
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 11

Physiological Signal Based Biometrics for Securing
Body Sensor Network

Fen Miao, Shu-Di Bao and Ye Li

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51856

1. Introduction

Nowadays, the constraints in the healthcare of developing countries, including high pop‐
ulation  growth,  a  high  burden  of  disease  prevalence,  low  health  care  workforce,  large
numbers of rural inhabitants, and limited financial resources to support healthcare infra‐
structure and health information systems, accompanied with the improvement of poten‐
tial  of  lowering  information  and  transaction  costs  in  healthcare  delivery  due  to  the
explosively access of mobile phones to all  segments of a country, has motivated the de‐
velopment of mobile health or m-health field. M-health is known as the practice of medi‐
cal and public health supported by mobile devices such as mobile phones and PDAs for
delivering medical and healthcare services. Thus, the popularity of m-health can be sub‐
jected to the development of wearable medical devices and wireless communication tech‐
nology.  In  order  to  fully  utilize  wireless  technology  between  the  wearable  medical
devices,  the  concept  of  body sensor  network (BSN),  which is  a  kind of  wireless  sensor
network around human body, was proposed in 2002.

1.1. Body sensor network

BSN, which has great potential in being the main front-end platform of telemedicine and
mobile health systems, is currently being heavily developed to keep pace with the continu‐
ously rising demand for personalized healthcare. Comprised of sensors attached to the hu‐
man body for collecting and transmitting vital signs, BSN is able to facilitate the joint
processing of spatially and temporally collected medical data from different parts of the
body for resource optimization and systematic health monitoring. In a typical BSN, each
sensor node collects various physiological signals in order to monitor the patient's health
status no matter their location and then instantly transmit all information in real time to the
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medical server or the doctors. When an emergency is detected, the physicians will immedi‐
ately inform the patient through the computer system by providing appropriate messages or
alarms. By this way, BSN is preferred in monitoring patients in environments lack of medi‐
cal doctors, such as home and workplaces. Fig.1 presents a simplified example of a BSN ap‐
plication scenario in a mobile health system. Sensor nodes on or inside the human body and
a Master Node (MN), are connected to form a BSN. Medical information collected by differ‐
ent sensors in a BSN will be sent to the MN for data fusion and then to personal server for
pre-processing before being forwarded to a central server for further analysis or the physi‐
cians for care giving via various forms of communications such as wireless personal area
network (WPAN), wireless local area network (WLAN) and wide area network (WAN).

Personal server

Medical 
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Respiration
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EEG
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Pressure

MN
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Professional

BSN BSN BSN

Figure 1. An application scenario of BSN

1.2. Security challenge in BSN

As mandated by privacy laws and regulations, such as the Health Information and Portabili‐
ty Accountability Act (HIPAA) (Bowen et al, 2005) and the European Union Directive
2002/58/EC (2002), wireless standards with medical applications have to have a high level of
reliability to guarantee the security of patients’ information and the privacy of healthcare
history. To ensure the security of the overall mobile health system, BSN as an important
end, should be protected from different attacks such as eavesdropping, injection and modifi‐
cation. However, it is a nontrivial task due to stringently limited processing capability,
memory, and energy, as well as lack of user interface, unskilled users, longevity of devices,
and global roaming for most sensor nodes.
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Symmetric cryptography, in which communication parties must possess a shared secret key
via an invulnerable key distribution solution prior to any encryption process, is a promising
approach to relieve the stringent resource constraints in BSN. Existing key distribution tech‐
niques for large-scale sensor networks, such as random-key pre-distribution protocols (Gli‐
gor et al, 2002; Perrig et al, 2003) and polynomial pool-based key distribution (Ning et al,
2003), require some form of pre-deployment. However, given the progressively increasing
deployments of BSN, these approaches may potentially involve considerable latency during
network initialization or any subsequent adjustments, due to their need for pre-deployment.
In addition, it obviously discourages people, such as family members, to share sensors be‐
tween themselves because whenever there is need to add or change a body sensor, the user
has to configure a new initial key to ensure that the new sensor can securely communicate
with the existing ones. Therefore, a new series of key distribution solutions without any
form of initial deployment to provide plug and play security is desirable for BSNs.

1.3. Novel biometrics for BSN security

As  well  known,  the  human  body  physiologically  and  biologically  consists  of  its  own
transmission  systems  such  as  the  blood  circulation  system,  thus,  how  to  make  use  of
these  secured  communication  pathways  available  specifically  in  BSN  to  secure  it  is  a
good idea (Poon et al,  2006).  It  is undoubtedly practical in securing BSN with a teleme‐
dicine  or  m-health  application,  as  nodes  of  these  BSN would  already  comprise  biosen‐
sors  for  collecting  medical  data,  which  could  be  physiological  characteristics  uniquely
representing an individual.  If  these intrinsic characteristics can be used to verify wheth‐
er two sensors belong to the same individual, the use of physiological signals to identify
individuals  and  secure  encryption  key  transmission  with  resources-saving  is  feasible.
Building upon this initial  idea, a family of lightweight and resource-efficient biometrics-
based security solutions, which are based on time-variant physiological signals, has been
proposed  for  the  emerging  BSN  with  a  dual  purpose  of  individual  identification  and
key  transmission.  It  is  different  from  traditional  biometrics,  where  the  physiological  or
behavioural  characteristics  are static  and merely used to automatic  identify or verify an
individual.  The utilized biometric traits in traditional biometric systems should have the
characteristics  of  universality,  distinctiveness,  permanence,  effectiveness,  invulnerability
and so  on,  while  the  physiological  characteristics  should  be  dynamic  at  different  times
to ensure the security of key transmission in BSN.

