

RAE (%) 49.15% 46.98% 47.91%

RRSE (%) 46.36% 49.61% 49.44%

Table 7. Average Model Performance – Next Day.

It can be seen from Table 7 that for next day predictions, the performance of the aggregate
models closely approximated the multi-region model. Of the two aggregate models, the Ag‐
gregate ANN model outperformed the Similar Day model in all categories, except for the
RRSE. The Aggregate ANN model demonstrated a greater ability to track the behaviour of
the load, produce more accurate predictions, and had greater consistency than the Similar
Day model. However, the Similar Day model produced a better RRSE, which indicates it is
slightly better at modelling behaviours, than the Aggregate ANN model.

Similar Day Aggregate ANN Multi-Region ANN

Correlation 0.7697 0.9359 0.9469

MAE (MWhr) 24.6104 16.9821 15.8962

RMSE (MWhr) 31.4624 21.7404 20.5349

RAE (%) 38.11% 26.30% 24.49%

RRSE (%) 39.45% 27.22% 25.50%

Table 8. Average Model Performance – Next Hour.

It can be seen from Table 8 that for next hour predictions the performance of the Multi-Region
ANN model, as compared to the aggregate models, was superior across all metrics. According
to all the metrics, the Multi-Region ANN model was the most accurate and consistent for next
hour predictions, and the Similar Day model was the least accurate and consistent.

The Multi-Region ANN model performed best overall for next hour intervals, but was sec‐
ond to the Aggregate ANN model for next day intervals. This was because the perceptron
generalizes the data it receives into a single model. If this generalization was not achieved
then the model becomes over trained and relies too heavily on the training set. Since weath‐
er is much more dynamic from one day to the next versus hour to hour, the Multi-Region
ANN model was able to generalize weather/load responses for next hour conditions. How‐
ever for next day conditions, the Multi-Region ANN model was unable to sufficiently gener‐
alize the impact from all its weather inputs and, consequently, was over-trained. The
Aggregate ANN model was best able to generalize relationships for next day forecasts as its
reduced input set enables it to better reflect changes in the major load centres, which signifi‐
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cantly affected system demand. The Multi-Region ANN model was a more dynamic model
in its response to varying weather conditions, but this only applies for same day forecasts.

The Similar Day model performed worst overall for both next day and next hour intervals.
Since the Similar Day model operates by finding comparable days for inclusion into a
weighted average, its performance will deteriorate during abnormal load/weather days. Its
RRSE performance during next day predictions was second best to the Aggregate ANN
model. As the Similar Day model is predicated upon the assumption that the past may be
used to predict the future, the model relies significantly on direct load modelling; that is, the
simple predictor of aggregate system load has a greater influence on the model’s calcula‐
tions than the ANN models which model weather and load equally.

Comparing next day and next hour performance identified that model performance across
all benchmark metrics improved when the time interval was shortened. This was expected
as the previous hour’s energy demand has a high correlation with the next hour’s energy
demand. Next hour predictions require a high ability to adapt to weather and load changes.
The ANN models performed better than the Similar Day method across all metrics. Next
day predictions require greater generalization of behaviour as the load value of the previous
day does not have as great a correlation as compared to the load value of the previous hour.

When considering the performance of individual hour groups, the situation becomes more
complicated. The multi-region model, in general, resulted in the lowest MAE and highest
correlation; however, during next day predictions, the aggregate models often had better
MAE and RMSE performance. Figures 8 and 9 illustrate the behaviour of the models for next
day and next hour predictions within specific hourly groupings.

Figure 8. STLF Model MAE Performance in Next Hour Predictions.
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Figure 9. STLF Model MAE Performance in Next Day Predictions.

It can be seen from Figure 8, that the prediction accuracy of the Aggregate ANN model and
the Multi-Region ANN model are very similar. This is likely because their topologies are
similar. In addition, these models are consistent in their errors across all hours. The similar
profile of accuracy across the three models indicates certain hour groups are more difficult
to forecast than others. The performance of the Similar Day model is best during off peak
periods, as the greatest error associated with the model is found during the hour group of 17
– 21. This observation may be generalized for all the models as peak error was often found
during the morning peak or evening peak periods, which suggests the impact of tempera‐
ture on electrical demand is weakest during peak periods. When these results were shown
to the experts, they noted the demands describing the peak periods are often attributed to
the business cycle and the temperature would likely exert a less significant influence. In gen‐
eral, the experts identified the results of the hour group of 22 – 23 to be the most accurate.
They suggested this hour group should be extended to include hours 22 – 23 and 0 – 3 as
these periods typically have high baseload and temperature-dependency. A comparison of
the models’ abilities in describing the behaviours of loads is shown in Figures 10 and 11.