As  depicted  in  Fig.2,  in  biometrics  solution  the  physiological  signals  of  human  body,
such as electrocardiograph (ECG) and photoplethysmograph (PPG), were used to gener‐
ate  the entity  identifier  (EI)  of  each node for  identifying nodes and then protecting the
transmission  of  keying  materials  by  a  key  hiding/un-hiding  process.  It  is  based  on  the
fact  that  EIs  generated  simultaneously  from  the  same  subject  are  with  high  similarity,
while those generated non-simultaneously or from different subjects are with significant
differentiation.
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Figure 2. Workflow of biometrics-based security solution

1.3.1. Dynamic EI generation

The timing information of heartbeats was demonstrated by Bao et al (2005) to be a possible
biometric characteristic to be used in proposed entity authentication scheme due to its cha‐
otic nature, which can ensure the dynamic random performance of the generated EIs and
then the security performance for BSN. Thus, the authors proposed to use Inter-Pulse-Inter‐
val (IPI) to generate EIs for securing the distribution of keying materials. A rigorously infor‐
mation-theoretic secure extraction scheme to properly extract the randomness of ECG
signal, mainly from the IPI information, was proposed by Xu et al (2011). It was demonstrat‐
ed that there are two advantages of using IPI to secure BSN. Firstly, it can be derived from
multiple physiological signals such as electrocardiograph (ECG) and photoplethysmograph
(PPG) by measuring the time difference between peaks in the signals. Secondly, it has been
demonstrated that EIs generated from a series of IPI values passed the selected randomness
tests from the National Institute of Standards and Technology (NIST) standards, and thus
show an acceptable degree of randomness. However, an R-wave detection process is re‐
quired before IPI measurement, which not only increases the computational complexity, but
also leads to the uncertain performance because the accuracy of R-wave detection seriously
affects the performance of IPI-based security system. In addition, 32 IPIs need to be utilized
to generate a 128-bit EI, which means about 30 seconds of ECG/PPG measurements are re‐
quired before cryptographic keys can be securely distributed. To overcome these problems,
the frequency-domain characteristics of physiological signals (FDPS), was proposed by Gup‐
ta et al (2010) to be a promising biometric characteristic due to its real-time performance,
where 5 seconds measurement is enough to generate EIs. Also, there is no need of R-wave
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detection in FDPS-based EI generation scheme. However, the poor randomness and recogni‐
tion rate performance are the bottlenecks of using FDPS to generate EIs and need to be bro‐
ken through to ensure the security performance of BSN.

1.3.2. Fuzzy method based key distribution solution

Since intrinsic characteristics captured simultaneously at different parts of the same subject
have slight differences, fuzzy methods should be deployed on the transmitter/receiver for
an increased tolerance in acceptable differences to protect the transmission of keying materi‐
als using generated EIs. Fuzzy commitment scheme proposed by Juels (2002), which works
effectively in the case that the generated EIs are all sequential and with the same length, is
employed in BSN security due to its low computational complexity, low memory occupied,
as well as convenience to be implemented. However, Fuzzy commitment scheme is not ap‐
propriate while the feature points in EIs are un-ordered or with missing values due to its
requirement for correspondence of features in terms of order. To address this issue, Juels
and Sudan (2006) proposed the fuzzy vault scheme, which offers attractive properties in
terms of security, changeable key, and flexibility, and thus has been a good candidate for
biometrics based cryptographic systems. It has been applied in different traditional biomet‐
ric systems, for example, fingerprint, face, and Iris biometric systems for better performance
than fuzzy commitment. Though fuzzy vault scheme was also adopted in biometrics based
BSN security in more and more studies, it is noted that (Miao et al, 2010) the scheme is not
good enough to achieve stable performance if the generated EIs are with dynamic random
patterns in bit difference. Also, fuzzy vault has its drawbacks of low recognition rate due to
not considering the inequality of the number of features in EIs generated from the two com‐
munication parties.

This chapter will describe the aspects of this kind of new biometrics with focus on the state-
of-the-art biometric solutions for BSN security. In Section 2, the schemes of generating EIs
from physiological signals based on both time-domain and frequency-domain information
will be presented, followed by the performance evaluation as being a dynamic individual
identifier to differentiate different subjects. Secondly, the usage of such generated EIs for se‐
curing BSN, i.e. key transmission schemes, will be detailed with a performance comparison
of different schemes designed according to EIs’ specific characteristics in Section 3. In Sec‐
tion 4, we conclude this chapter with an illustration of different biometric solutions in BSN
security, where some issues need to be further studied will be emphasized.

2. Entity identifier generation schemes

EI generation scheme is the most important issue should be addressed in the biometrics sol‐
utions because the security of BSN depends heavily on the characteristics of EIs generated.
As described in Section 1, the state-of-the-art EI generation schemes are mainly classified in‐
to two categories, one is based on the time-domain information of physiological signals
(TDPS) and the other is based on the frequency-domain information (FDPS). In this section,
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we will illustrate the two schemes separately with a detail performance evaluation on their
advantages and disadvantages.

2.1. TDPS-based EI generation scheme

IPI is the most commonly used timing information in TDPS-based EI generation scheme.
Fig.3 presents the experimental protocol of IPI-based EI generation scheme and the applica‐
tion of EIs for node identification. In IPI-based EI generation scheme, each node extracts the
time-domain information by calculating a series of IPIs from its own recorded cardiovascu‐
lar signal such as ECG and PPG based on a synchronization signal initiated by the master
node, which can be denoted as {IPI i |1≤ i ≤N }. IPI-based EI generation process is then de‐
ployed on the series of IPIs of each end to generate its own EI. The EIs generated simultane‐
ously from the transmitter and the receiver are with high similarity for the same subject,
while high dissimilarity for different subjects or generated non-simultaneously, and thus
can be used to identify nodes by comparing the Hamming distance between two EIs.

As depicted in Fig.3, given a sequence of IPI values, the IPI-based EI generation process for
the transmitter/receiver is comprised of the following three processes: accumulation & mod‐
ulo, contraction mapping and Gray coding. Give N consecutive individual IPIs, a series of
multi-IPIs can be obtained as follows:

{mIPI i =∑
n=1

i
IPIn |1≤ i ≤N } (1)

matched

Y

{IPI1, IPI2, …, 
IPIN}

Hamming
Distance
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N
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EI'
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Accumulation 
& Modulo

Contraction 
mappring
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IPI Extraction Process EI Generation 
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Figure 3. Experimental Protocol of TDPS-based EI generation scheme and node identification

To randomize the monotonically increasing multi-IPIs, a modulo operation is further intro‐
duced, i.e. (mIPI i)mod(2L ), where L  is a positive integer referred to as the modulo parame‐
ter. To compensate measurement differences among different BSN nodes, the modulo result is
further transformed into a small integer q by a contraction mapping f̂ : 0, 2L )→ 0, 2q), i.e.,
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f̂ (m)= m
2(L −q) (2)

where L >q and .  returns the largest integer less than or equal to m
2(L −q). Finally, to in‐

crease the noise margin of measurements, the Gray code scheme is employed to get binary
EIs. The generated EI can be expressed as EI = I1 | | I2⋯ | | I L −1 | | IN , where I i is generated
from a corresponding mIPI i with the bit length of q. Such generated EIs have a bit length of
N ×q.

2.2. FDPS-based EI generation scheme

Fig.4 presents a demonstration of the experimental protocol of FDPS-based EI generation
scheme and the application of EIs for node identification with PPG as the physiological sig‐
nal. In state-of-the-art FDPS-based EI generation schemes, nodes in the same BSN obtained
independently the same physiological signal in a loosely synchronized manner, at a specific
sampling rate for a fixed duration. An EI generation process is then deployed on the signal
acquired from each end to generate its own EI. In order to realize node identification and the
security of keying materials, the EIs generated simultaneously from the transmitter and the
receiver should be with high similarity for the same subject, while high dissimilarity for dif‐
ferent subjects or generated non-simultaneously. Therefore, the EIs can be used to identify
nodes by comparing the distance between two EIs. Different from TDPS-based EI generation
scheme, the distance of EIs measured here cannot be Hamming distance, the reason of
which will be explained in Section 2.3.
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Distance<
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N

Unmatched

EI

EI'

FFT

Peak 
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Randomized 
Algorithm

EI Generation 
Process Node Identification 
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Figure 4. Experimental Protocol of FDPS-based EI generation scheme and node identification

As depicted in Fig.4, an entire FDPS-based EI generation process is comprised of a Fast
Fourier Transform (FFT) process, a peak detection process, a randomized algorithm in some
situations and a binary encoding process. In the previous FDPS-based EI generation process
proposed by Gupta et al (2010), the samples collected are divided into several windows and
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a FFT is performed on each of these parts, denoted as Multi-Windows generation scheme. A

combination with the form of < Kx
i, Ky

i >  is derived through the peak detection process de‐

ployed on the FFT coefficients, where Kx
i is the FFT point at which peak is observed, Ky

iis

the corresponding FFT coefficient values, and i is the index of the peaks. Each of the peak-
index and peak-value are quantized and converted into a binary string and concatenated to

form an EI, which can be denoted as EI = { f 1, f 2, ⋯ f N }, where f i = Kx
i, Ky

i , 1≤ i ≤N , N  is

the number of indexes where peaks are observed, which varies upon situation. However,

based on what we learned from experimental analysis, Ky
i is not a good resource to generate

EIs because the amplitudes of physiological signals can be easily affected by a lot of meas‐
urement factors, such as the degree of skin exposure to sensor nodes.

Figure 5. Multi-Windows versus Single-Window feature points generation process: (a) Same subject with ECG; (b) Dif‐
ferent subjects with ECG; (c) Same subject with PPG; (d) Different subjects with PPG
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Therefore, a Single-Window (SW) method to generate EIs was proposed by Miao et al (2011)
aiming for a significant improvement in recognition performance and increase in random‐
ness performance. Firstly, FFT is directly performed on the physiological signal in a loosely
synchronized manner, at a specific sampling rate for a fixed duration, such as 5 seconds.
Then, each peak-index, i.e. < Kx

i > , of the first M  points of FFT coefficients is selected and

concatenated to form a set of feature points F = {Kx
1, Kx

2, ⋯Kx
N }, where N is the number of

indexes where peaks are observed, which varies upon situation. Before binary encoding
process, a randomized algorithm is designed to overcome the bottleneck of randomness per‐
formance. Fig.5(a) and Fig.5(b) indicate an example of the differences between Multi-Win‐
dows (MWs) and Single-Window (SW) methods before randominzed algorithm with ECG
signals collected by two nodes on one single subject and from two different subjects, respec‐
tively, while Fig.5(c) and Fig.5(d) indicate an example of the differences with PPG signals. It
can be seen from Fig.5 that the number of peaks generated from nodes on the same subject
has a higher number of matchings in terms of peak-index compared to those from different
subjects; however, there is no such findings with FFT coefficients. In addtion, compared
with MWs method, the SW method presents a larger matching rate, which is defined as the
rate between the number of matched peaks and the number of the detected peaks, for the
same subject and smaller matching rate for different subjects, no matter what kind of phys‐
iological signal is.

Obviously, all of the integer values of feature points are ascending and within a certain
scale, which would bring about the bottleneck of the randomness performance and security
weakness. Therefore, a randomized algorithm similar to Linear Congruential Generator
(LCG), which is a kind of pseudorandom number generator, is deployed to randomize F
and form a new set F ′, i.e.,

F ′ = {(bKx
1 + c)mod2 p, (bKx

2 + c)mod2 p, ⋯ (bKx
N + c)mod2 p}

= { f 1, f 2⋯ , f N }
(3)

where 2 p is the “modulus” and p is a positive integer referred to as modulo parameter, b≥0
is the “multiplier”, 0≤c <2 p is the “increment”. The selection of b, c, p is directly related to
the randomness performance of F . In the randomized algorithm, it is recommended that the
most optimal relationship between b, c, p is as followings:

{b = 2 p/2 + 1

c =2β + 1, c / 2 p =(1 / 2− 3
6
)

(4)

where β ≥0, x  returns the largest integer less than or equal to x. Then, a permuted feature
points set is generated with the form of
F ″ = RandomPermute( f 1, f 2, ⋯ , f N )= ( f ′

1, f ′
2, ⋯ f ′

N ) by randomly permuting the order of

Physiological Signal Based Biometrics for Securing Body Sensor Network
http://dx.doi.org/10.5772/51856

259



each point f i. The generated EI can be expressed as EI = I1 | | I2⋯ | | I N −1 | | IN , where | |  is
a concatenation operation. Each block of EI, i.e., I i is the binary result of a corresponding f i ′.
The bit length of I i is p, and thus, the bit length of EI is N × p.