The Aggregate ANN model and the Multi-Region Grouped ANN model are similar in both
their correlation coefficients and predictive accuracy. The Similar Day model has the lowest
correlation across all hours, and demonstrates low correlation at both peak periods.

As a conclusion, the multi-region model proved to be the best overall model, in terms of pre‐
dictive accuracy and consistency. The Similar Day model was the easiest to build and of‐
fered to the operators an intuitive explanation for load behavior. However, it also performed
the worst among the three models analyzed. The performances of the Aggregate ANN and
Multi-Region ANN models were similar due to their topological similarities. This suggests
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that forecast environments with a considerable weather and load diversity should adopt a
multi-region model for prediction of load instead of grouping the regions into a single ANN
model. It can be observed that peak periods were the most difficult for the models to pre‐
dict, and the forecast results have low accuracies.

Figure 10. STLF Model Correlation Performance in Next Day Predictions.

Figure 11. STLF Model Correlation Performance in Next Hour Predictions.
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8. Conclusions and Future Work

Load forecasting continues to grow in importance within the electric utility industry. To date,
no known study has been published which examines load forecasting within the province of
Saskatchewan and/or within the control area examined. The increased importance of energy
and environmental concerns, coupled with enhanced regulatory presence, has renewed inter‐
est in developing an accurate and easy-to-use load forecasting system within the control area.

The general objective of this research is to conduct load forecasting for a large geographic
area which has considerable weather and load diversity. The specific research objective is to
develop data-driven hourly prediction models for multi-region short term load forecasting
(STLF) for twelve conforming load centres within the control area in the province of Sas‐
katchewan, Canada. Since the load centres experience considerable diversity in terms of
both weather and load, a multi-region based approach is needed and the ANN modelling
approach was adopted for developing the models.

Due to their simplicity, ease of analysis, and long adoption history, many load forecasting
systems currently used are based on a similar day methodology. However, the research re‐
sults show that the multi-region ANN model improved prediction performance over the ag‐
gregate-based short term load forecasting ANN model and the similar day aggregate model
in forecasting short term aggregate loads in next hour forecasts as well as next day forecasts.
All models examined were weather-driven forecasting systems. The performance of the
models was evaluated using the dataset from the 2011 year. Based on the measurements of
Correlation, MAE, RMSE, RAE, and RRSE, it can be concluded that the ANN-based models
provide superior prediction performance over existing similar-day forecasting systems. The
developed models are able to reduce STLF inaccuracies and may be applicable for model‐
ling other system concerns, such as system reliability.

Operational staff of grid control centres often adopt similar day models due to their simplic‐
ity and intuitive development, while paying less attention to the impacts of weather changes
to electricity demand. This chapter has demonstrated the superior performance of the ANN-
based models over the similar day models. This finding suggests that artificial-intelligence-
based methods can potentially be used for enhancing performance of load forecasting in the
operational environment. Future efforts in developing artificial intelligence-based forecast‐
ing systems can include efforts towards building more intuitive user interfaces, so as to pro‐
mote greater user-adoption.

We believe that merging the ANN models with other methods such as fuzzy logic, support
vector regression, and time series considerations can provide enhanced consistency for mod‐
elling reduced load interval datasets. Further analysis of heat wave theory and other weath‐
er trend electricity demand drivers is necessary for these methods to become applicable for
conducting both short and medium term load forecasts. The results and methods of this
work will be compared against other artificial intelligence models and statistical methods to
identify further areas of improvement. Future work in this field is required to decrease fore‐
cast time intervals in order to provide a real-time operating model for intelligent automated
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unit-commitment algorithms, which operate at 15 minute intervals. Further efforts in weath‐
er trend analysis, such as heat wave theory will be investigated in order to quantitatively
describe other weather-load trends.
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