2.3. Performance evaluation

To demonstrate the performance of different EI generation scheme, we conduct the perform‐
ance evaluation in terms of randomness performance and group similarity. The perform‐
ance comparison will be given to systematically illustrate the advantages and disadvantages
of different schemes with two experiments. In the first experiment (Exp. I), the experimental
data to be used for performance evaluation include ECG and PPG from 14 healthy subjects,
where ECG was captured from the three fingers of each subjects and two channels of PPG
were captured from the index fingers of the two hands, respectively. For each subject, the
three channels of signals were captured simultaneously for 2-3min. All the three channels of
signals were used to generate TDPS-based EIs, while two channels of PPG were used to gen‐
erate FDPS-based EIs. In the second experiment (Exp. II), there were in total 85 clinical sub‐
jects from the hospital and two channels of physiological signals (including one-channel
ECG and one-channel PPG) with a duration of 40 seconds were simultaneously recorded
from each subject on three or four days within two-month period.

2.3.1. Randomness performance analysis

The randomness performance of binary sequences can be evaluated using a variety of ran‐
domness tests. Beacause of the length limitation in the generated binary EIs from each sub‐
ject, several tests from the National Institute of Standards and Technology (NIST) standards
were selected, including frequency (monobit) test, frequency test within a block, cumulative
sums test, runs test, and approximate entropy test with the decision rule of 1% level.

Test
Pass rate

FDPS-based EIs b=23, c=109, p=9 TDPS-based EIs

Frequency Test 99.219% 100%

Frequency Test within a Block (M=10) 100% 100%

Runs Test 99.219% 100%

Cumulative Sums Test 100% 100%

Approximate Entropy Test 99.219% 100%

Table 1. Randomness test results

Table 1 shows the randomness test results of TDPS-based EIs and FDPS-based EIs, where
the randomizing parameters in FDPS-based EI generation scheme were set as
b =23, c =109, p =9. It can be seen that all bit streams generated based on TDPS and most of
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FDPS-based EIs passed the selected tests, and TDPS-based EIs show a better randomness
performance than FDPS-based EIs.

2.3.2. Group similarity analysis

The similarity between any pair of TDPS-based EIs generated simultaneously by sensors on
the same individual can be analyzed with the Hamming distance. Fig.6 depicts the Ham‐
ming distance distribution of EIs with L =8, N =16, q =3. It can be seen that more than 95%
of the Hamming distances between TDPS-based EIs are less than 10, and thus shows a good
group similarity performance with the two experiments. Therefore, the proposed scheme is
applicable in both healthy people and clinical subjects.
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Figure 6. Similarity analysis with the Hamming distance (L = 8, N = 16, q= 3)

Different from TDPS-based EIs, FDPS-based EIs cannot be analyzed with the Hamming dis‐
tance due to the unequal length of generated EIs and matching points at different orders. As
shown in Fig.7, the feature sets generated at the transmitter/receiver of the same subject after
randomized algorithm have some common points, such as 174, 225, 156 at different orders,
and thus direct Hamming distance in sequence can not reflect the real matching performance.

106 174 225 3 71 156 241 36 121 171 1

174 225 20 88 156 241 121 155 1 86 171 0

Figure 7. Feature points set generated at the transmitter/receiver of the same subject
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Therefore, dynamic time warping (DTW) distance was selected to measure the group simi‐
larity between any pair of EIs generated from the same subject. DTW is an algorithm for
measuring similarity between two sequences that vary in time or speed, which meets the
characteristics of the EIs generated from FDPS. It is able to find an optimal match between
two given sequences with certain restrictions. The sequences are "warped" non-linearly in
the time dimension to determine a measure of their similarity independent of certain non-
linear variations in the time dimension. Let s1 and s2 be two vectors with lengths of m and n.
The goal of DTW is to find a mapping path {(p1, q1), (p2, q2), ⋯ , (pk , qk )} such that the dis‐

tance on this mapping path ∑i=1
k | s1(pi)− s2(qi)|  is minimal.

Fig.8 depicts the DTW distance distribution of EIs generated from the true pairs, i.e., two no‐
des on the same individual, with the SW and MWs methods on PPG data, respectively. It
can be seen that with the SW EI generation scheme, 98% of the DTW distance between true
pairs are less than 90, compared with 82% with the MWs, and thus exhibit a better perform‐
ance of group similarity than those with MWs.
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Figure 8. DTW distance distribution of FDPS-based EIs of the true pairs.

2.3.3. Performance comparison between two EI generation schemes

In order to realize high recognition rate, the generated EIs should have the characteristics of
effectiveness (being able to be generated fast and easily), robustness (resistance to uncertain‐
ty), randomness, distinctiveness (being similar for same subjects and differentiate for differ‐
ent subjects). Firstly, as about 30 seconds of ECG/PPG measurements are required to
generate a 128-bit EI based on TDPS while only 5 seconds based on FDPS, and an R-wave
detection is needed in TDPS-based EI generation scheme for the IPI measurement, which in‐
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creases the computational complexity, the FDPS-based EIs shows a better effectiveness per‐
formance than TDPS. Secondly, the accuracy of R-wave detection affects the recognition
performance of TDPS-based EIs heavily. For example, once a negative R-wave is detected or
a positive R-wave is missed in one end, the EIs from true pairs will be dissimilar. Therefore,
there would be a requirement for the given TDPS-based EI generation scheme that, the
physiological signals shall be with an acceptable quality for peak detection. Though FDPS-
based EI generation may also require a good signal quality, there is no evidence that the re‐
quirement is more constrict while compared to the TDPS-based one. Thirdly, from both the
randomness performance and group similarity analysis, TDPS-based EIs shows a better per‐
formance than FDPS-based. In conclusion, TDPS-based EIs is superior in randomness and
distinctiveness performance, while FDPS-based EIs is superior in effectiveness and robust‐
ness performance.

3. Key distribution solution

As presented in the workflow of the biometrics security in Section 1.3, the EIs can not only
be used to identify individuals, but also be used to protect the transmission of keying mate‐
rials. The key distribution process in biometrics security model works as follows: one of the
two sensors, called transmitter, hides the random symmetric key generated by its own using
an EI obtained from the physiological signal. This hidden key is sent over to another sensor,
called receiver, which uses its own version of EI to recover the random key after compensat‐
ing for the differences between its EI and the one used by the transmitter. The most common
fuzzy methods used in biometrics security solution until now are fuzzy commitment and
fuzzy vault, dependent on the characteristics of the EI generated. In this section, the two fuz‐
zy methods application will be detailed with a discussion of the specific fuzzy method to be
adopted for TDPS-based EIs and FDPS-based EIs according to their characteristics.

3.1. Fuzzy commitment scheme applied in BSN security

The block diagram of key distribution solution between communication parties based on the
fuzzy commitment scheme is presented in Fig.9. Let K ∈ {0,1}k  and K̂ ∈ {0,1}n represent the
cryptographic key need to be protected and its corresponding error-correction codeword, re‐
spectively, EI ∈ {0,1}n represent the EI value at the transmitter used to protect keying materi‐
als, and h : {0, 1}n →{0, 1}l  be a one-way hash function. The fuzzy commitment scheme is
defined as F (K̂ , EI )= (h (K ), K̂ ⊕ EI ), where ⊕  is the bitwise XOR operation. To decommit
F (K̂ , EI ) using a witness E I ′ at its own end, the receiver computes
K ′ = f (E I ′⊕ (K̂ ⊕ EI ))= f (K̂ ⊕ (E I ′⊕ EI )), where f  is the relevant error-correction decoding
process. If h (K ′)=h (K ), then the decommitment is successful and K ′ is the correct key K .
Otherwise, E I ′ is an incorrect witness that is not close enough to the original encrypting
witness EI . It is obvious that the EI used in such a security model must be sequential and
with the same length. In fact, in order to realize high-level security performance, EI  used in
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fuzzy commitment must have the performance of distinctiveness and time-variance to en‐
sure the invulnerability.
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Figure 9. Key distribution solution based on fuzzy commitment scheme

3.2. Fuzzy vault scheme applied in BSN

Fig.10 gives the block diagram of key distribution solution between communication parties
based on the fuzzy vault scheme applied in BSN security. In fuzzy vault based key distribu‐
tion scheme, let K ∈ {0,1}n represent the cryptographic key need to be protected,
ai∈ {0, 1}k , i =1⋯M  represent the binary biometric features derived from the generated EI

used to protect keying materials. A polynomial P(x)=cmx m + cm−1x m−1 + cm−2x m−2 + ⋯c1x + c0

is created for binding of K  and ai∈ {0, 1}k , i =1⋯M  by segmenting K  as its coefficients with
the form of K =cm | |cm−1 | |cm−2 | | ⋯ | |c0, where m is the degree of the polynomial. The
polynomial P(x) is then evaluated on each of the feature points X i, where X i is an integer
number corresponds to binary feature ai. The generated pairs {(X i, P(X i)), i =1⋯M } are
termed the genuine set G. Then the transmitter generates the chaff points set
C = {(uj, vj), j =1⋯Nc}, where Nc≫M , uj ≠X i and each pair does not lie on the polynomial,
i.e. vj ≠ f (uj). The final vault is constructed by taking the union of the two sets, i.e. G ∪C ,
combined with the message authentication code (e.g. MD5, SHA1)of K , denoted as
MAC(K ), and pass through a scrambler so that it is not clear which are the feature points
and which are the chaff points. The receiver decodes the fuzzy vault using binary biometric
features a ′

i∈ {0, 1}k , i =1⋯M  derived from the EI generated by itself by searching for the
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matchings in the fuzzy vault. All the candidate points are identified together with their pair
values in the vault to form a set S . Let U  denotes the number of pairs in S . To reconstruct
the polynomial with m degree, all possible combinations of m + 1 points are identified, with

a total number of (Um + 1) combinations. Each of the possible combinations is used to recover

the polynomial using Lagrange interpolating technique. The coefficients in the generated
polynomial is mapped back and concatenated in the same order as encoding to generate an
n-bit code K ′. The cryptographic key K  can be retrieved while the message authentication
code of K ′ equals to MAC(K ) if the two EIs generated at both ends are with high similarity.
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Figure 10. Key distribution solution based on fuzzy vault scheme

3.3. Performance comparison between different application scenarios

In order to realize high recognition performance and security, a suitable key distribution sol‐
ution should be selected based on the specific characteristics of EIs generated based on
TDPS and FDPS. In this section, we conduct a series of experiments to evaluate the perform‐
ance of different key distribution solutions. Firstly, a detailed recognition performance in
terms of False Accept Rate (FAR)/False Reject Rate (FRR) is conducted for different EI gener‐
ation scheme with different key distribution solution to demonstrate the suitable key distri‐
bution solution for different EIs generated. Then, the security performance of different fuzzy
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methods are presented. At last, the computational complexity performances are conducted
for different key distribution solutions with the appropriate EI generation scheme.

3.3.1. FAR/FRR performance

FAR and FRR are two important indexes to evaluate the recognition rate performance of a
biometric system, where FAR is the probability that a system incorrectly matches the input
pattern from false pairs, FRR is the probability that a system fails to detect a match between
the true pairs. The most suitable fuzzy method for different EIs should achieve a minumum
half total error rate (HTER) that equals (FAR+FRR)/2.

Figure 11. FAR/FRR curves with TDPS-based EIs. (a) Fuzzy commitment scheme; (b) Fuzzy vault scheme

For TDPS-based EIs, we conduct our performance evaluation based on data from two ex‐
periments described in Section 2.3. In Exp.I, i.e. there were in total 14 healthy subjects and
three channels of physiological signals (including 1-channel ECG and 2-channel PPG) with a
duration of 2-3 minutes were simultaneously recorded from each subject. In Exp.II, there
were in total 85 clinical subjects and two channels of physiological signals (including one-
channel ECG and one-channel PPG) with a duration of 40 seconds were simultaneously re‐
corded from each subject on three or four days within a two-month period. Data from the
both experiments are with 12-bit A/D resolution and at a sampling rate of 1000 Hz. Fig.11(a)
depicts the FAR/FRR curves with fuzzy commitment scheme, where FRR is the rate at which
the two EIs generated from the same subject during the same period are unmatched, i.e.
Hamming distance is larger than a specific threshold, FAR is the rate at which the two EIs
generated from the different subjects or during different periods are matched, i.e. Hamming
distance is larger than a specific threshold. Fig.11(b) depicts the FAR/FRR curves with fuzzy
vault scheme, where FRR is the rate at which the two EIs generated from the same subject
during the same period are unmatched, i.e. matching number is smaller than a predefined
degree of polynomial, FAR is the rate at which the two EIs generated from the different sub‐
jects or during different periods are matched, i.e. matching number is smaller than a prede‐
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fined degree of polynomial. It can be seen that the fuzzy commitment scheme shows a better
recognition performance with a minumum HTER of less than 1.46% and 3.19% on 14 and 85
subjects, compared to 3.4% and 5.6% with fuzzy vault scheme. The results indicate that the
fuzzy commitment scheme is superior to fuzzy vault scheme in different settings, such as
the lab and the clinical setting, for TDPS-based EIs.

As presented in Section 2.3.2, the two feature sets generated based on FDPS from the trans‐
mitter and receiver are with different numbers of points and it is common to have matching
points at different orders of the two sets, thus fuzzy commitment scheme is not suitable for
FDPS-based EIs due to its requirement for correspondence of features in terms of order.
Therefore, fuzzy vault scheme is probably the only approriate solution to protect the trans‐
mmission of keying materials with FDPS-based EIs. The data we used for performance eval‐
uation include ECG data of 20 subjects from the physioBank database (http://
www.physionet.org/physiobank), including 10 healthy people and 10 people with different
kinds of diseases, which were simultaneously collected from two leads on each subject at a
sampling rate of 360 Hz, and two-channel PPG data at a sampling rate of 1000 Hz from 14
subjects in Exp.I Fig.12 depicts the FAR/FRR curves with fuzzy vault scheme. It can be seen
that fuzzy vault shows an recognition performance with a minumum HTER of 5.2% and
8.9% on ECG and PPG, respectively.
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Figure 12. FAR/FRR curves with FDPS-based EIs based on fuzzy vault scheme

From the above analysis we can see, fuzzy commitment scheme is suitable for TDPS-based
EIs while fuzzy vault scheme for FDPS-based EIs. In addition, TDPS-based solution shows a
better recognition rate performance than FDPS-based one.
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3.3.2. Security analysis

Suppose the EIs generated are random enough, the security issues in the proposed key dis‐
tribution solution primarily exist during its package exchange process by brute-forcing the
key (K ) or EI directly. Therefore, to ensure the security of the key distribution protocol, the
information contained in EI must be larger than that in K .

For fuzzy commitment scheme, an eavesdropper can try out each bit of K  by brute-force at‐
tack. Also, he can try out most of bits in EI to reconstruct the same K . Suppose the length of
K  is l , the computation requirement of directly attack on K  in terms of its equivalence to
brute-forcing a key of a particular length (bits) is l . The number of attempts by attacking EI
depends on the length of K  and the ability of its corresponding error-correction. Take Reed-
Solomon as the error-correction code for example, a redundancy code of 2× t  bits should be
attached to correct t-bit errors, thus the length of EI should be equal tol + 2× t . As the error-
correction code can correct t-bit errors, an attempt of l + 2× t − t = l + t  bits can reconstruct K
successfully. In conclusion, the computation requirement in terms of its equivalence to
brute-forcing a key of a particular length (bits) is min(l , l + t)= l . In another word, the securi‐
ty of fuzzy commitment depends on the security of K  directly.

For fuzzy vault scheme, except for brute-forcing K  directly, an eavesdropper can record the
vault and try to construct the hidden polynomial from it. As described above, the computa‐
tion requirement of directly attack on K  is l . Suppose the degree of the polynomial is m, as
the feature points are hidden among a much larger number of chaff points, whose values are
randomly distributed in the same range in some situation, an adversary is able to try out
each group of m + 1 points in the vault to get the correct polynomial, the average attempts

are (L
m + 1) / 2, where L  is the vault size and L ≤2 p. Thus, the security of vault is a balance

act between the vault size L  and the degree of the polynomial m, but subject to p and l . In
conclusion, the computation requirement in terms of its equivalence to brute-forcing a key

of a particular length (bits) is min(log2

(L
m+1

)
, l). The security of the vault for different values of

m and different number of vault size in the condition l =128 and p =9 is presented in Fig.13.
For ease of understanding, we represent this computation requirement in terms of its equiv‐
alence to brute-forcing a key of a particular length (bits). As expected, increasing the number
of chaff points increases the security provided by the vault, but the security is subject to p
and l . Higher the order of the polynomial means higher security, where more common fea‐
ture points shall be hold by two ends.

3.3.3. Computational complexity

As described in Section 3.3.1, the suitable fuzzy method for TDPS-based EIs is fuzzy com‐
mitment while fuzzy vault for FDPS-based EIs. We estimate the cost performance of pro‐
posed key distribution solutions in terms of computational complexity, including time
complexity and space complexity.
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Figure 13. Security of fuzzy vault scheme

The time complexity involved in TDPS-based key distribution solution requires the follow‐
ing tasks: 1)R-wave detection; 2) IPI-based EI generation process; 3) Error-correction encod‐
ing process; 4) Error-correction decoding process. From the FAR/FRR performance analysis
we can see, the Hamming distance to achieve minimum HTER is about 18. Thus, from the
security analysis, in order to ensure the security of 128 bits, an EI of 164 bits should be gen‐
erated. Take q =4 for example, 41 IPIs should be calculated, which means 42 R-waves should
be detected. Take difference threshold algorithm for example, which has the minimum com‐
putational complexity in R-wave detection algorithms, the time complexity of R-wave detec‐
tion process on n points is O(n). It was demonstrated by Bao et al (2009) that the time
complexity for IPI-based EI generation process is O(N 2), where N  is the number of IPIs
used. Take Reed-Solomon as the error-correction code, the time complexity for the encoding
process is O(N .q), and for the decoding process based on Berlekamp–Massey algorithm the
time complexity is O((N .q)2). As q is a fixed number, the time complexity of proposed solu‐
tion can be expressed as O(n + N 2). The space complexity is estimated in terms of memory
required for implementing proposed schemes. Excluding the dynamic occupied memory
due to R-wave detection process and error-correction encoding/decoding process, the pri‐
mary static components in the transmitter is F (K̂ , EI ) while F (K̂ , EI ) and E I ′ in the receiv‐
er, and the overall memory required is 84 bytes.

The time complexity involved in FDPS-based key distribution solution requires the follow‐
ing tasks: 1) FFT computation; 2) Peak detection; 3) EI generation; 4) Key hiding (polynomial
evaluation); 5) Key un-hiding (Lagrange interpolation). For the FFT computation process
performed on n points, the time complexity is O(nlogn). As M  points of FFT coefficients that
are selected to perform a peak detection process, the time complexity for peak detection is
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M , where M =150 in our experiment. EI generation scheme includes an addition operation
and a modulo operation on each feature point. The number of feature points depends on
peak indexes detected, the time complexity of EI generation process is O(βM ), where β is
the rate between peaks detected and the FFT coefficients selected and thus 0<β <1. The poly‐
nomial evaluation in key hiding process would require 48×m(m + 1) / 2 operations, so the
time complexity of key hiding process is 48×m(m + 1) / 2. It is demonstrated by J.P. Berrut
that the improved Lagrange interpolation, i.e., Barycentric interpolation, requires only O(m)
operations as opposed to O(m 2) for evaluating the Lagrange basis individually. Therefore,

the time complexity of key un-hiding process is reduced to O((N2

m + 1
)m)=O(m), where N2 is

the number of feature points generated at the receiver. As m and M  are fixed numbers, the
time complexity of proposed solution can be expressed as O(nlogn). From the FAR/FRR per‐
formance analysis we can see, the degree of polynomial to achieve minimum HTER is about
23. Thus, in order to realize the security of 128 bits, the vault size should be larger than 400.
Excluding the dynamic occupied memory due to FFT process and randomized process, the
primary static components of the memory required are the physiological features (9 bit val‐
ues, about 48 for PPG and ECG for example) and their polynomial projects (12 bit values),
chaff points (400 for example to realize the security of 128 bits, 9 bit x-values and 12 bit y-
values). The overall memory required is 4.854KB.

Table 2 gives the detailed computational complexity of the TDPS-based and FDPS-based key
distribution solution, separately. It can be seen that TDPS-based key distribution solution is
superior in space complexity with only 84B of memory required, compared to 4.854KB for
FDPS-based solution.

Computational complexity Task Value

TDPS-based with

fuzzy

commitment

Time complexity

O(n + N 2)

Transmitter

O(n + N 2)

R-wave detection O(n)

IPI_based EI generation

process
O(N 2)

Error correction encoding O(N .q)

Receiver

O(N 2)

Error correction decoding O((N .q)2)

Static space

complexity (84B)

Transmitter

(34B)

K̂ ⊕ EI 18B

hash(K) 16B

Receiver

(50B)

F (K̂ , EI ) 34B

E I ′ 16B
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Computational complexity Task Value

FDPS-based with

fuzzy vault

Time complexity

O(nlogn)

Static space

complexity

(4.854KB)

Transmitter

O(nlogn)

FFT computation O(nlogn)

Peak detection M = 150

Randomized process O(βM )

Key hiding 48 ×m(m + 1) / 2

Receiver

O(m)

Key un-hiding (Polynomial

reconstruction)
O((N2

m + 1
)m) =O(m)

Transmitter

(2.302KB)

Chaff points (i.e. 400) 2.05KB

Feature points (i.e. 48) 252B

Receiver

(2.552KB)

Vault (i.e. 448) 2.302KB

Feature points (i.e. 48) 252B

Table 2. Computational complexity

4. Conclusion

In the biometrics solution for BSN security, physiological signals within human body are
used to generate dynamic EIs, which is not only used to realize node identification, but also
protect the transmission of keying materials. In this chapter, the procedures of biometric sol‐
utions for securing BSN, including the EI generation scheme and relevant key distribution
solution, have been described. From the experimental results we can see that, TDPS-based
EI generation scheme is superior in randomness and recognition performance, while FDPS-
based scheme has advantage on its real-time performance and robustness. The two common
used fuzzy methods, including fuzzy commitment scheme and fuzzy vault scheme, also
have their own advantages and disadvantages. Fuzzy commitment can achieve low compu‐
tation complexity and low memory occupied, but it is not suitable for EIs that are un-or‐
dered or with different length. Fuzzy vault scheme can be suitable to most of cases, but with
a high computation complexity and memory occupied. To realize high recognition perform‐
ance, fuzzy commitment should be selected for TDPS-based EIs, called TDPS-based solu‐
tion, while fuzzy vault for FDPS-based EIs, called FDPS-based solution. There are a lot of
issues need to be further studied to make it applicable into practical BSN platforms.

The challenges of TDPS-based solution primary exist in the EI generation process, where a sig‐
nal of about 30s is needed to generate a 128-bit EI. Firstly, how to increase the positive detec‐
tion  rate  of  R-wave  with  lower  computational  complexity  or  design  a  more  robust  EI
generation scheme being little influenced by the precision of R-wave should be studied to in‐
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crease the robustness performance of the solution. Secondly, a faster EI generation scheme
based on minimum number of IPIs should be addressed to increase its real-time performance.

For FDPS-based solution, the randomness performance of generated EIs, the computational
complexity and the recognition rate pose great challenges to its application. Because the less
satisfying randomness performance of EIs would bring about the security issue to the over‐
all solution, how to make generated EIs as random as possible while not affecting its recog‐
nition rate is an issue should be addressed. In addition, the high computational complexity
especially the space complexity brought by large amount of chaff points should be de‐
creased to satisfy the stringent restriction of processing power, memory and energy for most
sensor nodes. And what is the most important is that the recognition rate shall be signifi‐
cantly increased to make the solution applicable.

In some cases, not all of the physiological sensors that need to communicate with each other
can obtain the needed information, such as IPI or same kind of physiological signals. Thus,
how to extract a common feature from other kinds of physiological signal, such as respira‐
tion and blood pressure, might be further studied.

Author details

Fen Miao, Shu-Di Bao and Ye Li

Key Laboratory for Biomedical Informatics and Health Engineering, Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

References

[1] J. Hash, P. Bowen, A. Johnson, C. D. Smith, and D. I. Steinberg (2005). An introductory
resource guide for implementing the health insurance portability and accountability act (HI‐
PAA) security rule, Nat. Inst Stand. Technol., NIST Spec. Publ. 800-66, Gaithersburg,
MD.

[2] The European Parliament and the council of The European Union (Jul. 2002). Direc‐
tive 2002/58/EC concerning the processing of personal data and the protection of privacy in
the electronic communications sector, Official J. Eur. Communities, pp. L201/37-47.

[3] L. Eschenauer and V. Gligor (2002). A key-management scheme for distributed sensor net‐
works, Proceedings of the 9th ACM Conf. on Computer and Communication Security,
pp.41–47.

[4] H. Chan, A. Perrig, D. Song (2003). Random key predistribution schemes for sensor net‐
works, in: proceedings of the 2003 IEEE Symposium on security and privacy, May
11-15, pp. 197-213.

New Trends and Developments in Biometrics272



[5] D. Liu, P. Ning (2003). Establishing pariwise keys in distributed sensor networks, proceed‐
ings of the 10th ACM Conference on Computer and Communication, pp. 42-51.

[6] S. Cherukuri, K. K. Venkatasubramanian, S. K. S. Gupta (2003). BioSec: a biometric
based approach for securing communication in wireless networks of biosensors implanted in
the human body, Proc. IEEE International Conference Parallel Processing Workshop,
pp.432−439.

[7] S. D. Bao, Y. T. Zhang, and L. F. Shen (2005). Physiological Signal Based Entity Authenti‐
cation for Body Area Sensor Networks and Mobile Healthcare Systems, Proc. 27th IEEE
Int’l. Conf. Eng. Med. and Bio. Soc., Shanghai, China.

[8] S. D. Bao, C. C. Y. Poon, Y. T. Zhang, and L. F. Shen (2008). Using the timing informa‐
tion of heartbeats as an entity identifier to secure body sensor network, IEEE transactions on
information technology in biomedicine, Vol. 12, no. 6, pp. 772-779.

[9] Fengyuan Xu, Zhengrui Qin et al, IMDGuard: Securing Implantable Medical Devices
with the External Wearable Guardian, IEEE INFOCOM 2011.

[10] C. C. Y. Poon, Y. T. Zhang, S. D. Bao (2006). A Novel Biometrics Method to Secure Wire‐
less Body Area Sensor Networks for Telemedicine and M-Health, IEEE Communication
Magazine, pp.73-81.

[11] K. K. Venkatasubramanian, A. Banerjee, S. K. S. Gupta (2008). Plenthysmogram-based
secure inter-sensor communication in body sensor networks, Proc. of IEEE Military Com‐
muniations, pp.1−7.

[12] K. K. Venkatasubramanian, A. Banerjee, S. K. S. Gupta (2010). PSKA: usable and secure
key agreement scheme for body area networks, IEEE Transactions on Information Tech‐
nology in Biomedicine, Vol. 14, no. 1, pp.60-68.

[13] F. Miao, L. Jiang, Y. Li, Y. T. Zhang (2009). Biometrics based novel key distribution solu‐
tion for body sensor networks, Proc. Annual Conference of IEEE-EMBS, pp.2458−2461.

[14] A. Juels, M. Wattenberg (1999). A fuzzy commitment scheme, Proceedings of 6th ACM
conference on Computer and Communication Security.

[15] A. Juels, M. Sudan (2006). A fuzzy vault scheme, Design Codes and Cryptography, Vol.
38, no. 2, pp. 237-257.

[16] U. Uludag, S. Pankanti, A. K. Jain (2005). Fuzzy vault for fingerprints, In: Kanade T, Jai
AK, Ratha NK. Proc. of the 5th Int’l Conf. on AVBPA. Berlin: Springer-Verlag, pp.
310−319

[17] Y. Wang, K. Plataniotis (2007). Fuzzy vault for face based cryptographic key generation, In:
Proc. of the Biometrics Symp. Berlin: Springer-Verlag, pp. 1−6.

[18] Y. Lee, K. Bae, S. Lee, K. Park, J. Kim (2007). Biometric key binding: fuzzy vault based on
iris images, In: Lee SW, Li SZ eds. Proc. of the ICB 2007. LNCS 4642, Berlin: Springer-
Verlag, pp.800−808.

Physiological Signal Based Biometrics for Securing Body Sensor Network
http://dx.doi.org/10.5772/51856

273



[19] F. Miao, S. D. Bao, Y. Li (2010). A Modified Fuzzy Vault Scheme for Biometrics-based Body
Sensor Networks Security, IEEE Globecom.

[20] S. D. Bao and Y. T. Zhang (2005). A new symmetric cryptosystem of body area sensor net‐
works for telemedicine, in 6th Asian–Pacific Conference on Medical and Biological En‐
gineering.

[21] Miao, F., Bao, S. D., & Li, Y. A Novel Biometric Key Distribution Solution with Ener‐
gy Distribution Information of Physiological Signals for Body Sensor Networks Se‐
curity. IET Information Security. Accepted.

[22] J.P. Berrut, L. Trefethen. Barycentric Lagrange Interpolation. SIAM Review 46 (3): 501–
517,2004.

[23] Lin Yao, Bing Liu, Guowei Wu et al. A Biometric Key Establishment Protocol for Body
Area Networks, International Journal of Distributed Sensor Networks, 2011.

New Trends and Developments in Biometrics274


